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Abstract: The paper deals with an elastomagnetic sensor of pressure force and neural 
network design in order to achieve linear sensor output. There are described basic 
properties of such sensor and its equivalent electrical scheme. The feeding and evaluating 
circuits were designed in order to obtain the optimal working conditions. 
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1 Introduction 

Elastomagnetic sensors have become more widespread owing to their extensive 
use in industrial and civil automation. However, designing low-cost and accurate 
sensors still requires great theoretical and experimental efforts to materials 
engineers. But this task can be solved by advanced electronic techniques for 
automatic calibration, linearization and error compensation. 

2 Basic Properties of Elastomagnetic Sensor 

The elastomagnetic sensor [EMS] of a pressure force that utilizes the Villary´s 
phenomena principle, which consists of the fact that if a ferromagnetic body is 
subjected to mechanical stress, its form is changed and consequently its 
permeability is changed, too [1]. Villary´s principle is based on equation: 
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where M is magnetic polarization, p is general pressure, w is relative deformation, 
H is intensity of magnetic field, ϑ  is ambient temperature. 

We can state magnetostriction coefficient in saturation for cubic crystal shown in 
Fig. 1 by following equation: 
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1 αααααα ++=A , 1K  is first anisotropic constant, 

( ) ( )321321 ,,,,, βββααα  are cosine functions of angles created by vectors of 
magnetic field and magnetostriction in saturation state, 51 hh −  are 
magnetostriction parameters which were stated experimentally. According to Fig. 
1, we can state ii ϕα cos=  and ii γβ cos= . Also we are able to simplify the 
above mentioned equation by the fact that parameters h1 and h2 have few times 
greater values than rest parameters so the rest parameters can be negligible. 
 

 

 

 

 

 

 

 

 

 

Figure 1 
Single cubic crystal 

The resulting magnetostriction in directions <100> and <111> will be given as: 
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Next relation describes dependency between magnetic induction and magnetic 
intensity: 

( )HB μμ Δ+=  (4) 

where μΔ  represents the increment of permeability caused by acting of external 
pressure force. The next relation can be obtained by comparing of increments of 
magnetic and elastomagnetic energies: 

mH σλ=μΔ 2
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where mλ  represents a magnetostriction coefficient. It is defined like: 
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It generally holds that: 
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By utilizing of the last two equations we can obtain the final dependence for 
permeability increment caused by the acting of external pressure force [2]: 
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For permeability increment calculation we can utilize software calculator shown 
in Fig. 2. Since the permeability determines the magnetic field in a ferromagnetic 
body, so the magnetic field is also changed and we could measure its changes by 
changes of the induced electric voltage. 

On the base of the above mentioned one can see that the pressductor can be 
described as a transformer in which the mutual inductance between the primary 
and secondary windings is changed proportionally to the acting stress or to the 
pressure, but only in the case if magnetizing current Im is constant and output 
current Is is negligible. 
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Figure 2 
Intelligent calculator 

The elastomagnetic sensor equivalent electrical scheme is shown in Fig. 3. 
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Figure 3 

Elastomagnetic sensor equivalent electrical scheme 

The change of the output voltage value can be calculated by following equation: 
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This equation corresponds with practical manufacturing of elastomagnetic sensor 
in Fig. 4 [3]. Properties of the ferromagnetic material have a significant influence 
on sensor sensitivity, mainly: saturation magnetostriction coefficient sλ , 

permeability of material μ  and saturation intrinsic induction sB  (for 

elastomagnetic sensor EMS-200kN: 62.15 10sλ
−= ⋅ , 49.55 10 H/mμ −= ⋅ , 

1.28TsB = ). 

  
a) 

 
b) 

Figure 4 
Sketches of elastomagnetic sensor 

a) composed sensor EMS-200kN, b) detail of sheet element 
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The described circuit fully corresponds to the transformer. In this case, the relation 
between magnetic intensity and magnetic induction is given by nonlinear 
hysteresis curve. 

The maximum useful signal is obtained if output current Is is reduced to the 
minimum and if the influence of primary current Ip effective value is eliminated. 
In this case, the magnetizing voltage Um corresponds to the maximum output 
voltage Us for given operating point which is depending on the primary current Ip 
value and the acting force. Such a way can be reduced the power of the feeding 
source. 

3 A Design of the Feeding and Evaluating Circuits 

The feeding circuit must fulfill basic condition which consists in the current 
feeding request, because only in this case, the change of acting pressure force on 
the elastomagnetic sensor core will be represented by the change of output 
secondary voltage Us [4]. An example of such feeding source realization is shown 
in Fig. 5. Such a way is simply possible to secure realization of the harmonic 
constant current source by step down line voltage transformer with small output 
power. 
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Figure 5 

An example of the optimal feeding source 

For second request fulfilling, which is concerning to the secondary winding 
current Is minimum value we must to secure as high as possible input impedance 
of evaluating circuit. A simple and suitable output evaluating subcircuit can be 
realized by OA as it is shown in Fig. 6. 
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Figure 6 
An example of output subcircuit connection with high impedance 

4 Neural Network Design 

The neural network (NN) is expected to eliminate transformer nonlinearity. 
However, NN output should be linear and expressed by equation of straight line. 
In order to achieve this aim, several NN models were designed. The differences 
between linear output and the real sensor output are shown in the Fig. 7. The 
characteristics ΔUi is gained from output sensor voltage U2↑ = f(F) (if force F was 
increasing from 0 kN to 200 kN – characteristic upward) and characteristics ΔUd 
is gained from U2↓ = f(F) (if force F was decreasing from 200 kN to 0 kN – 
characteristic downward). It can be expressed by next equation: 

lini UUU −=Δ ↑2  (10) 

lind UUU −=Δ ↓2  (11) 

 
Figure 7 

Differences between the linear and the real sensor outputs 
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The NN task is to reduce the deviation between U2↑, U2↓ and linear regression of 
sensor output Ulin. Finally, the differences ΔUi and ΔUd will be limited. The most 
common artificial neural network, called multilayer feed-forward neural network 
(FFNN) was used for this purpose [5]. Conception of FFNN with one-unit time 
delay is shown in Fig. 8. 

 
Figure 8 

The conception of NN 

The sensor output is at the same time the NN input. However, in this proposal the 
two NN input neurons are used. The both are directly connected to sensor via 
ADC converter, but the second one is time delayed. A decreasing of sensor errors 
is expected by using this NN connection. 

5 Training Process 

The topology of NN consists of 10 neurons in hidden layer, which seems to be the 
most convenient according to computing speed and accuracy. There were 20 000 
training cycles used. Like a learning algorithm the backpropagation was used and 
it offers an effective approach to the computation of the gradients [6], in Fig. 9. 
The learning parameter α, which specifies the step width of the gradient descent, 
was changed in the wide range (see Fig. 10). Here is the SSE (sum of square 
errors) dependence on training cycles. As we can see, the training process with 
higher learning parameter achieves smaller SSE at the constant number of training 
cycles. 

If α parameter was more than 1, the sum square error (SSE) of training set was 
decreased rapidly (the NN respond to trained data was good), but SSE error of test 
set was increased (the NN respond to untrained data was bad) – over-trained NN. 
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Figure 9 

The training process 

 
Figure 10 

The training process with different α parameter 

The output of NN was oscillated at larger α parameter, so the stability of NN was 
not guaranteed. Advantages of higher NN learning rate was the decreasing of 
training cycles and at the same time the decreasing of SSE error of training set, 
but big disadvantages were: over-trained NN, bad generalization, oscillations of 
NN and instability of NN. 

Conclusions 

Such construction of elastomagnetic pressure force sensor is predetermined for 
hard field conditions and aggressive corroding media. Its output signal is even 
1000 times greater as signal of resistance transducers and this fact enables to 
simplify feeding and data evaluation. Such sensors are also less sensitive against 
extremist electromagnetic interferences. A general construction of these sensors 
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can be realized with smaller costs and dimensions. 

The neural network simulator SNNS v4.1 was used for simulation of designed 
NN. The NN should have decreased the sensor error and its output should have 
been a linear function. Fig. 11 shows the difference between tested data Utest and 
linear regression Ulin (ΔUtest = Utest - Ulin), and difference between NN model data 
UNN and Ulin (ΔUNN  = UNN - Ulin). 

 
Figure 11 

Differences between tested data, NN output and linear regression 

The nonlinearity of sensor output was δS = 4,34% (for tested data δS = 2,69%). 
The nonlinearity of designed model was δNN = 1,25% in comparison with a 
classical FFNN model (without one-unit time delay) where the nonlinearity was 
δNN = 1,53%. The finally, the designed model of error correction of elastomagnetic 
sensor by using FFNN (with one-unit time delay) achieves quantitatively lower 
linearity error in comparison with real sensor output. 
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