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The artificial intelligence is an accurate predictive tool for different kinds of internal 
combustion engine (ICE) applications. However, the training process can be expensive due 
to the high computational and measurement costs. This work aims to describe a general 
methodology that can be applied to cost-efficiently train multilayer perceptron type 
artificial neural networks with measurement data from ICEs. The created methodology is 
based on analyses of a high-resolution dataset measured on a commercial diesel engine. 
Different methods and recommendations are presented for the model creation, evaluation, 
training method selection, input feature selection and architecture selection. In addition, a 
method is described in order to select the appropriate measurement resolution that 
provides proper information for training with minimal fuel consumption. The investigation 
showed that the presented workflow can reduce calculation time and fuel consumption, 
while maintaining good model accuracy. The method can be applied for any ICE related 
artificial neural network problems, but it can also be an aide for other research fields. 
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1 Introduction 

The ambitious goals of the Paris Agreement has a major effect on the climate 
policy of the European Union (EU). In order to keep the global warming well 
below 2°C, the EU is devoted to achieve climate neutrality by 2050 [1]. The Fit 
for 55 package is a set of proposals that is dedicated to cut greenhouse-gas 
emissions until 2030 by at least 55% compared to the 1990 level [2, 3, 4]. To meet 
these climate targets, tremendous efforts and investments are required in many 
sectors, including the transport sector. The first provisional agreement of the Fit 
for 55 package was made in 2022. This indicates carbon neutrality for the new 
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passenger cars and light commercial vehicles by 2035. The original proposal 
considers tailpipe CO2 emissions only, thus this can be considered a ban for 
internal combustion engines (ICE) for these vehicle types [5]. This proposal set 
off many arguments, since a more holistic view is required to properly define 
carbon neutrality [6]. Besides the local CO2 emission, the CO2 emission of the full 
lifecycle and the Well-to-Wheel (WTW) CO2 emission also has to be considered, 
which means that the internal combustion engines operated with e-fuels can also 
be climate neutral. Currently the political situation changes dynamically. At this 
point, the EU decided to permit the registration of new ICE cars after 2035 if they 
are operated with e-fuels. 

From a technical point of view, the electrification is the best solution for 
applications, where the local pollutant emission has to be minimal. Therefore, the 
rapid electrification is a good solution for most of the passenger car use cases [7]. 
Since people have most of their personal experience with passenger cars, the 
simplest political message for campaigning is to provoke electrification in all 
segments of transportation. From engineering perspective this is an inadequate 
solution to achieve climate neutral transportation because there are many 
segments where the current maturity of the battery technology is insufficient [8]. 
Among other technologies, the sustainable advanced fuels are crucial to achieve 
true carbon neutral mobility. For applications, where the mass and volume of the 
energy storage system is critical, the low energy density of the batteries is 
problematic. This means that e-fuels can be the best short and medium-term 
solution for aviation, heavy-duty vehicles and road public transport. For 
applications where high amount of stored energy is required, such as sailing, the 
high demand for lithium and other expensive rare materials also limits the 
usability of batteries. The full elimination of ICE from passenger cars will also be 
a slow process, especially if the entire world’s vehicle fleet is considered.  
The advanced fuels can help to achieve climate neutrality of passenger cars in this 
transition period, and they can also reduce the pollutant emission by realizing 
cleaner combustion. 

The aspects described above support the urgent need to develop cheap and 
sustainable advanced fuels [9]. However, it is challenging to creating new 
advanced fuel compositions [10, 11]. Usually, time-consuming and complex 
simulations are necessary to model the fuels’ effect on the combustion and 
emission. The applied tools are expensive and deep knowledge – therefore 
expensive labor is necessary to build and use the simulation models [9].  
The artificial intelligence (AI) could provide an alternative approach to efficiently 
develop new climate neutral fuels. The AI does not require any knowledge on the 
real physical or chemical processes due to its empirical nature. Once a 
representative training dataset is available with the proper input and output 
features, the AI can learn the processes. Then, it can accurately predict the 
behavior of the investigated system. 
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The artificial neural networks (ANN) are among the most common AI methods. 
The structure of this algorithm is similar to the human brain. The inputs of the 
biological neurons are the dendrites and the output of them is the axon. Once the 
sum of the incoming electric signals from other neurons reach a certain threshold, 
the neuron discharges through its axon towards other neurons. The behavior of a 
neuron can be modelled with a weighted adder. Each connection between artificial 
neurons has a weight, and a neuron calculates the weighted sum of the incoming 
signals. Then, the output of a neuron will be modified by an activation function, 
and the next neuron will get this activation as its input. ANNs are trained with 
back propagation (BP) algorithms. These are iterative methods that modify the 
weights (and biases) of the network in order to reduce the error between the 
desired and actual output values. The most conventional ANN type for ICE related 
tasks is the multilayer perceptron (MLP) type neural network. This network has an 
input layer with the defined input features, and an output layer with neurons that 
calculate the final values of the output features. Between the input and output 
layer there is at least one hidden layer with a certain number of neurons. Every 
neuron of a layer is connected to all of the neurons of the next layer. An MLP 
network with at least one hidden layer is a universal approximator, thus it can be 
applied to nonlinear problems as well. 

Many articles demonstrated the high accuracy of MLP networks for ICE 
parameter predictions. [12] successfully used an ANN model to accurately 
estimate soot concentrations in laminar diffusion flames. Authors of [13] trained a 
MLP network with steady-state NOx emission measurements and then they 
validated it with transient data. The created model performed extremely well on 
the steady-state dataset with a correlation coefficient (R) above 0.99. The overall 
R values of the network with the transient NOx data were 0.93 and 0.88 in two 
different operating points, which is a moderate accuracy. However, it is still a 
good result considering that the transient data lies far from the range of the steady 
state measurement points. In [14] ANN models were used to predict the ignition 
delay (ID) while different n-heptane, iso-octane and toluene mixtures were used. 
The ID could be predicted from the ambient conditions and the molar fraction of 
the components with a correlation coefficient above 0.99. The authors could also 
accurately predict the research octane number and motor octane number of the 
mixtures. 

The development of a predictive tool that is able to estimate different engine 
parameters accurately in a wide range of operating points with different fuels 
requires a proper training dataset. However, the creation of high-resolution 
datasets is costly, especially with special fuels and expensive compounds.  
The ANN creation method also have to be effective in order to increase accuracy 
and reduce training time and computing costs. This means that a proper 
methodology is required to reduce costs and ensure high accuracy. As a first step 
of the methodology creation, a high-resolution dataset is needed that can be used 
in different analyses and optimization processes. In our previous study [15] we 
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created such a dataset with 6277 samples that covered most of the engine’s useful 
operating range. We were able to accurately predict 10 different emission and 
combustion related parameters from the engine speed, torque and exhaust gas 
recirculation (EGR) valve position. Now this high-resolution dataset can be used 
to establish a methodology for cost efficient training of ANNs with ICE 
measurement data. 

This paper presents a workflow that can be applied for the ANN model creation 
process of ICE related problems. Several investigation is presented to select good 
methods for the different ANN creation steps. A measurement grid resolution 
selection technique is also described to minimize fuel costs of measurements 
while maintaining good model accuracy. Section 3.2 – 3.6 presents the 
investigations related to efficient ANN creation. Section 3.7 describes the 
measurement resolution selection method. The full workflow is summarized in the 
conclusion section. 

2 Experimental Apparatus and Methods 

2.1 Measurement System and Dataset Creation 

The high-resolution dataset was measured on a Cummins ISBe 170 30 
turbocharged, medium-duty commercial diesel engine. This article builds on our 
previous work [15], therefore, the precise description of the measurement system, 
the calculation methods, and the process of high-resolution dataset creation can be 
found there. This section only describes methods related to the current study. 

2.2 General Methodology of the Investigations 

The aim is to create a methodology that provides accurate models fast. The speed 
of the methods is described by the calculation times. The algorithms run in 
standardized conditions, where the only load of the computer is the investigated 
algorithm, thus the calculation times can be compared. To simplify the 
investigation, the model accuracy is only described with the determination 
coefficient (R2) of the models since this is one of the most illustrative indicators. 
A train (70%), a validation (20%) and a test (10%) dataset is used for the analyses. 
Usually, the validation R2 is used to describe the model performance. However, 
there are some analyses where the validation data also influence the created ANN 
models. An example for this is the architecture selection, where the final topology 
of the network is selected by investigating the validation R2. In these cases, the 
validation R2 cannot be used for the final evaluation of the performance, so the 
test R2 is reported. 
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Most of the investigations use 3 ANN models that were created in our previous 
study [15]. The Indicated Mean Effective Pressure (IMEP) model had the highest 
accuracy in that work, so this is used as the representation of excellent models. 
The Particulate Matter (PM) emission had an average performance, so this 
represents models with average accuracy, and the Ignition Delay (ID) model was 
highly inaccurate, so this demonstrates models with bad performance. Therefore, 
the evaluation of the methods become more realistic. Most investigations use the 
same topology and input features that were used in [15]. If there is a difference, it 
is described in the given section. 

3 Establishing Best Practices to Efficiently Train 
ANNs with ICE Measurement Data 

3.1 Identifying Parameters of Interest for Optimizations 

Every problem that can be solved with an MLP network is different in many 
aspects, and there is a lot of ways to achieve a satisfying solution to each problem. 
The experience of the AI researchers shows that there is no general best practice 
for ANN model creation and the best possible solution can never be discovered. 
However, many good solutions can be found and researchers can create guidelines 
for specific problems to identify these easier. The goal of the presented work is to 
establish such a guideline to reduce computing efforts and measurement cost in 
case of ANN developments that focus on a wide ICE operation range. 

The output of a MLP network depends on many parameters, such as the 
architecture and the used calculation methods. The necessary input features have 
to be selected to have the proper information to accurately calculate the output 
features. Then, this information has to go through the network that need to have 
the proper number of hidden layers and number of neurons inside the layers.  
The neurons need to have an appropriate activation function and initializing 
methods. Then, the created network has to be trained with one of the many 
existing training methods. Once the network is trained, its performance is needed 
to be evaluated with data that was not present in the training process. Although 
this is not a trivial task since the calculation depends on random factors as well. 

In the following subsections, some general good practices will be presented on the 
selection of activation functions and initializing methods. Then, the 2 most 
common evaluation method will be analyzed. After this, the performance of 6 
commonly used training algorithm will be compared. Thenceforth, the input 
feature selection and architecture selection methods will be discussed. Finally, a 
new method is described to identify the necessary resolution of a measurement 
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grid to achieve good accuracy with minimal fuel consumption during the 
measurement. The workflow is summarized in the conclusions section. 

3.2 Activation Functions and Initialization 

The activation function is a vital element of neural networks since it brings 
nonlinearity in the equations. Without this nonlinearity, a single layer could 
represent the whole network, and the representation of more complex functions 
would not be possible. Originally the sigmoid function was the most common 
activation function for hidden layers. Later the tangent hyperbolic activation 
function also become common, as it provided easier training and better predictive 
ability. However, both of these functions have a problem: the saturation. When the 
weighted sum is too high, the gradient of these activation functions converge to 
zero, which leads to the so-called vanishing gradients problem. Nowadays, the 
rectified linear unit (ReLU) is the state-of-art activation function. The ReLU is a 
piecewise linear function that gives a constant gradient for positive weighted 
sums. This activation function solves the vanishing gradient problem, thus its 
usage in the hidden layers is a good practice for MLP networks. For the output 
layer, a pure linear activation function has to be used since the current 
mathematical problem is a regression. [16] 

Besides the activation functions, the initial value of the network’s weight also 
needs to be determined in order to start the calculations. The weights are 
initialized to small random numbers, and the initialization method depends on the 
used activation functions. For sigmoid, tangent hyperbolic and pure linear 
activation functions usually Xavier initialization is used [17]. This method is not 
ideal for ReLU activation function, so He initialization is used for that [18].  
The networks not only have weights, but biases as well. These also have to be 
initialized, but usually it is a good practice to set their initial values to zero. 

The training of the ANN can start after the initializations. During this process, a 
loss function that represent the network’s error is minimized. For regression 
problems the mean squared error (MSE), mean squared logarithmic error (MSLE) 
and the mean absolute error (MAE) can be used as a loss function. The MSLE is 
usually used when the output values can be really high, and the MAE is usually 
used when extreme outliers are expected. Generally, the use of MSE is the best 
practice for scaled data, therefore, this is used in our methodology. 

3.3 Performance Evaluation 

The performance of the ANNs have to be evaluated in order to demonstrate their 
predictive ability. The output features have a random nature due to the applied 
random factors during calculation. This randomness has to be treated for proper 
and consistent results. The 2 most common methods for this are the repeated 
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evaluation and the k-fold cross-validation. The repeatability of the results and the 
evaluation time highly depends on the used techniques. This step affects all later 
analyses of this work; hence the performance evaluation method is studied first. 

During repeated training, the network is trained with the training dataset and 
evaluated with the validation dataset for multiple times. Then, the reported results 
are the average of each training-evaluation pairs. Here, the parameter of the 
method is the number of evaluations (neval). The other method is the k-fold cross-
validation. This technique divides the full dataset into k folds. The network is 
trained and evaluated for k times, and a different fold is chosen as a validation 
hold-out dataset for each training and evaluation pairs. Thus the network is always 
validated with a different fold, and the remaining k-1 folds are used to train the 
network. The final result is the average of the k evaluation. The parameter of this 
method is the k number of folds. This section compares these methods with 
different settings. 

 
Figure 1 

Standard deviations of R2’s with repeated evaluation and k-fold cross-validation 

The standard deviation (STD) of the R2 shows a decreasing tendency for 
increasing neval and k values, but the evaluation time increases. The goal is to 
identify the method that can achieve smaller STD (thus better repeatability) within 
the same calculation time. This analysis investigates the neval between 1 and 20 
and the k between 2 and 10. The evaluation with each neval and k value is repeated 
15 times to get the STD of the validation R2 and the mean evaluation time of 
them. The investigation is done with the IMEP, PM and ID models to investigate 
the effect of different accuracies. 
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Figure 2 

Comparing the standard deviations of R2’s with the 25% limit 

The results are presented on Figure 1. In case of the IMEP model, the repeated 
evaluation shows a nearly constant STD as a function of calculation time. The k-
fold cross validation has a much higher STD until 400 seconds, then it has nearly 
the same STD. Therefore. in case of accurate models, the repeated evaluation is 
better, however. the magnitude of STD is really small for both methods. On the 
PM model, it is discernible that the STD with the k-fold cross-validation is higher 
for most of the calculation times. This means that the repeated evaluation is also 
the better method in case of average accuracy models, however, the difference is 
not marginable. For the ID model, the two method has a similar performance.  
The cross-validation becomes slightly better between 400 and 750 seconds. 
Overall, there is not much difference between the two method’s performance at 
any model accuracy levels, although the repeated evaluation appears to be slightly 
better. The implementation of this method is also simpler, so this is selected for 
the workflow. 

Next, the optimal number of evaluations have to be determined. On Figure 2, the 
STD of R2’s are presented as a function of neval. A moving average was applied to 
the curves with a window of 3 to smooth their characteristics. The value of STD is 
accepted after it reaches the 25% of the difference between the maximal and 
minimal STD value. The STD reaches this limit after 15 evaluation repeat for the 
IMEP model, 6 in case of the PM model, and 7 in case of the ID model. The STD 
is really low in case of the highly accurate models, thus the 15 repeating is 
unnecessary. The results show that 8 repeating ensures a good repeatability even 
for inaccurate models, thus this value is chosen for neval. 
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3.4 Training Algorithm 

As the next step of the general workflow creation, a training algorithm has to be 
selected. During training, the weights and biases of the network are modified in 
order to minimize the error between the desired and actual outputs. The most 
common training method is the stochastic gradient descent (SGD) [16]. This 
algorithm is used to find a set of input parameters that results in a minimum of a 
target function. In case of neural network trainings, the input variables of the SGD 
are the weights and biases, and the target function is the loss function that 
describes the average prediction error for a subset (batch) of the training dataset. 
The SGD iteration follows the negative gradients of the loss function in order to 
find the minimum. The gradients are calculated with the back propagation 
algorithm. The degree of the change in the direction of the gradient is described by 
the step size (or learning rate). However, the selection of this hyperparameter is 
difficult because too large values result oscillations and the minimum cannot be 
found, while too low values cause slow convergence. In addition, the learning rate 
should be modified during the optimization because the step size should decrease 
as the minimum is approached. Therefore, the best practice is to use adaptive 
techniques that automatically change this hyperparameter during training. 

In this section, six different adaptive training methods are investigated: the 
AdaGrad, RMSprop, Adadelta, Adam, Adamax and Nadam algorithms.  
The Adaptive Gradients (AdaGrad) algorithm is a simple SGD based method that 
uses an adaptive learning rate with respect to previous gradients [19].  
The AdaGrad needs an initial learning rate, and later it calculates a step size for 
each dimension in the search space. The method is not that sensitive to the initial 
learning rate, thus 0.001 is used in this paper, which is a common default value. 
The Root Mean Squared Propagation (RMSprop) algorithm is based on the 
AdaGrad algorithm [20]. The problem of AdaGrad is that it can result too small 
step sizes at the end of the training. The RMSprop also calculates the step size 
from the previous gradients, but it uses a decaying average in order to eliminate 
the effects of early gradients, so the learning rate is mostly influenced by recent 
gradients. A gradient moving average decay factor (δ) with a value between 0 and 
1 is required to determine the extent of the decay. Experience of researchers 
shows that the RMSprop is very efficient, and this is one of the best training 
algorithms for deep neural networks [16]. The Adadelta algorithm is based on the 
AdaGrad and RMSprop algorithms [21]. It also uses a gradient moving average 
decay factor to improve the influence of the recent gradients compared to the early 
ones like the RMSprop, but the step size is calculated differently. Another 
difference is that this method does not require an initial learning rate.  
The Adaptive Movement Estimation (Adam) algorithm is also a successor of 
AdaGrad and RMSprop [22]. This method uses a second decay factor; thus it has 
three hyperparameters. The commonly used default values (initial learning rate: 
0.001; decay factor for first momentum: 0.9; decay factor for infinity norm: 0.999) 
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usually provide good results, thus this work operates with these. The Adam is a 
widely used ANN training method due to its good performance. In Adam, the 
weights are updated with the squared norm of past gradients. The AdaMax 
algorithm which is based on Adam, provides a more generalized approach as it 
uses the infinite norm of past gradients. The Nesterov-accelerated Adaptive 
Moment Estimation (Nadam) is another method based on Adam [23]. The main 
difference between the two algorithms, is that Nadam uses Nesterov’s Accelerated 
Gradient for the calculations. This means that the weight updates are performed 
with the gradient of the projected update instead of the actual gradient. The default 
hyperparameter values also provide good results for Adamax and Nadam. 

Similarly, to the previous section, the performance of the training algorithms will 
be represented by the validation R2 of the IMEP, PM and ID models. A repeated 
evaluation is used with 8 neval and the full evaluation time is recorded. Firstly, a 
good value for the δ of RMSprop and Adadelta is selected. Figure 3 presents the 
validation R2 for RMSprop and Adadelta with 9 different δ values. The decay 
factor of 0.95 shows a good compromise between the calculation time and the 
accuracy for both algorithms for all models, thus this is selected. 

Now the performance of the six algorithms can be compared with each other at 
Figure 4. It is discernible that the fastest and most accurate methods are the Adam 
and the RMSprop for all models. The Nadam and Adamax models also have a 
good performance, but they are a bit slower. The investigated models have the 
same architecture for all six methods. The architecture can also have influences on 
the performance of the different methods thus this also has to be considered. 
However, this investigation demonstrated the superiority of Adam and RMSprop, 
hence only these methods are investigated next. 

To study the performance of the Adam and RMSprop on different architectures, 
90 models were analyzed with 1 and 2 hidden layers. The number of neurons in 
the layers was varied between 40 and 80, with a 5 neuron step, and each 
combination was evaluated with repeated evaluation. The average calculation time 
and validation R2 of both methods are presented at Table 1. The average 
calculation time decreased by 29.7% with the RMSprop method, while the 
accuracy remained the same. The PM model could be calculated 15.4% faster with 
the RMSprop, but the average validation R2 dropped by 0.6%. For the ID model, 
the achieved calculation time improvement with the RMSprop was 22.3%, and the 
accuracy decrease was 4.5%. Overall, the RMSprop can notably accelerate the 
training for the cost of a small drop in accuracy. Since multiple iterations are 
necessary to produce the final ANN model, the RMSprop is a better choice 
because it is also accurate enough. However, the Adam can also be used when the 
calculation time is not a limiting factor. 
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Figure 3 

Performance of RMSprop and Adadelta with different moving average decay factors 

 

Table 1 
Average time and accuracy results for Adam and RMSprop algorithms 

 
Adam avg. 
calc. time 

[sec] 

RMSprop 
avg. calc. 
time [sec] 

Adam avg. 
val. R2 [-] 

RMSprop avg. 
val. R2 [-] 

IMEP 506.36 390.46 0.999 0.999 
PM 690.20 598.13 0.980 0.974 
ID 890.92 728.66 0.796 0.762 
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Figure 4 
Comparison of the performance of six adaptive training methods 

The training is an iterative method, where the samples of the training dataset are 
going through the network and the error of the result is used to update the weights 
of the model. The period when all samples participated in the weight update is 
called an epoch. Multiple epochs are necessary to create accurate ANN models, 
thus this is also a hyperparameter that has to be considered. If the number of 
epochs is small, the model will not be accurate enough (underfit). More epochs 
lead to more accurate models; however, overfitting can occur if this 
hyperparameter is too high. An overfitted model performs well in the training 
dataset, but it has a bad performance on the validation dataset. Moreover, the 
increased number of epochs leads to longer training time, so a good compromise 
has to be found. The early stopping method provides a good approach to use the 
proper number of epochs during training. A maximum epoch number is defined 
and when this is reached, the training stops. The training also stops if the 
validation MSE starts to increase. The stopping is not necessarily immediate: a 
patience parameter can be used, and the training only stops if the validation MSE 
increases continuously for a predefined number of epochs. This method avoids 
overfitting and reduces the training time. In this section, the optimal maximum 
number of epochs (εmax) and the patience (p) hyperparameter is also investigated.  
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Figure 5 
Performance of Adam and RMSprop with different patience values (max. number of epochs: 500) 

The combination of 8 different p and 13 εmax hyperparameters are investigated. 
First, a good p is selected. Higher patience results longer calculation time. 
However, the increase of accuracy stops when the ANN reaches a good fit. 
Therefore, the validation R2 converges to a certain level at each diagram of Figure 
5. This figure shows that p=50 is a good choice for both Adam and RMSprop: this 
value usually provides the fastest training to reach the converged maximal 
accuracy level. There are some cases where lower p could be enough, but these 
lower values cannot provide good results for all models. Note that Figure 5 only 
presents the results with εmax=500, which will be later chosen as the best εmax 
value. All 13 εmax was investigated and the results were similar for each: p=50 
showed the best compromise, thus only one εmax is presented here. 

Next, the necessary εmax is determined. The training can be stopped by two 
criteria: accuracy drop and reaching of εmax. Usually, the best case if the training is 
stopped by the accuracy drop, because this means that a good fit was found and 
further training leads to overfitting. However, there can be some models that has 
too slow convergence, thus the training has to be stopped before reaching the best 
fit to reduce calculation time. 
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Figure 6 

Performance of Adam and RMSprop with different maximum number of epochs (patience: 50 epochs) 

Here, the aim is to find the lowest value for εmax that provides enough epochs to 
develop good fit models for most cases. Figure 6 investigates the validation 
accuracy of the IMEP, PM and ID models when the patience is set to 50 epochs. 
The result of each diagram shows separate clusters with similar accuracies and 
training times. In these clusters, a good fit model was reached and the training was 
stopped by the accuracy drop. From here on, the εmax has no influence on the 
calculation time and accuracy and the differences come from the randomness of 
the process. Note that the clusters of Adam algorithm are smaller, thus its results 
are more stable than the RMSprop. The best εmax value is 500 epochs because this 
is the lowest that is present in all clusters. 

To sum up the outcomes of this section, the RMSprop algorithm is the best from 
the investigated methods, if the training time is the bottleneck. Adam algorithm 
can also be used, when a little longer calculation time is acceptable and further 
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increase in accuracy is required. It is recommended to set the Adam algorithm’s 
hyperparameters to their default values, and the δ of RMSprop to 0.95. Regarding 
early stopping, the 500 epoch εmax and the 50 epoch p is suitable for both methods. 

3.5 Input Feature Selection 

Another important aspect of the ANN model creation is the selection of proper 
input features. Sufficient input information is needed to map a systems behavior. 
However, too much information can also worsen the accuracy since irrelevant data 
can lead the training into false paths. The two main approach for input feature 
selection are the supervised and unsupervised selection methods.  
The unsupervised methods ignore the outcome of the model, while the supervised 
methods use target variables to remove unnecessary features [24]. Supervised 
methods such as wrapper, filter or intrinsic methods usually provide better results. 
Wrapper methods create multiple models with different input features and select 
the useful ones. This provides really good results, but the computational costs can 
rise. Filter methods chose the important inputs with statistical scores between the 
input and output features. Intrinsic methods are built-in feature selection methods 
of some training algorithms. From these possibilities, the wrapper methods fit the 
best for our purpose, since high accuracy is required and the computational costs 
remain low due to the low number of available input features. 

The recommended workflow is as follows. First, the possible influencing 
parameters have to be identified manually, based on the available information of 
the system. Then the quasi-constant features have to be removed, because these 
have no relevant data for the training. Then the redundant features also needed to 
be eliminated. Here, the priority of each feature can be predefined manually, and 
the higher priority can be held in the inputs. Next a wrapper method have to be 
performed. The recursive feature elimination (RFE) is such a method, where at 
first a machine learning algorithm creates models with all input features, and then 
the method starts to remove them. In this paper, such an RFE method is 
implemented to select the necessary input features from the preselected ones.  
The RFE also creates ANNs to select input features, thus the results include 
randomness. Therefore, the RFE process is also repeated 8 times, and the inputs 
that were among the results at least 50% of the repetitions are selected. 

This workflow was implemented for the IMEP, PM and ID models. Since a new 
input feature set generates a modified behavior, a new architecture was selected 
using a grid search algorithm with the settings described in [15]. The investigated 
output features are combustion and emission relevant parameters. Therefore, the 
two main set of manually selected input features for the RFE are: 

• the measured inlet properties: pressure, temperature, mass flow rate 
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•  the measured mixture composition and formation relevant parameters: 
EGR valve position, engine speed, air-fuel equivalence ratio, inlet and 
outlet oxygen concentration, fuel dose, start of injection, number of 
injections, ratio of main injection compared to pre-injection 

The RFE algorithm selected 4, 6, and 8 input features for the new IMEP, PM and 
ID models respectively. This behavior is logical because the harder the modelled 
problem, the more information is needed to properly map the system. Table 2 
compares the test R2 and the test root mean square error (RMSE) of the new 
models with the original ones. The IMEP shows a decrease in accuracy, but it still 
has an excellent performance. The PM model has slightly better performance with 
the new input set. The ID model shows a drastic improvement. The original model 
was unacceptably inaccurate, but the new input features developed it into a well 
performing one. Overall, the used input feature selection method performed well, 
and can be included in our workflow. 

Table 2 
Comparing the performance of the IMEP, PM and ID models with the original and new input features 

 IMEP  PM ID 

 Original 
inputs 

New 
inputs 

Original 
inputs 

New 
inputs 

Original 
inputs 

New 
inputs 

R2test 0.9995 0.9929 0.9874 0.9882 0.8303 0.9782 

RMSEtest 0.078 
bar 

0.303 
bar 

0.130 
g/kWh 

0.120 
g/kWh 

1.103 
°CA 

0.413 
°CA 

3.6 Architecture Selection 

The architecture of an ANN highly affects its performance. The capacity of a 
network describes the ability of learning complex problems. Generally, the more 
neurons and layers the network has, the higher its capacity. Too low capacities 
result underfit while too high capacities lead to overfit, hence a good architecture 
have to be identified. The grid-search algorithm is a common architecture 
selection method, where a lower and a higher boundary for the number of layers, 
and for the number of neurons in a layer is selected. Then all possible 
combinations are investigated between these boundaries with a certain step size 
and the architecture with the best accuracy is selected. This method is popular 
because of its simplicity and accuracy; however, the calculation time can be too 
high. We used this method in our previous research, but now faster have to be 
found due to its slow speed. The constructive architecture selection is a common 
technique to identify a good network topology [25]. This method uses an initial 
architecture that definitely provides too small capacity for the problem. Then, it 
adds new neurons and layers to the network to achieve a good fit. Such a simple 
constructive method was created in this work to replace the previous technique. 
First, it generates a model with a single layer that has an initial neuron number. 



Acta Polytechnica Hungarica Vol. 21, No. 7, 2024 

 – 139 – 

Then, it starts to increase this number with a defined step until it reaches an upper 
boundary. Next, it creates a new layer with an number of neurons corresponding 
to the step size, and it continues to increase this layer. The iteration stops when the 
defined maximal number of layers reached. However, the iteration usually does 
not last this long since it has an accuracy criterium that stops the process when 
fulfilled. This criterium investigates the validation R2, and when it reaches 0.98, 
the model is considered accurate enough [26]. If this accuracy cannot be reached 
with the defined topological boundaries, then the most accurate model is selected. 

Table 3 
Comparing the performance of the constructive architecture selection and the grid-search algorithm 

 IMEP  PM ID 

 Original 
method 

New 
method 

Original 
method 

New 
method 

Original 
method 

New 
method 

R2test [-] 0.998 0.998 0.977 0.980 0.759 0.740 
tarchOpt [h] 6.66 0.12 8.50 2.49 7.71 2.26 

Table 3 demonstrates the architecture selection’s calculation times (tarchOpt) and the 
achieved test R2 of the new constructive algorithm compared to the previous grid-
search algorithm. The new test R2s did not change notably compared to the old 
method, but the improvement in calculation times is immerse. The excellent 
models can fit really fast, so the necessary time for architecture selection becomes 
small. The average and bad models also show about 70% improvement in the 
calculation time, thus the new method contributes to lower computing costs. 

3.7 Measurement Grid Resolution Selection 

The experimental investigation of new advanced fuels is a major cost of 
development due to the high price of special compounds. This can also raise the 
expenses of ANN development since the dataset is created by measurements. To 
reduce these costs, a measurement grid resolution selection method is also created 
in this paper. The measurement grid needs high enough resolution to provide 
sufficient data for the ANN training, but unnecessarily dense measurements have 
to be avoided to reduce fuel costs. More complex problems require a denser 
measurement to properly map the system’s behavior. The correlation coefficient 
can describe the complexity of an input-output relationship. When R is close to 0 
the two parameters are not related, when it’s close to 1 the relationship is linear, 
while the intermediate values represent a nonlinear behavior. To identify the 
proper resolution, the R between the varied grid parameters and the target values 
of the investigation have to be determined and compared with the achievable 
accuracies of multiple models created with different resolution datasets. 
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To establish a best practice for resolution selection, the original high resolution 
dataset [15] is used that has 3 varied parameters in the measurement grid. This 
investigation examines the 10 target variable of [15] to identify optimal 
resolutions for different complexities. First, the complexity of the 30 input-output 
relationship is needed to be determined, and the correlation coefficient between 
these pairs will describe it (Rpair). This can be done with a parameter sensitivity 
measurement that requires a small amount of fuel to measure at least 10 sample 
per varied grid parameter. This 10 sample is recorded for each varied parameter in 
the predefined measurement range. The other varied parameters need to have a 
fixed value during the measurement to guarantee that the only influencer of the 
investigated outputs will be the investigated input feature. These fixed values are 
selected as the middle values in the range of the given input parameters. Then, the 
Rpairs can be calculated from the samples. This study calculated 30 Rpairs for the 
investigated 30 input-output relationships. Note, that the absolute values have to 
be used to describe the complexity of the relationships. Now, an optimal 
resolution has to be found for these |Rpair| values. 

In the next step, 72 datasets with different resolutions were created from the 
original high-resolution dataset. An ANN model was created with the workflow 
described in this paper for the 10 output feature with each dataset. Then a 
prediction was made with the created 720 ANN models for the 6618 samples of 
the original high-resolution dataset, thereby the performance of the models was 
explored with the most detailed information available on the system. The reported 
accuracy measure is the determination coefficient for the full dataset (R2full). After 
the calculations, there are 72 R2full values for the 10 output features and the best 
model have to be selected for each output. A model is considered acceptable if its 
R2full is at least 0.98. If there are multiple models for an output feature that 
satisfies this criterium, the one that was created with the smallest dataset is 
selected as the best, since this requires the least fuel. Now, the optimal resolution 
of the 3 varied parameter of the measurement grid is known for each output 
feature. However, only 6 models provided results with R2full above 0.98, so only 
18 data points can be used to describe the relationship between complexity and 
necessary resolution. 

Figure 7 shows the 18 optimal resolution – |Rpair| data points. Here, the resolution 
means the number of grid points in the measurement range of a varied parameter. 
Three main parts can be separated. If |Rpair| is lower than 0.4, then the 
investigated input feature does not have a significant effect on the investigated 
target variable, therefore, a lower resolution is enough. The average resolution in 
this area is 6.5, thus 7 equidistant value is enough for the varied parameter. 
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Figure 7 

The optimal resolution of input-output pairs of different complexity 

If |Rpair| is above 0.9, the correlation is strong between the varied parameter and 
the target variable, thus a higher resolution is needed to map the behaviour.  
The average is 10.625, so 11 variation is needed in this case. The in-between area 
needs an even higher resolution because here the relationship is highly nonlinear. 
The average resolution here is 12.87, so 13 equidistant value is necessary in the 
grid. This simple practice can create datasets with good resolutions to minimize 
fuel consumption while accurate models are provided. However, more 
investigation is needed to establish a more precise method for resolution selection. 

3.8 Summary of the Created Methodology 

The final workflow can be generated based on the previously presented 
investigations. Figure 8 summarizes the methods to efficiently create 
representative datasets from engine measurements, and to build accurate and fast 
ANN models from them. The upper part describes the methods related to the first 
goal. A proper measurement resolution can be designed that provides enough 
information to train the networks, while the fuel costs are minimized. This is 
based on a parameter sensitivity measurement, where the complexity of the 
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relationship between the varied grid parameters and the target variables are 
determined in order to select the proper measurement grid resolutions (Section 
3.7). After the measurement, the created dataset is used to create a MLP type 
ANN. The lower part of Figure 8 demonstrates the workflow for this task with the 
steps and methods described previously (Section 3.2 – 3.6). The investigations 
proved that this workflow is able to reduce calculation time, fuel costs and provide 
accurate results. 

 
Figure 8 

Final workflow to cost-efficiently create ANN models from engine measurements 

Conclusions 

This paper presented the investigations that led to the creation of a workflow for 
cost efficient ANN creation from engine measurements. A high resolution dataset 
was used to test multiple methods for the different steps of model generation.  
The results showed that the RFE method can be applied to select the necessary 
input features from a dataset and the constructive architecture selection is an 
efficient method to determine proper network structure. Regarding the training 
algorithms, the Adam and the RMSprop had the best performance from the 
investigated 6 method. The RMSprop is the recommended algorithm if the 
calculation time is the bottleneck. However, the Adam algorithm generates more 
accurate models. Therefore, this has to be applied if the speed of the training 
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process is not important. The random nature of the results has to be treated with 
repeated evaluation. The methodology also aids the determination of the proper 
measurement grid resolution. After a simple parameter sensitivity measurement, 
the complexity of the input-output relationships can be determined. Then, the 
resolution of the varied parameters can be selected. 

The methodology ensures the cost-efficient creation of representative datasets and 
accurate ANN models; therefore, it contributes to help the development of our AI 
based e-fuel designer tool. The achieved accurate results prove that the AI is an 
important tool to enhance sustainable mobility. Besides our purposes, it can be 
applied to similar mathematical problems of different research fields as well. 
However, note that there is no general best practice for ANN creation, thus other 
researchers should consider the specialties of their mathematical problems. 
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AdaGrad, Adaptive Gradients; Adam, Adaptive Movement Estimation; AI, 
Artificial Intelligence; ANN, Artificial Neural Network; BP, Back Propagation; 
EGR, Exhaust Gas Recirculation; EU, European Union; ICE, Internal Combustion 
Engine; ID, Ignition Delay; IMEP, Indicated Mean Effective Pressure; MAE, 
Mean Absolute Error; MLP, Multilayer Perceptron; MSE, Mean Squared Error; 
MSLE, Mean Squared Logarithmic Error; Nadam, Nesterov-accelerated Adaptive 
Moment Estimation; PM, Particulate Matter; ReLU, Rectified Linear Unit; RFE, 
Recursive Feature Elimination; RMSE, Root Mean Square Error; RMSprop, Root 
Mean Squared Propagation; SGD, Stochastic Gradient Descent; STD, Standard 
Deviation; WTW, Well-to-wheel;  
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