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Abstract: Data concerning the routes of ambulance vehicles extracted from the database 

of an AVL system is used in this paper to compute the locations where these vehicles should 

be parked during the "waiting for a call" time. A modular algorithm based on the AVL 

component of the GPS/GPRS tracking system and a suitable approach in resolving a 

mathematical problem, known as the "p-median", are proposed. The implemented solution 

of the redeployment problem is tested on the site. 
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1 Common Conditions and Goal 

Allocation and redeployment problems in resources management have been 

resolved in various ways many times in multiple fields of research. The 

development of the spatial model based on GIS (Geographical Information 

System) using the advanced AVL (Automatic Vehicle Location) component of the 

GPS/GPRS (Global Positioning System / General Packet Radio Service) tracking 

devices allow for new opportunities in deployment optimization. With the 
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additional computational power available to researchers, it is possible today to 

efficiently analyze the data generated by the GPS/GPRS-trackers. Software 

involved in the AVL component of the system allows dynamic analysis and an 

optimal decision making process. Allocation and redeployment problems are 

similar for any fleet of vehicles in all fields of transportation. Commonly, 

researchers focus on problems of planning services in the public sector. 

Emergency Medical Services (EMS) and the fleet of ambulance vehicles are 

especially interesting because of their nature and the requirement of minimal 

response time. In papers related to the planning and organization of the EMS, 

allocation and redeployment are only a part of the extensive problems set. The 

approach to the process modeling and algorithm development is significantly 

influenced by the available input data and the available resources, though the main 

goal is always same: to reach a patient as soon as possible. Models used in system 

designing processes differ in approach. The prerequisites researchers encounter 

vary from: how many vehicles are the minimum requirement for functional 

service, how many vehicles are needed for a service to be functional at any 

moment, where garages need to be placed to minimize reaction time, etc. During 

the operation of the established EMS, after any single call for intervention is 

received, a couple of important decisions have to be made: which vehicle to use 

(which vehicle is allocated) and were to locate the parking place for the vehicle in 

the status of “waiting for a next call” (relocation of vehicle). The relocation 

problem is simplified because we need to the find location with the best spatial 

coverage that provides the shortest time of response. 

2 Problem Definition 

Our work is targeted at the optimization of the existing EMS. The experimental 

part of the research is performed on an existing emergency vehicle AVL system 

that has been in use for a couple of years. All ambulance vehicles are equipped 

with GPS/GPRS tracking devices, and the appropriate software is installed in the 

control center. The input data we used in our research are limited to data available 

in the archive generated by the AVL component of the software over a prolonged 

period of time. The available data comprises the location coordinates, speed, date 

and time collected from vehicles in the EMS fleet of the ambulance vehicle in the 

city of Niš, Serbia. 

After performing extensive analysis of the collected data, we propose a solution 

for the relocation of the ambulance vehicles during the "waiting for a call" time. 

Emergency service is treated in a dynamic way, and the ambulances are relocated 

once every day. The main contribution of this project is one more options in the 

AVL software. The options are intended to be a useful tool available in the 

decision making process conducted by the dispatcher in the "call center". The 
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route history of the ambulance vehicles and the spatial locations of incoming calls, 

acquired from the AVL system are good starting points in resolving a relocation 

problem. If we can perform data analysis and recalculation of the optimal vehicle 

waiting locations at any time, we can achieve the goal, and we can provide a tool 

for the dynamic relocation of available recourses in EMS. Although the goal of 

finding the quickest route to the destination is impacted by many complex 

parameters, it is mainly influenced by Euclidian distance. Traffic jams, rush hours, 

road reconstruction, weather conditions, time of the year and other parameters also 

have to be taken into count when modeling dynamic allocation. In our case, we 

made the assumption that an ambulance vehicle can be parked and "wait for a 

call" at any location from which a call for service was received in the previous 30 

days. We assume that the response time is mainly influenced by the distance 

between two points. 

3 Previous Studies 

3.1 Static or Dynamic Approach in Service Design 

The direction taken during modeling mainly depends on whether we are designing 

a service from scratch or we are optimizing and evaluating an existing service. 

Depending on that decision, we can treat a service as static or dynamic. If the goal 

is to find a minimal number of vehicles necessary to meet the required coverage or 

required average time of response, we are treating the service as a static one. In 

that case, we resolve the problem once, in the beginning of a service design. If we 

want to use new technologies and improve the existing service by introducing new 

procedures, the service is treated as a dynamic one. In this case, the everyday 

routine is changed daily and existing resources are used in a more efficient and 

productive way. The third approach is used in the case of the evaluation of an 

existing service. A model dedicated to the quality of the service control and 

quality assessment is sometimes required as a tool in a future investment planning. 

Among the first successful solutions was a model proposed by Church and 

ReVelle [1]. This model, named the “Location Set Covering Model” (LSCM), was 

dedicated to minimizing the number of facilities required to cover required service 

distances. This model is useful only if one wants to find the minimum number of 

necessary ambulance vehicles to provide a required service level. The authors note 

that an unlimited number of ambulance vehicles is not a realistic case and 

modified the proposed model into a new one named: “Maximal Covering Location 

Problem” (MCLP). The new model aims to maximize the population coverage by 

the limited ambulance usage. Soon, it was identified that if one of the vehicles is 

on the way and another incoming call occurs in the region subordinated to that 
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vehicle, the new demand will not be served in the specified time limits. So a 

whole group of new models was developed under common name: Double 

Standard Models (DSM). One of them is proposed by Gendreau [2]; the model 

guarantees response to any incoming call by two vehicles in a defined time limit 

in the city of Montreal, Canada. After several years, Gendreau proposed a 

dynamic relocation of the ambulance fleet during the idle time between two 

incoming calls and named the new model “Dynamic Double Standard Model” 

(DDSM). Gendreau defined the new problem as the “Maximal Expected Coverage 

Relocation Problem” (MECRP) and included a constraint of the number of 

redeployments. Researchers noticed that during one shift, one vehicle can serve 

only a limited number of the calls, and this model introduces the capacity of the 

vehicle. Malandraki i Daskin [3] turned to the probabilistic approach and assigned 

a “server busy probability” variable to ambulance vehicles. The proposed model is 

named the “Maximum Expected Covering Location Problem” (MEXCLP). 

Schilling [4] resolved real life situations using several vehicle types and developed 

a model named the “Tandem Equipment Allocation Model” (TEAM) and later an 

extended version of the model named FLEET. Most of the recent work is based on 

well-known studies, and extensive effort was used in the examination of the 

differences and a comparison of the results. 

3.2 Static or Dynamic Approach in Environment Modeling 

The next important issue in modeling is related to the changing impact of the 

environment. Again, it can be approached both statically and dynamically. 

Introducing time dependent functions as a representation of the model parameters 

represents dynamical modeling. This includes dependency related to the season of 

the year, day of the week, hour of the day, dependency related to the 

meteorological conditions, temperature, etc. Generally, this time dependency is 

introduced in the model by the time dependent average speed of the vehicle on the 

observed part of the drive track. Historical data provided by the modern 

GPS/GPRS vehicle trackers, especially data about vehicle speed, known as FCD 

(Floating Car Data) is a valuable input into such approaches. The TIMEXCLP 

model suggested by Repede and Bernardo [5] was among the first papers 

introducing environment impacts. The authors extended the already mentioned 

MEXCLP model into the TIMEXCLP model and applied a procedure on the data 

acquired in Louisville-Kentucky using variations in travel speed as a function of 

the time of day. The result was an increase of calls responded to within 10 

minutes, from 84% to 95%. The MEXCLP model was criticized as treating all 

servicers with the same busy probability. Rajagopalan [6] defined a function for 

modeling the probability of a desired vehicle to be already occupied. For most of 

these models, it can be assumed that the environment is treated dynamically. It is 

taken into account that the time of the route from point A to point B varies during 

different periods of the day. 
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3.3 Examples of Integral Solutions Deployments 

A review of the different practical solutions and their strengths is systematically 

examined by Kolesar [7]. This model was tested in New York, and for the first 

time, the possibility of redeployment of fire-units during one day shift was used. 

Budge [8] presented a model field deployed in Calgary, Canada. FCD data on the 

vehicles’ speed obtained from the database connected to AVL software is used for 

the first time by Reinthaler [9]. Examples of an integral solution in optimization of 

the Emergency Medical Service in urban areas can be found in many large cities 

all over the world. Approaches to the problem definition and solution differ 

significantly for different cases. Population layout, road networks, data about 

traffic accidents, and insurance users’ addresses are commonly used. 

3.4 Previous Work Related to the P-median Problem 

We address a well-known optimization issue, which is in our case mathematically 

represented as a p-median problem. This problem was defined for the first time in 

papers by Hakimi [10]. He divided continuous space into a discrete network and 

assumed that medians can be placed at the graph vertices. He gives mathematical 

proof that there is at least one optimum solution of this problem. Finally, he 

proposed a simple enumeration procedure named “direct enumeration” for the 

calculation of one or more medians. ReVelle and Swain [11] provided the first 

linear programming formulation of the problem and involved integer variables in 

the numeric resolving. They proposed a “Greedy Adding Algorithm” and a 

modified version, the “Greedy Adding with Substitution”. These papers are the 

basis for all methods proposed later. For large values of n and p, direct 

enumeration is not an acceptable solution, and methods that provide approximate 

solutions are introduced. Methods known as heuristics are developed as two phase 

algorithms. The first phase always consists of finding a starting set of p-medians, 

and the second phase includes iterations dedicated to solution improvement. The 

final solution is commonly very close to the optimal one, and sometimes it is the 

optimal solution. There are three primary early heuristics: Greedy, Alternate and 

Vertex Substitution. The "Greedy" method is described in the works of Kuehn and 

Hamburger [12]. This method was dedicated to resolving the warehouse location 

problem. The problem is how to place p-warehouses and supply n customers with 

a minimal total cost. Teitz and Bart [13] defined a method known as “vertex 

substitution” or "interchange" heuristic. In this solution, they frequently use a 

common subroutine known as the “one-opt” procedure. The procedure is used to 

find the "first" median by exact calculations similar to looking for the total cost of 

a single node. Densham and Rushton [14] improved the “vertex substitution” 

method and pointed to a spatial distribution of network nodes. They created a 

spatial search procedure as a more efficient and effective tool dedicated to the 

examination of possible solutions. This procedure is implemented as a core of the 
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new method called Global Regional Interchange Algorithm (GRIA). “Vertex 

substitution” is the most commonly used procedure in engineering practice. 

The method known as Lagrange relaxation is introduced if determining the 

starting medians and direct enumeration as a method for the total cost calculation 

appears to be inadequate. We mitigate the starting constraints to the mathematical 

definition of the problem, and we introduce problem relaxation. Iterations are 

controlled in several different ways: sub gradient-relaxation or growing-

optimization, brunch-and-bound, double-incrementing or “surrogate” 

optimization, etc. The milestone work in this research branch includes the 

algorithm by Narula, Ogibu and Samuelsson [15]. The newest “Surrogate” 

relaxation from Senne and Lorane [16] uses a new approach and uses a whole 

range of multipliers to improve the standard relaxation technique. 

The most common metaheuristics are “Variable Neighborhood Search”, “Genetic 

Algorithms”, “Tabu Search”, “Heuristic Concentration”, “Simulated Annealing” 

and “Neural Networks”. Hansen and Mladenović [17] developed a metaheuristic 

method named “Variable Neighborhood Search” (VNS). The algorithm is 

implemented in several steps. The first step is adopting an arbitrarily chosen 

starting solution. Starting nodes are randomly taken from network. After that, a 

procedure named "shaking" is applied, and one node in the solution is replaced 

with a new one, taken from the neighborhood. The quality of the new solution is 

examined and if the new solution is better than the previous one, the new solution 

is accepted as valid. Shaking is applied again, and the quality of the new result is 

checked. Systematic change of the neighborhood space is crucial. The process 

involves exploring increasingly distant neighborhoods to avoid a local minimum. 

The quality of the whole algorithm is in direct correlation to the quality of the 

shaking method. Different methods are used, and the most common are: 

"diversification" and "intensification". Practice proved VNS to be a very useful 

and convenient method. Thanks to different shaking methods, there are many 

variations of the original idea, such as “Parallel Variable Neighborhood Search” 

(PVNS), “Cooperative Parallel Variable Neighborhood Search” (CPVNS), and 

“Greedy Randomized Adaptive Search Procedure” (GRASP). 

“Heuristic Concentration” is developed by Rosing and ReVelle [18]. If we 

randomly choose locations of the starting set, there is 20% probability of falling 

into a loop that leaves us far from the optimal solution. At same time, if we apply 

"concentration", this risk is reduced to only 5%. The “Tabu procedure” involves 

such methods as restrictions, aspiration criteria, diversification and strategic 

oscillations. “Simulated Annealing” is one of the metaheuristics derived in 

attempts to use principles identified in nature as the template for mathematical 

algorithms. Mathematical implementation of cooling structures and achieving 

thermal equilibrium is used as a method for vertex substitution. Among the newest 

metaheuristics are “Genetic Algorithms” proposed for use in resolving the p-

median problem by Hosage and Goodchild [19], and later in the works of Alp, Erkurt 

and Drezner [20]. 
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4 Experimental Work 

4.1 Common Issues in EMS 

Emergency Medical Service (EMS) in the town of Niš, Serbia, is a public service 

organized to meet the needs not only of residents of downtown but also to 

residents of the 68 neighborhood settlements. The area of approximately 600 km
2
 

contains more than 300.000 habitants, and these are serviced by 24 specialized 

ambulance vehicles and a dozen vehicles with specific and unique medical 

equipment. The fleet is relatively new and is well-equipped with up-to-date 

standard medical equipment. Four vehicles are always on duty with complete 

personnel, and these operate in 8-hour shifts. 

If there are no incoming calls, vehicles are parked in a central garage near an 

emergency medical site, and the staff is resting in a leisure room. All other 

vehicles are also in a central garage parked for service, for recharging batteries, 

fuel filling, cleaning, etc. In addition to the 4 vehicles on duty, there are 5 vehicles 

ready to be used in an unpredictable extraordinary situation. 

The first assumption we made in this paper is that ambulance vehicles need not wait 

in a central garage but can be parked in one of the parking locations arranged to 

minimize the average time of response. Every vehicle receives the coordinates of a 

designated parking location, and after finishing the previous intervention, they go 

directly to that location. A vehicle goes back to the central garage only at the end of 

the shift. The whole area of the city has to be divided into 4 regions, and each 

region is assigned to one vehicle. 

4.2 AVL Component of the System and Impact on the Final 

Solution 

The experimental part of the research conducted in this paper and the verification 

in practice relies on data collected by a unit named a "GPS/GPRS-tracker". These 

units include a GPS-receiver, GPRS-modem, microcontroller dedicated to 

synchronization of operations and local memory for storage of positional updates, 

assembled in one case. Memory is used in the case of restricted GPRS network 

coverage, preventing any positional data loss. In this case, real time ambulance 

visualization is not available, but no data are lost. Vehicles’ positions are recorded 

periodically, and updates are transferred to the server located at the control center 

using a GSM phone network and a GPRS packet data transfer service offered by a 

local mobile phone operator. 

Each vehicle location is matched to the underlying road network and displayed 

over a city raster map acting as a background. The full vehicle trajectory during 

response to an emergency medical call is then reconstructed from road segments 
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and stored as one instance of emergency response. Real time coverage and actual 

position of the whole fleet is available to all users according to granted 

permissions to connect to the server. The server provides updated picture in 

several resolutions adjusted to type and throughput of connection. Cell-phones, 

PDA-units and other devices are also supported. All components of the system 

with mutual dependencies are shown in Figure 1. 

Figure 2 shows a snapshot of the application and actual location of an ambulance 

vehicle. This is a working environment for the dispatcher in the "calling center" 

operated by the EMS. The AVL subsystem creates a new record in the database 

for every new position of ambulance vehicle. The records include following 

fields: vehicle identifier, location coordinates, time, direction, speed, etc. During 

the first execution phase of the algorithm proposed in this paper, destination points 

related to ambulance routes are separated from the extensive amount of positional 

data in the database. 

Coordinates of destination points are just one parameter that can be used as query 

criteria. Other modules of the software are tasked with trip instance extraction by 

identifying the starting point, ending point and all points belonging to that specific 

trip instance. Each road segment can have a weight factor assigned that can be 

used in calculations, but this possibility is not used at this time. Traffic conditions as 

an input parameter for the arrival time estimation will be used in the future studies. 

 

Figure 1 

Components of the system 
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Figure 2 

Vehicle fleet management application 

4.3 P-median Problem Definition 

If the main goal is to achieve a minimum average response time, then we use a 

model based on the p-median mathematical representation of the problem. If the 

goal is to achieve a minimum for the longest response time, then we use a model 

based on the p-center mathematical representation. The most important difference 

is the fact that the p-center model does not consider the weight of a location. 

Using the p-center model, we try to reduce the longest travel time, and the number 

of incoming calls from the same location is not considered. 

The problem of identifying p-facilities (called “medians”) to minimize the sum of 

distances for each client location to its nearest facility was defined during the early 

sixties as a p-median problem. The resolving of this problem is classified as a non-

deterministic polynomial-time (NP) difficulty problem. For even moderate values 

of client points n and facilities p, the number of possible solutions can be very 

large and is defined by (1): 
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For instance, if n=1000 and p=10, the total number of possible solutions is 

2.631.023,00. In this paper, the p-median problem is treated as a binary integer 

programming problem, explained as the following: find the minimum of (2): 


 Ii Jj

ijijj yd

 (2) 

where j is the weighting factor of location j, and dij is the Euclidian distance 

between location i of a parked vehicle and location j of an incoming call. 

Particular constraints are assumed: 
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  Iixi  ,1,0  (6) 
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The constraint (3) defines that p is the total number of vehicles that we have to 

relocate, (4) says that one demand can be served by only one vehicle, (5) 

eliminates the possibility of serving a call from a location without a vehicle, (6) 

says that one parking place can contain only one whole vehicle (one vehicle 

cannot be divided into several locations) and in the end, (7) ensures that one 

incoming call can be serviced only by one vehicle (not with two halves of two 

different vehicles). Certain of the constraints can be removed or avoided, which is a 

relaxation of the problem. Additionally, some additional constraints can be 

introduced. For example, it is possible to define a maximum value for dij. This is a 

way to establish a maximum allowed call response time. Additionally, it is possible 

to introduce a maximum allowed number of calls serviced by one vehicle. This 

represents a capacity constraint. 

5 Description of the Proposed Solution 

5.1 Obtaining the Starting Solution 

For the purpose of resolving the previously defined problem, a three phase 

algorithm is proposed. Coordinates of points of interest are extracted from the 

database connected to the AVL subsystem during the first phase. In the second 
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phase, a starting set of medians is calculated using direct calculations. In the third 

phase, the starting set of medians is improved using the Genetic algorithm. We 

start with a procedure dedicated to sequential search of the database, which 

contains all of the movement data of the ambulance vehicles. In the first phase of 

the algorithm, we examine data for the last 30 days for two ambulance vehicles 

arbitrarily chosen. The criteria for query are defined and implemented in a 

subroutine to traverse successive nodes on a path and to provide answers to 

questions like: “Is the vehicle moving?” or “Has the vehicle reached the 

destination?” Based on these answers and predefined constraints, nodes that are 

destinations of routes are extracted, and other nodes are ignored. 

Figure 3 

Algorithm flowchart 

As a result of the first phase of the algorithm, we obtain locations as destinations 

in the observed period of time. Extracted nodes are sequentially searched again, 

coordinates are converted into integer data type and weight factors are assigned to 

each node. The criterion to join two incoming call nodes into one and to use a 

weight factor of 2 is that the distance between them is less than 60 meters. The 

second phase of the algorithm is shown as a flowchart in figure 3. The goal of this 

part of the algorithm is to provide a starting set of medians as a starting solution. 

We construct an n x n matrix of distances and introduce a weight factor. The 

matrix consists of i-rows and j-columns. Element dij represents the distance from 

the incoming call node j to the parking location i multiplied by j (weight factor 

of node j). We apply a "1-median" procedure to the matrix. This procedure finds 

the most suitable parking location if we have only one vehicle. 
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Figure 4 

1-median procedure 

The "1-median" procedure is depicted in Figure 4. The third column is an array of 

distances to all other n – incoming call nodes according to the presumption that 

we always start from the parking place located at node number “3”. The sum of all 

elements placed in the third column of the matrix is the total distance we have to 

travel if we want to serve all incoming call nodes, and each time we start from the 

location of node number “3”. This sum is a measure of the quality of location 

number “3”, and we use this sum to compare the cost of that location to the costs 

of other locations. We calculate this sum for every column of the matrix and 

compare the costs of all the nodes and look for a minimum. The array of 

recalculated node costs is represented as the last gray row below the matrix in 

Figure 4. Column number "3" is designated as "MIN" because that column has the 

lowest cost. This means, in this hypothetical case, if we had only one ambulance, 

that vehicle should be parked in the location defined by the coordinates of node 

"3". Node "3" is the first median of our matrix. The flowchart in Figure 3 

represents the first iteration. Of course, the cost of node number “3” will not 

remain unchanged through further calculations because that cost will be 

influenced by introducing other medians. 

If we have no more vehicles, the second phase of the algorithm should finish here. 

However, because we have more vehicles, we fill the third row with zeroes, as 

represented in Figure 4, according to the fact that if we start from any location and 

the destination is node “3”, we need to travel zero kilometers to reach it because 

we already have a vehicle in that node. In the adjusted matrix, we apply the “1-

median” procedure again to find the second median. The flowchart in Figure 3 

represents this as the branch returning to the beginning of the algorithm. When the 

total number of the parking locations is exhausted, the second phase of our 

algorithm is complete. As a result, we have a starting set of medians. At the end of 

this phase, we sum all costs of the determined locations and obtain the total cost of 

the complete solution. It will be used in the future as a measure of solution quality 

for comparison with other solutions obtained in the future. A starting set of the 

medians is far from the optimal solution, and considerable work is required to 

improve it. 



Acta Polytechnica Hungarica Vol. 11, No. 9, 2014 

 – 51 – 

5.2 Basic Principles of Genetic Algorithms 

Genetic algorithms are a family of computational techniques inspired by the 

mechanics of natural evolution, according to the Darwinian theory of natural 

evolution. These algorithms encode problems and solutions to a chromosome like 

data structure and apply evolution-like operators to these structures. 

Implementation of a genetic algorithm begins with a definition of the search space 

as a finite bounded domain. The crucial step is determining a fitness function, 

according to the fact that in any point of search space, the value of the fitness 

function indicates the amount of closeness to the optimal solution. In many cases, 

using Genetic algorithm implementation is as good as the fitness or evaluation 

function. The next step is the initialization or selection of the initial population. 

Through the next generations of the population, the existing solution is iteratively 

improved. 

Genetic operators are needed to provide a searching mechanism for the algorithm. 

These operators are used to create new solutions, and they are based on the 

existing solutions in the population. Two basic operators are crossover and 

mutation. Crossover takes two individuals, called parents, which are combined to 

form new chromosomes, called offspring. Iteratively applying the crossover 

operator, genes of good chromosomes appear more frequently in the population, 

leading to convergence to the optimal solution. The mutation operator alters one 

individual to produce a single new solution. Mutation introduces random changes 

into the characteristics of chromosomes. Mutation is generally applied at the gene 

level and introduces genetic diversity in the population, providing a way to escape 

from local optima. Reproduction involves the selection of chromosomes for the next 

generation. In general, the fitness of an individual determines the probability of its 

survival to the next generation. There are many different selection procedures, 

including roulette wheel selection, scaling techniques, tournament, elitistic and 

ranking methods. There are many types of Genetic algorithms according to different 

approaches to the population, reproduction and use of operators. The most 

commonly used are: standard, solid state, incremental, parallel, elitistic, niched, 

meta-level, and fuzzy. The benefits of using Genetic algorithms are numerous. The 

main benefits are: modular design, design separated from application, supported 

multi-objective optimization, easy adaptation to "noisy" environments, easy 

implementation, parallel processing, answers obtained quickly, answers are better 

as time goes by, many ways to speed up and improve application, and possibility 

to make combinations with hybrid solutions. The main disadvantage of the 

Genetic algorithm is the long computational time, but it can be terminated at any 

time. Sometimes longer runs are acceptable, especially with faster computers. 
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5.3 Components of the Genetic Algorithm Related to the 

Proposed Solution 

Chromosome coding is critical in terms of its ability to represent all possible 

solutions and to avoid introducing infeasible solutions in new populations. There 

are two possible representation schemes for chromosome coding: binary and non-

binary. For our solution, we chose a non-binary representation in the following 

manner: a chromosome corresponds to a particular solution of our task. The length 

of a chromosome corresponds to the number of available ambulances. The locus 

of the first gene is reserved for ambulance number "1", and the last locus in the 

chromosome is reserved for the last ambulance vehicle. The serial number i of n 

possible candidate locations for parking places relates to a certain vehicle being 

placed in a corresponding locus. So we have p genes in one chromosome. In the 

locus of the first gene, we enter the number of the candidate location for the 

parking place assigned to ambulance No.1. The structure of the chromosomes is 

shown in Figure 5. 

Figure 5 

Chromosomes structure 

The fitness function is the same as the objective function defined in the integer 

programming model (2). We calculate the total cost for every candidate solution 

from the distance matrix designed in the first phase. The sum of p costs of 

destinations included in the candidate solution is the total cost of the solution and 

a measure of the quality assigned to that solution. A smaller sum means a better 

fitted solution. Although the evaluation function may differ from the fitness 

function, in our case, they are identical. 

Initial population. Having a wider initial population is a way to increase the 

probability of forming the best individuals. However, a wider population slows 

down the algorithm because we have to cultivate more chromosomes in every 

iteration. The objective is to find the optimal population size in which every possible 

solution can be attained through the genetic operators. The population size is related 

to the ratio between the total number of candidate locations and the total number of 

available vehicles. This ratio is named the "density" of the problem, and this concept 
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is developed in the widely cited paper of Alp, Erkurt and Drezner [45]. The 

proposed formula applied to our illustrative example case gives: 3*(n/p) = 162 as the 

desired number of chromosomes in the population. After population size is 

determined, the next step is to initialize the population. The first 10% of 

chromosomes in the initial population will be multiplied by the unchanged solution 

delivered from the second phase of our overall algorithm. The same starting 

chromosome is copy-pasted until 10% of population is initialized. The rest of 

population is filled with chromosomes randomly generated. Every gene as a 

candidate location is chosen randomly from the pool of i possible destinations. 

Simultaneously, we take care about the feasibility of the solution and only 

chromosomes that meet the starting constraints are accepted. At the same time, we 

start to build a pool of already tested candidate solutions. If a chromosome is already 

accepted as part of the population, the procedure skips that candidate and asks for a 

new one. 

Selection of parents. In the canonical genetic algorithm, the probability that two 

chromosomes will be selected for mating is proportional to their fitness. A 

common technique is mapping the population onto a roulette wheel, where 

chromosomes are represented by a space on the wheel surface. The amount of 

space proportionally corresponds to the chromosome’s fitness. In our case, before 

evolution starts with the new population, 10% of the best fitted chromosomes are 

directly copied from the previous population into the new population. This is the 

way to ensure that good genetic heritage is carried on to the next generation. 

Parents are selected uniform-randomly from the population, and every individual 

has the same chance to be selected for the crossover. Although convergence to the 

best value is slower this way, this method increases the genetic diversity. 

Crossover. With selected parents mated for crossover, we start recombination. 

The recombination point is generally on 50%-60% of each chromosome, 

depending on the chromosome length. Swapping the fragments between two 

parents produces offspring. As we obtain two new chromosomes, first we check 

for feasibility and fitness. Better chromosomes continue further, whereas others 

are rejected. 

Mutations. After recombination, a mutation operator is applied. A randomly 

chosen locus in the chromosome is replaced with a randomly chosen destination 

node. We check for feasibility again. At this point, we check if this chromosome 

was already examined as a possible solution. If this is not the case, the new 

chromosome finally becomes part of the new population. 

Elitism in evolution. At the beginning of every new iteration, we build a new 

population from the old one. First, we recalculate the total cost of every 

chromosome in the old population and sort the chromosomes according to their 

fitness. Best fitted solutions are directly reinserted at the beginning of a new 

population. 
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Termination. A common practice is to terminate the Genetic algorithm after a 

predefined number of generations. It is also possible to terminate if the fitness of 

several top chromosomes remains unchanged for a predefined number of 

generations. In our example, we limited the algorithm to 200 iterations, but 

experiments confirmed that the algorithm always converges to an optimal solution 

after approximately 50 generations. 

Algorithm iterations are shown in figure 6. The starting population is initialized 

partly with only one predefined chromosome multiplied to reach 10% of the 

population and partly with randomly generated chromosomes. The chromosome 

used for multiplication is the solution delivered from the second phase of the overall 

algorithm. During the process of evolution, while trying to reach a completely new 

population, we have to establish an intermediate population. After a fitness 

evaluation is applied, we copy the best 10% of chromosomes and fill the first 10% 

of the intermediate population, whereas the rest of the chromosomes are generated 

using genetic operators. Mating, crossover and mutation are continuously repeated 

on the old population until the intermediate population is filled. At this point, the 

fitness evaluation is performed again to rearrange the chromosomes and sort the new 

population. At this point, it is easy to obtain the best 10% of individuals as the starting 

point of the next intermediate population. To avoid unnecessary computation, we 

continuously store checked chromosomes in a pool of tested individuals, and every 

new candidate is compared with the contents of the pool. When a predefined number 

of generations is reached, the iterative process is stopped. 

 

Figure 6 

Algorithm iterations 

5.4 Illustrative Example 

We demonstrate our overall algorithm using an example based on real life data. 

Figure 7 shows the complete history of routes driven by ambulance vehicle No. 1 

over a period of 30 days. There is a total of 16.292 points in the AVL database, 
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which are used as the input data to our algorithm. Figure 8 shows the routes driven 

by ambulance vehicle No. 2 for the same period containing another 16.131 points. 

Both histories were merged into one file, and the 32.423 points were used as input 

into the proposed first phase of the algorithm. 

 

Figure 7 

Complete route history for vehicle No.1 over 30 days 

 

Figure 8 

Complete route history for vehicle No.2 over 30 days 

 

Figure 9 

Results of the first phase 
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During the first phase of the algorithm, nodes are filtered, and nodes identified as 

destinations are extracted. From the 32.423 points, only 217 were identified as 

destinations. The appropriate weight factor is also determined and attached to every 

node. The results of this phase for ambulance vehicle No. 1 are shown in Figure 9. 

As we can see on figure 9, the central starting point is the main garage of the EMS. 

All destination nodes for vehicles No. 1 and No. 2 are merged into one array, 

enumerated from 1 to 217 and prepared for the second phase of the algorithm. 

 

Figure 10 

Proposed starting solution for the Genetic algorithm 

 

Figure 11 

Solution after 20 generations 
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Figure 12 

Final solution after 50 generations 

The second phase starts with the creation of the matrix of distances. Applying the 

"1-median" procedure on the distance matrix, we generate the first possible 

solution. In our illustrative example, we assumed that there are 4 vehicles in one 

shift and that all of them are of the same type. The result is shown in Figure 10, 

and 4 locations can easily be identified as a proposed starting solution. The total 

cost of this solution is shown in Figure 13, as the cost of the best solution in the 

initial population (N = 0). After 20 generations, we have reached the data shown 

in Figure 11. The total cost of the solution reached after 20 generations can be 

identified on Figure 13. Figure 12 shows the solution after 50 generations, and this 

is our best total cost. The next 150 generations provides no improvement to the 

total cost. 

Figure 13 

Total cost of the solution reached after 20 generations 

Conclusion 

In this paper, we have proposed an innovative use of data collected using the AVL 

component of the GPS/GPRS tracking system for the optimization of emergency 

vehicle redeployment strategy. It is demonstrated that the use of developed GIS 

tools can significantly improve the quality level of emergency services in 

everyday routines. It is also applicable to all fields of public services and the 

transportation of people and goods. Practical results show that the Genetic 

algorithm with a calculated starting solution is a suitable tool for resolving the p-

median problem in networks with less than a thousand nodes and less than a dozen 

medians. Verification and a practical testing process confirmed that the average 
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time needed to reach incoming call points was significantly less if vehicles were 

parked in the proposed parking places. The solution proposed in this paper is 

accepted as a standard routine in Emergency Medical Service in the town Nis, 

Serbia. Further improvements could incorporate an extra set of input data acquired 

from the AVL subsystem, such as the average speeds related to the road network 

segments or dynamic traffic congestion data. 

References 

[1] R. Church, C. ReVelle: The Maximal Covering Location Problem. Papers 

in Regional Science Vol. 32, No. 1, 1974, pp. 101-118 

[2] M. Gendreau, G. Laporte, F. Semet: Solving an Ambulance Location 

Model by Tabu Search. Location Science Vol. 5, No. 2, 1997, pp. 75-88 

[3] C. Malandraki, M. S. Daskin: Time-Dependent Vehicle Routing Problems: 

Formulations, Properties and Heuristic Algorithms. Transportation Science 

Vol. 26, No. 3, 1992, pp. 185-200 

[4] D. A: Schilling et al. The TEAM/FLEET Models for Simultaneous Facility 

and Equipment Sitting. Transportation Sci Vol. 13, 1979, pp. 163-175 

[5] J. F. Repede, J. Bernardo: Developing and Validating a Decision Support 

System for Location Emergency Medical Vehicles in Louisville, Kentucky. 

European Journal of Operational Research Vol. 75, No. 3, 1994, pp. 567-

581 

[6] H. K. Rajagopalan, C. Saydam, J. Xiao: A Multi-Period Set Covering 

Location Model for Dynamic Redeployment of Ambulances. Computers & 

Operations Research Vol. 35, No. 3, 2008, pp. 814-826 

[7] P. Kolesar, W. Walker, J. Hausner: Determining the Relation between Fire 

Engine Travel Times and Travel Distances in New York City. Operations 

Research Vol. 23, No. 4, 1975, pp. 614-627 

[8] S. Budge, A. Ingolfsson, D. Zerom: Empirical Analysis of Ambulance 

Travel Times: The Case of Calgary Emergency Medical Services. 

Management Science Vol. 56, No. 4, 2010, pp.716-723 

[9] M. Reinthaler, B. Nowotny, F. Weichenmeier, R. Hildebrandt: Evaluation 

of Speed Estimation by Floating Car Data within the Research Project 

Dmotion. In: 14
th

 World Congress on Intelligent Transport Systems, 

Beijing, China, 2007 

[10] S. L. Hakimi: Optimum Locations of Switching Centers and the Absolute 

Centers and Mediansof a Graph, Operations Research, Vol. 12, No. 3, 

1964, pp. 450-459 

[11] C. ReVelle, R. Swain: Central Facilities Location. Geographical Analysis, 

Vol. 2, 1970, pp. 30-42 



Acta Polytechnica Hungarica Vol. 11, No. 9, 2014 

 – 59 – 

[12] A. A. Kuehn, M. J. Hamburger: A Heuristic Program for Locating 

Warehouses. Management Cience, Vol. 9, No. 4, 1963, pp. 643-666 

[13] M. B. Teitz, P. Bart: Heuristic Methods for Estimating the Generalized 

Vertex Median of Aweighted Graph. Operations Research, Vol. 16, No. 5, 

1968, pp. 955-961 

[14] P. J. Densham, G. Rushton: Designing and Implementing Strategies for 

Solving Large Location-Allocation Problems with Heuristic Methods. 

Technical Report, National Center for Geographic Information and 

Analysis, Buffalo, NY, 1991, pp. 91-10 

[15] S. C. Narula, U. I. Ogbu, H. M. Samuelsson: An Algorithm for the p-

median Problem, Operations Research, Vol. 16, No. 5, 1968, pp. 955-961 

[16] E. L. F. Senne, L. A. N. Lorena: Lagrangean/Surrogate Heuristics for p-

median Problems. In M. Laguna and J. Gonzalez-Velarde, editors, 

Computing Tools for Modeling, Optimization and Simulation: Interfaces in 

Computer Science and Operations Research, Kluwer Academic Publishers, 

2000, pp. 115-130 

[17] P. Hansen, N. Mladenović: Variable Neighborhood Search for the p-

median. Location Science, Vol. 5, No. 4, 1997, pp. 207-226 

[18] K. E. Rosing, C. S. ReVelle: Heuristic Concentration: Two Stage Solution 

Construction. European Journal of Operational Research, Vol. 97, No. 1, 

1997, pp. 75-86 

[19] C. M. Hosage, M. F. Goodchild: Discrete Space Location-Allocation 

Solutions from Genetic Algorithms. Annals of Operations Research, Vol. 6, 

1986, pp. 35-46 

[20] O. Alp, E. Erkut, Z. Drezner: An Efficient Genetic Algorithm for the p-

median Problem. Annals of Operations Research, Vol. 122, 2003, pp. 21-42 


