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Abstract: In order to solve decision making problem we have to compare and rank a finite 
set of alternatives. In this paper we want to show some approaches to creating the 
preference structure (ranking) of alternatives. These approaches lead us to use chosen 
multicriteria decision methods and aggregation operators. ARRA (Academic ranking and 
rating agency) uses one fixed way to create a ranking of public universities and their 
faculties. In this paper many more approaches to creating such rankings (or preference 
structures) of alternatives are discussed and the results are compared. 
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1 Introduction 

ARRA (Academic ranking and rating agency) publishes every year an assessment 
report concerning public universities and their faculties. The higher education 
institution assessment procedure consists of the following steps: 

• the selection of indicators (criteria) for the quality of education and 
research in individual universities and the assignment of a certain number 
of points to each faculty for the performance in the particular indicator 
(indicators are arranged into groups and each group of indicators gains a 
certain number of points), 

• the partition of faculties into six groups according to the so-called 
Frascati Manual in order to compare only faculties that have the same 
orientation and similar working conditions, 
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• assigning a point score to faculties (the ranking is based on the average 
points score in the individual groups of indicators), 

• calculating the point scores for the higher education institutions in 
individual Frascati groups (the ranking of the institution in the given 
group is given by the average assessment of all its faculties included in 
that group). For more details, see [8]. 

Assessment criteria created by ARRA [8] are shown in the table below. 

Table 1 
Criteria created by ARRA 

 
For simplicity in the examples we have chosen seven faculties (alternatives) ai, 
i=1,…,7 (from a total number of 24 technical specialized faculties evaluated by 
ARRA) and five evaluation criteria Cj, j=1,…,5, one from every set: SV1-SV4 ⇨ 
C1, SV6-SV8 ⇨ C2, VV1-VV3a ⇨ C3, VV4-VV6 ⇨ C4, VV7-VV10 ⇨ C5. 

In the following examples the differences between the ARRA rankings 
(preference structures) and other ranking methods are shown. 
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Example 1 

Take a set of alternatives A = (a1,…,a7). Every alternative ai is described by five 
criteria C1,…, C5 see table below. 

Table 2 
Input data 

  C 1 C 2 C 3 C 4 C 5 
a1 2,78 0,75 0,03 0,32 10,6 
a2 2,73 0,69 2,19 0,31 146,3 
a3 4,05 0,5 0,36 0,33 124,6 
a4 3,4 0,69 0,71 0,31 54,7 
a5 3,06 0,67 7,61 0,22 93,3 
a6 2,81 0,61 0,1 0,3 36,4 
a7 3,8 0,55 0,2 0,28 78 

Our aim is to create a final ranking on these alternatives. 

2 The Basics of Preference Relations Notations 

When the decision maker chooses between two alternatives (which are not 
incomparable) described by score vectors x and y within his choice set, he is able 
to say that he prefers x to y (or vice-versa) or he has the possibility to say that two 
alternatives are indifferent (equivalent). We will not distinguish alternative a and 
its corresponding score vector x. 

• Strict preference (P) - a couple of alternatives x, y belongs to the relation 
P, if and only if the decision maker strictly prefers x to y (x P y): x ≻ y. 

• Indifference (I) - a couple of alternatives x, y belongs to the relation I, if 
and only if the decision maker is indifferent between alternatives x and y 
(x I y): x ≈y. 

• Incomparability (J) - a couple of alternatives x, y belongs to the relation 
J, if and only if the decision maker is unable to compare x and y (x J y). 
(But this is not our case.) 
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3 Multicriterial Methods Used in the Assessment of 
Public Universities 

In this section we recall three of the often used social choice procedures and their 
application on the assessment. Note that these methods are usually used in voting 
systems to find a winner, and they can be applied to create rankings, as well. 

3.1 Borda Count Method 

For the Borda Count Method, each candidate (alternative) gets 1 point for each 
last place vote received, 2 points for each next-to-last point vote, etc., all the way 
up to m points for each first place vote (where m is the number of 
candidates/alternatives). The candidate with the largest point total wins the 
election. 

Bi = ij,  i=1,2,...,n (1) 

Bij is a number assigned by j-th expert (criterion) to i-th candidate (alternative). 

The ranking is done using Bi as the utility function value for alternative 
(candidate) i. 

3.2 Plurality Voting 

The idea of plurality voting is simply to declare as the social choices the 
alternatives with the largest number of first-place rankings in the individual 
preference list. The successive application of the plurality voting method, omitting 
its actual winners, can serve for ranking purposes. 

3.3 The Hare System 

This system is based on the idea of arriving at a social choice by successive 
deletions of less desirable alternatives. If any alternative occurs at the top of at 
least half of the preference lists, then it is declared to be a social choice [7]. 
Ranking can be achieved by using a similar strategy as plurality voting. 

Example 2 

The preference structures by the criteria C j  (see Table 1) are as follows: 

C 1: a3 ≻ a7 ≻ a4 ≻ a5 ≻a6 ≻a1≻ a2, 

C 2: a1 ≻ a2 ≈ a4 ≻ a5 ≻a6 ≻a7≻ a3, 
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C 3: a5 ≻ a2 ≻ a4 ≻a3 ≻a7 ≻a6 ≻a1, 

C 4: a3 ≻ a1≻ a2 ≈ a4 ≻a6 ≻a7 ≻a5, 

C 5: a2 ≻ a3 ≻ a5 ≻a7 ≻a4 ≻a6 ≻a1. 

The final preference structures via the usage of the mentioned methods are: 

Borda count method (B.C.): a3 ≻a2 ≻ a4 ≻a5≻ a1≈ a7≻ a6. 

Plurality voting (P.V.): a3 ≻a1 ≻ a2 ≻ a4 ≻ a5 ≻ a7 ≻ a6. 

Hare system (H.S.): a3 ≻a1 ≻ a2 ≻ a4 ≻ a5 ≻ a7 ≻ a6. 

These three methods satisfy monotonicity and the Pareto condition. 

4 Linear Normalization of Input Data 

Data normalization consists of rescaling the attribute values of the data into a 
single specified range, such as from 0 to 1 or from 0 to 100. 

In the following table are shown 3 basic arithmetic processes of linear 
normalization. 

Table 3 
Linear normalization 

 
Conditions under which the methods can be applied: xi ≥ 0, 

x1,…,xn are the input values and the values v1,...,vn are normalized outputs. 

* except for some pathological values of xi (if x1= … = xn, then the corresponding 
criterion C j gives no information and it can be omitted). 
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Example 3 

We continue in Example 1, i.e., we consider Table 2. In the following tables we 
show the normalized inputs according to three different Procedures 1, 2, 3. 

Table 4 
Procedure 1 of linear normalization 

 C 1 C 2 C 3 C 4 C 5 
a1 68,64 100,00 0,39 96,97 7,25 
a2 67,41 92,00 28,78 93,94 100,00 
a3 100,00 66,67 4,73 100,00 85,17 
a4 83,95 92,00 9,33 93,94 37,39 
a5 75,56 89,33 100,00 66,67 63,77 
a6 69,38 81,33 1,31 90,91 24,88 
a7 93,83 73,33 2,63 84,85 53,32 

Table 5 
Procedure 2 of linear normalization 

 C 1 C 2 C 3 C 4 C 5 
a1 3,79 100,00 0,00 90,91 0,00 
a2 0,00 76,00 28,50 81,82 100,00 
a3 100,00 0,00 4,35 100,00 84,01 
a4 50,76 76,00 8,97 81,82 32,50 
a5 25,00 68,00 100,00 0,00 60,94 
a6 6,06 44,00 0,92 72,73 19,01 
a7 81,06 20,00 2,24 54,55 49,67 

Table 6 
Procedure 3 of linear normalization 

 C 1 C 2 C 3 C 4 C 5 
a1 12,28 16,82 0,27 15,46 1,95 
a2 12,06 15,47 19,55 14,98 26,90 
a3 17,90 11,21 3,21 15,94 22,91 
a4 15,02 15,47 6,34 14,98 10,06 
a5 13,52 15,02 67,95 10,63 17,15 
a6 12,42 13,68 0,89 14,49 6,69 
a7 16,79 12,33 1,79 13,53 14,34 

Remark 1 

The linear normalization of input data saves the preferences between alternatives 
in individual criteria, but for different aggregation methods the final preference 
structures may be different. 
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5 Chosen Aggregation Operators 

In many decision making problems, a number of independent attributes or criteria 
are often used to individually rate an alternative from the decision maker's 
perspective and then these individual ratings are combined to produce an overall 
assessment. 

In decision making, values to be aggregated are typically preference or satisfaction 
degrees. A preference degree tells to what extent an alternative x is preferred to an 
alternative y, and thus is a relative evaluation. A satisfaction degree expresses to 
what extent a given alternative is satisfactory with respect to a given criterion. 

For more information about aggregation operators and their properties see [1], [4]. 

5.1 Basic Aggregation Operators 

• Arithmetic mean 

The simplest and most common way to aggregate data is to use a simple 
arithmetic mean AM (average). 

AM (x1,...,xn) = i = .xi  (2) 

This operator is interesting because it gives an aggregated value that is between 
max (x1,…,xn) and min (x1,…,xn). The result of aggregation is "a middle value". 
The average is often used since it is simple and satisfies the properties of 
monotonicity, continuity, symmetry, idempotence and stability for linear 
transformations. 

• Weighted arithmetic mean 

Unlike the arithmetic mean, the weighted arithmetic mean reflects the possibly 
different importance of single criteria in multi-criteria decision making. 

For n-ary operators, the weights form an n-dimensional weighting vector w 

w = (w1,...,wn)  [0,1]n,  i = 1. If a weighted arithmetic mean W : 
n  [0,1] is an operator for any input tuples, it is necessary to know 

the relevant weights for all possible input cardinalities n and, therefore, it is 
necessary to have a weighting triangle ∆ = (win | n N, i  {1,..., n}) such that all 
win  [0,1] and i = 1 for all n N, see [1]. 

• Ordered weighted arithmetic mean 

Definition 4: Let ∆ be a given weighting triangle. An aggregation operator AW∆: 
n  [0,1] defined by 
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AW∆ (x1,...,xn) =  in.xi   (3) 

is called a weighted arithmetic mean associated with ∆. 

Notice that the arithmetic mean AM is the only symmetric weighted mean 

associated with weighted triangle ∆ = (win) = . 

Table 7 
Chosen aggregation operators 
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There are some methods of generating weighting triangles [2], [3]. The method 
proposed in [3] is based on monotone real functions called quantifiers q: [0,1] → 
[0,1], such that {0,1}  Ran q. The weighting triangle 

∆q = (win),    win = q  - q   (4) 

is defined for non-decreasing quantifiers q. 

Example 4 

In this example we show a comparison of arithmetic and weighted arithmetic 
mean application. The weighting vector used by weighted arithmetic mean (Aw) is 

in this example w = . 

The Ordered Weighted Averaging Operators (OWA operators) were originally 
introduced by Yager [6] to provide the means for aggregating scores associated 
with the satisfaction of multiple criteria, which unifies in one operator the 
conjunctive and disjunctive behaviour. 

Definition 5: Let AW : n →[0,1] be a weighted arithmetic mean 
associated with the weighted triangle ∆ = (win). 

The operator AW’ : n → [0,1] given by 

AW’ (x1,...,xn) =  in.xi’, (5) 

where (x1’,…,xn’) is a non-decreasing permutation of the input n-tuple (x1,…,xn) is 
called an OWA operator associated with ∆. 

A fundamental aspect of this operator is the re-ordering step, in particular an 
aggregate xi is not associated with a particular weight wi but rather a weight is 
associated with a particular ordered position of an aggregate. 

Example 5 

Let AW’∆q (x) =  x’i, be an OWA operator with non-

decreasing permutation of the input 5-tuple (x1,..., xn). For the inputs see Table 3. 

(i) Let a quantifier q1 : [0,1] → [0,1] by given by q1(x) = xp, p > 1. Then 
OWA operator AW’∆q1 prefers the “high score” of the inputs. Take p = 2. 

(ii) Let a quantifier q2: [0,1] → [0,1] by given by q2(x) = xp, p  ]0,1[. Then 

OWA operator AW’∆q2 prefers the “low score” of the inputs. Take p = 0,1. 
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(iii) Let a quantifier q3: [0,1] → [0,1] by given by q3(x) = [1 + (2x-1)p]/2, p = 

1/(2k+1) and k  N. Then OWA operator AW’∆q3 prefers the “average 

score” of the inputs. Take k = 2. 

 
Figure 1 

Quantifiers 

Conclusion 

We have introduced some other decision making methods to show another view of 
the ranking of the public universities and their faculties. We have used all three 
procedures of linear input data normalization and applied five chosen aggregation 
operators and three multicriteria methods to it, in order to compare them with the 
ARRA ranking. ARRA creates its ranking based on the normalization Procedure 1 
and on the simple arithmetic mean (average) as an aggregation method. It is one of 
the possible choices for composing them. 

As we have seen in the previous examples, the results (rankings) by using the 
same aggregation methods for different normalization procedures are not the 
same. We have shown that they depend firstly on the choice of the normalization 
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procedure and secondly on aggregation method. The chosen aggregation operators 
show us that Procedure 3 of linear input data normalization seems to be the best 
way, because by using different aggregation methods, rankings are very similar. 

Recall that all of these methods and many others are only a support for a decision 
maker. 
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Table 8 
Summary of the rankings based on chosen aggregation operators and multicriteria methods 
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