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Abstract: In order to solve decision making problem we have to compare and rank a finite
set of alternatives. In this paper we want to show some approaches to creating the
preference structure (ranking) of alternatives. These approaches lead us to use chosen
multicriteria decision methods and aggregation operators. ARRA (Academic ranking and
rating agency) uses one fixed way to create a ranking of public universities and their
faculties. In this paper many more approaches to creating such rankings (or preference
structures) of alternatives are discussed and the results are compared.
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1 Introduction

ARRA (Academic ranking and rating agency) publishes every year an assessment
report concerning public universities and their faculties. The higher education
institution assessment procedure consists of the following steps:

e the selection of indicators (criteria) for the quality of education and
research in individual universities and the assignment of a certain number
of points to each faculty for the performance in the particular indicator
(indicators are arranged into groups and each group of indicators gains a
certain number of points),

e the partition of faculties into six groups according to the so-called
Frascati Manual in order to compare only faculties that have the same
orientation and similar working conditions,
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e assigning a point score to faculties (the ranking is based on the average
points score in the individual groups of indicators),

e calculating the point scores for the higher education institutions in
individual Frascati groups (the ranking of the institution in the given
group is given by the average assessment of all its faculties included in
that group). For more details, see [8].

Assessment criteria created by ARRA [8] are shown in the table below.

Table 1
Criteria created by ARRA
Area Code Description
w1 MNumber of publications in Wak for the years 1996 — 2005 per creative worker
VW2 Number of citations in WoK for the years 1996 — 2005 per creative worker
VV2a Number of citations in WoK per publication in WoK for the years 1996 — 2005
W3 Number of publications in Wok having at least 5 citations in WoK for the years
1996 — 2005 per creative worker
W3a Number of publications in WoK having at least 25 citations in WoK for the years
1996 — 2005 per creative worker
:g:hand V4 Number of full-time PhD students per professor or associate professor in 2005
W5 Average annual number of PhD graduates in 2003 — 2005 in proportion to the
number of professors and associate professors
W6 The number of full-time PhD students divided by the number of bachelor's and
master's degree full-time students
w7 Grant funding from the KEGA and VEGA agencies per creative worker in 2005
Vv8 Grant funding from the APVV agency per creative worker in 2005
Vvo Funding from foreign grants and state programmes per creative worker
W10 Total grant funding from agencies per creative worker
sv1 Proportion of the number of full-time and part-time students per teacher in 2005
sv2 Proportion of the number of full-time and part-time students per professor or
associate professor in 2005
5v3 Propartion of professors, associate professors and other teachers with PhD to the
total number of teachers
Study and Sv4 Proportion of professors and associate professors to all teachers
education SVs Average age of active professors
SV6 Ratio of the actual number of applications received to the planned number in
2005
Sv7 Ratio of registered and admitted students in 2005
Svs Proportion of foreign students
SO+ Proportion of graduates unemployed for longer than 3 months of institution’s
graduates in 2005
SV10* Number of students taking part in study abroad [SAIA_administered scholarship
programmes and the Socrates EC programme) per 100 students

For simplicity in the examples we have chosen seven faculties (alternatives) a;,
i=1,...,7 (from a total number of 24 technical specialized faculties evaluated by

ARRA) and five evaluation criteria C;, j=1,...,5, one from every set: SV1-SV4 =
Cy1, SV6-SV8 = C, VV1I-VV3a = Cs;, VV4-VV6 = C4, VV7-VVI10 = Cs.

In the following examples the differences between the ARRA rankings
(preference structures) and other ranking methods are shown.
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Example 1

Take a set of alternatives A = (ay,...,a;). Every alternative a; is described by five
criteria C,,..., Cs see table below.

Table 2
Input data
C, c, Cs Ca Cs
a 2,78 0,75 0,03 0,32 10,6
ay 2,73 0,69 2,19 0,31 146,3
az 4,05 0,5 0,36 0,33 124,6
ay 3,4 0,69 0,71 0,31 54,7
as 3,06 0,67 7,61 0,22 93,3
ag 2,81 0,61 0,1 0,3 36,4
az 3,8 0,55 0,2 0,28 78

Our aim is to create a final ranking on these alternatives.

2 The Basics of Preference Relations Notations

When the decision maker chooses between two alternatives (which are not
incomparable) described by score vectors X and y within his choice set, he is able
to say that he prefers X to y (or vice-versa) or he has the possibility to say that two
alternatives are indifferent (equivalent). We will not distinguish alternative a and
its corresponding score vector X.

e  Strict preference (P) - a couple of alternatives X, y belongs to the relation
P, if and only if the decision maker strictly prefers X toy (X P y): X > V.

e Indifference (/) - a couple of alternatives X, ¥ belongs to the relation 7, if
and only if the decision maker is indifferent between alternatives X and y

(X1y): X =y.

e Incomparability (J) - a couple of alternatives X, y belongs to the relation
J, if and only if the decision maker is unable to compare X and y (X J Y).
(But this is not our case.)
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3 Multicriterial Methods Used in the Assessment of
Public Universities

In this section we recall three of the often used social choice procedures and their
application on the assessment. Note that these methods are usually used in voting
systems to find a winner, and they can be applied to create rankings, as well.

3.1 Borda Count Method

For the Borda Count Method, each candidate (alternative) gets 1 point for each
last place vote received, 2 points for each next-to-last point vote, etc., all the way
up to m points for each first place vote (where m is the number of
candidates/alternatives). The candidate with the largest point total wins the
election.

Bf:f._§=1 F, i=1,2,..,n W
Bjj is a number assigned by j-th expert (criterion) to i-th candidate (alternative).

The ranking is done using B; as the utility function value for alternative
(candidate) i.

3.2 Plurality Voting

The idea of plurality voting is simply to declare as the social choices the
alternatives with the largest number of first-place rankings in the individual
preference list. The successive application of the plurality voting method, omitting
its actual winners, can serve for ranking purposes.

3.3 The Hare System

This system is based on the idea of arriving at a social choice by successive
deletions of less desirable alternatives. If any alternative occurs at the top of at
least half of the preference lists, then it is declared to be a social choice [7].
Ranking can be achieved by using a similar strategy as plurality voting.

Example 2

The preference structures by the criteria C; (see Table 1) are as follows:
Cia;>a; > ag> as >ag >a;> a,

Cz: Q> A= as > as >ag ~a > as,
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Ciias> ap > ag >a3 >a; >a6 >a,

C,ay> a;> ay~ag >ag >a; >as

Cs: a,> a; > as >a; >ay >ag >a,

The final preference structures via the usage of the mentioned methods are:
Borda count method (B.C.): a3 >a, > a4 >as> a;= a;> ag,

Plurality voting (P.V.): a; >a, > a, > a4 > as > a; > as,

Hare system (H.S.): a; >a; > a, > a4 > as > a; > a,,

These three methods satisfy monotonicity and the Pareto condition.

4 Linear Normalization of Input Data

Data normalization consists of rescaling the attribute values of the data into a
single specified range, such as from 0 to 1 or from 0 to 100.

In the following table are shown 3 basic arithmetic processes of linear
normalization.

Table 3

Linear normalization

Procedure 1 Procedure 2 Procedure 3
Definition U= ET\:I_. = HT\%T, U= f";—i
Normalized vector* D<y <l D=wm<l byl
Constraints maxv; =1 miny; = 0, maxv; = 1 Su=1
Proportionality conserved Yes No Yes
Interpretation % of maximum z; | % of range (maxx; —minz;) | % of total ¥ a5

Conditions under which the methods can be applied: x;,> 0,
Xj,...,x, are the input values and the values v;,...,v, are normalized outputs.

* except for some pathological values of x; (if x;= ... = x,,, then the corresponding
criterion C;gives no information and it can be omitted).
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Example 3

We continue in Example 1, i.e., we consider Table 2. In the following tables we
show the normalized inputs according to three different Procedures 1, 2, 3.

Table 4
Procedure 1 of linear normalization
C, C, Cs C, Cs
a 68,64 100,00 0,39 96,97 7,25
a 67,41 92,00 28,78 93,94 100,00
a3 100,00 66,67 4,73 100,00 85,17
ay 83,95 92,00 9,33 93,94 37,39
as 75,56 89,33 100,00 66,67 63,77
ag 69,38 81,33 1,31 90,91 24,88
a; 93,83 73,33 2,63 84,85 53,32
Table 5
Procedure 2 of linear normalization
C, C, Cs C, Cs
a; 3,79 100,00 0,00 90,91 0,00
a 0,00 76,00 28,50 81,82 100,00
a3 100,00 0,00 4,35 100,00 84,01
ay 50,76 76,00 8,97 81,82 32,50
as 25,00 68,00 100,00 0,00 60,94
ag 6,06 44,00 0,92 72,73 19,01
a; 81,06 20,00 2,24 54,55 49,67
Table 6
Procedure 3 of linear normalization
C, C, Cs Ca Cs
a; 12,28 16,82 0,27 15,46 1,95
a, 12,06 15,47 19,55 14,98 26,90
a3 17,90 11,21 3,21 15,94 2291
ay 15,02 15,47 6,34 14,98 10,06
as 13,52 15,02 67,95 10,63 17,15
ag 12,42 13,68 0,89 14,49 6,69
ay 16,79 12,33 1,79 13,53 14,34
Remark 1

The linear normalization of input data saves the preferences between alternatives
in individual criteria, but for different aggregation methods the final preference
structures may be different.
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5 Chosen Aggregation Operators

In many decision making problems, a number of independent attributes or criteria
are often used to individually rate an alternative from the decision maker's
perspective and then these individual ratings are combined to produce an overall
assessment.

In decision making, values to be aggregated are typically preference or satisfaction
degrees. A preference degree tells to what extent an alternative X is preferred to an
alternative y, and thus is a relative evaluation. A satisfaction degree expresses to
what extent a given alternative is satisfactory with respect to a given criterion.

For more information about aggregation operators and their properties see [1], [4].

5.1 Basic Aggregation Operators

e  Arithmetic mean

The simplest and most common way to aggregate data is to use a simple
arithmetic mean 4, (average).

1 1
Ay (51yee5) = =l %= Eiea = )

This operator is interesting because it gives an aggregated value that is between
max (xj,...,x,) and min (x,,...,x,). The result of aggregation is "a middle value".
The average is often used since it is simple and satisfies the properties of
monotonicity, continuity, symmetry, idempotence and stability for linear
transformations.

e  Weighted arithmetic mean

Unlike the arithmetic mean, the weighted arithmetic mean reflects the possibly
different importance of single criteria in multi-criteria decision making.

For n-ary operators, the weights form an n-dimensional weighting vector w

W = (wy...,w,)E [0,1]", f.wy = 1. If a weighted arithmetic mean W :
Ll ax[L]" = [0,1] is an operator for any input tuples, it is necessary to know
the relevant weights for all possible input cardinalities » and, therefore, it is

necessary to have a weighting triangle A= (w;, | n EN, i € {1,..., n}) such that all
win€ [0,1] and 2laq w=1foralln EN, see [1].

e  Ordered weighted arithmetic mean

Definition 4: Let A be a given weighting triangle. An aggregation operator Aw,:
U@ [@1]" — [0,1] defined by
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Apa (Xp,...%,) = E?:;L W in. X 3)
is called a weighted arithmetic mean associated with A.
Notice that the arithmetic mean AM is the only symmetric weighted mean

.
associated with weighted triangle A = (w,) :[;J.

Table 7

Chosen aggregation operators

FROCEDURRE | OF NORMALIZATION R R

G Cy Cy Cy C;  |average | Aw
al| 6264 toooo| 039 senT| 7S
ag 67,41 oa.00| 2ETE| 9394 100,00
az| 100,00| 6667 473 10000 2517
ay 23,95 R2,00 933 9394 3739
as Thh6| B9.33| 100,00 6667 63,77
a5 6938 B1,33 1,21 0,91 24,88
ag 93,83 F3,33 203 B4EAM 5332

L e - TV 5 R )
D =] = s B2 L Ln

FROCEDURRE 2 OF NORMALIZATION

C1 Cy Cz Cy Cs

al 3,79( 100,00 0,00 Q0,91 Q.00
ag 000 Ta,00 2350 1,82 100,00
az | 100,00 0,00 435 100,00 24,01
a4 50,76 Fe,00 207 H],E2 32,50
as 2500 &8, 00 100,00 0,00 60,94
ag 6,08 44,00 0,52 T2,73 12,01
ar 1,08 20,00 224 5455 A2 AF

L N I N O L =)
I -1 T B o=

FROCEDURRE 3 OF NORMALIZATION

Cy Cy C3 Cq Cs

a] 1228 16,82 027 15,44 1,95
aa| 1208] 57| 1055) 1aoe| 200
as 1790 11,21 321 1594 2291
a4 1502 1547 634 1492 10,06
as| 1353 1502 67095 1063 1715
B 12421 1362 0,29 14,49 6,69
ag 1672 12,33 1,79 13,53 14,34

R R e
L I L S S 5 o )
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There are some methods of generating weighting triangles [2], [3]. The method
proposed in [3] is based on monotone real functions called quantifiers ¢: [0,1] —

[0,1], such that {0,1} % Ran q. The weighting triangle

A= 0n). wa=a(Z)-o(Z7) @

is defined for non-decreasing quantifiers g.
Example 4

In this example we show a comparison of arithmetic and weighted arithmetic
mean application. The weighting vector used by weighted arithmetic mean (4,,) is

1 113
in this example w = [ :[
g'a’s

The Ordered Weighted Averaging Operators (OWA operators) were originally
introduced by Yager [6] to provide the means for aggregating scores associated
with the satisfaction of multiple criteria, which unifies in one operator the
conjunctive and disjunctive behaviour.

Definition 5: Let Ay : Waan[@.1]" —[0,1] be a weighted arithmetic mean
associated with the weighted triangle A = (w;,).

The operator Ay : Wyany[@L]" — [0,1] given by
Ay (X0 X) = Dlimq WX, (5)

where (x;’,...,x,’) is a non-decreasing permutation of the input n-tuple (x,,...,x,) is
called an OWA operator associated with A.

A fundamental aspect of this operator is the re-ordering step, in particular an
aggregate X; is not associated with a particular weight w; but rather a weight is
associated with a particular ordered position of an aggregate.

Example 5

r=l
Let Apag (X) = E?:g_(fj =l— frE }) x’;, be an OWA operator with non-
decreasing permutation of the input 5-tuple (x;,..., x,,). For the inputs see Table 3.

(1)  Let a quantifier ¢; : [0,1] — [0,1] by given by ¢,(x) = x’, p > 1. Then
OWA operator 4y, prefers the “high score” of the inputs. Take p = 2.

(i)  Let a quantifier ¢,: [0,1] — [0,1] by given by ¢gx(x) = x*, p € 10,1[. Then

OWA operator Ay, prefers the “low score” of the inputs. Take p = 0,1.
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(iii)  Let a quantifier g;: [0,1] — [0,1] by given by g3(x) = [1 + 2x-1)’)/2, p =
1/(2k+1) and k£ € N. Then OWA operator Ay»,; prefers the “average

score” of the inputs. Take k = 2.

1.2

0%E o -

-1

Q3

og og 1

Figure 1

Quantifiers

Conclusion

We have introduced some other decision making methods to show another view of
the ranking of the public universities and their faculties. We have used all three
procedures of linear input data normalization and applied five chosen aggregation
operators and three multicriteria methods to it, in order to compare them with the
ARRA ranking. ARRA creates its ranking based on the normalization Procedure 1
and on the simple arithmetic mean (average) as an aggregation method. It is one of
the possible choices for composing them.

As we have seen in the previous examples, the results (rankings) by using the
same aggregation methods for different normalization procedures are not the
same. We have shown that they depend firstly on the choice of the normalization
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procedure and secondly on aggregation method. The chosen aggregation operators
show us that Procedure 3 of linear input data normalization seems to be the best
way, because by using different aggregation methods, rankings are very similar.

Recall that all of these methods and many others are only a support for a decision
maker.
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Table 8

Summary of the rankings based on chosen aggregation operators and multicriteria methods

FROCEDURE ]| OF NORMALIZATION R R R R R R
) Cr Cy Cy Cs  |average Aw OWA; OVWA OWA 3 B.C. P.V. HS5.
ap| é264( 100,00 039 96,97 T25 a 34458 7 674 4 2S5 6 5 2 2
ag| &741| 92,000 2872 9394 100,00 2 3 08170 Bl 6E01 NS 4534 R 3 )
az| 100,00 66,67 473 100,00 £517 3 2. TLel (3 0404 1 2724 e sl 1 1
ag| 23050 92,00 033 L3094 3730 4 4 03 5 BOEFY 3 2031 3 3 4 4
as|  Fi5460 8033 100,00 &&67| 63,77 1 I8 ST557 2N 768l BN 9314 R 5 3
ag| @938 #1,33 L3I 9091 2428 7 7472 6 &F16 7 2087 77 7 7
ar| 93231 7333 2,63 8485 5332 5 6 503 4 B8F¥99 2 2314 5 5 & &
PROCEDURRE 2 OF NORMALIZATION
Cy Cs Cs Cy Cs OWA, OWA, OWA B.C. P.V. H.5.
aj 3,79| 100,00 0,00) 90,91 0,00 & i 3761 NEd 11,86 Bl 1718 ESRNEE: 2 2
ag 000 7Fe00| Z2E50( 21,82 100,00 2 4 7373 1 1020 F 395 2 2 3 3
az| 100,00 0,00 4350 100,001 2401 1 1 6311 2 803 1 2100 4 1 1 1
ag| 50,76 76,00 807| B1,E2 3250 4 2 4755 4 5118 3 2460 3 3 4 4
as|  2500| @8,00| 100,00 0,00 &0,94 9 6 51,10 3 305 4 82271 1 4 5 3
ag 6,06 44,00 09z F27F3 190 T FE 3207 09 4032 [A& 1238 1 R T 7
ar| 21,06 20,00 2,24) 5455 4967 5 5% (3024 (5 7293 2 146l 6 5 [ ]
FROCEDURE 3 OF NORMALIZATION
Cy Cy Cs Cy Cg OWa, OWa, OWa B.C. P.V. H5.
ap 1228| 16,82 027 1544 195 7 [} 759 WFE 1197 338 376 B S 2 2
az 1206 1547 19551 1498 2690 2 220,13 2 1296 2 1E7R 1 2 3 3
a3 17900 11,21 3211 1594 2291 2 4 1541 3 1699 3 673 4 1 1 1
a4 1502 1547 634 1498 10,06 4 g 1154 Bal 1461 Al ESZ S S 4 4
a5 13,52 1502 @795 1063 17,15 1 10 25,08 B 1567 B 5302 B 5 5
g 1242 1368 029 1449 6,69 [} 7 278 a4 1199 & 408 6 T i 7
ag 16,79 1233 LI 1353] 1434 =] S B T e R - T T 5 [ 4]
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