
Acta Polytechnica Hungarica Vol. 12, No. 2, 2015 

 – 5 – 

Secure Web Server System Resources 

Utilization 

Liberios Vokorokos, Anton Baláž, Norbert Ádám 

Technical University of Košice, Letná 9, 042 00 Košice, Slovakia, 

liberios.vokorokos@tuke.sk, anton.balaz@tuke.sk, norbert.adam@tuke.sk 

Abstract: One of the main goals of an operating system is the efficient usage of system 

resources and their management. Modern systems offer complex mechanisms for the 

management of these resources. Their system-wide use may be separated into multiple 

layers – from the lowest (the operating system kernel) to the highest (various virtualization 

techniques). Somewhere in the middle are the applications consuming these system 

resources. An example of such an application is the Apache web server. It implements some 

of the resource management mechanisms at application level. However, the system 

contains elements, the management of which is not possible at application level or its 

implementation has a significant overhead and may negatively affect the performance and 

secure usage of the server. The aim of the study is to create a more efficient resource 

management mechanism at the level of the Apache web server. The proposed architecture 

allows the treatment of possible security threats, such as DoS attacks, makes the use of 

system resources more efficient, thus – indirectly – it also addresses the environmental 

impacts of data centers. The reason for selecting the Apache web server as the referential 

implementation of the resource usage improvement are its market share and its open 

source nature, which renders making amendments to the server simple. 

Keywords: security; system resources; management; Apache; cgroups; CGI 

1 Introduction 

System resource management is a topic often related to operating system 

mechanisms. Solving system resource management problems is therefore left over 

to the authors of operating systems or architects. Even though it is required – to a 

certain extent – that the operating system manages most of the system resources, 

there are cases, when the task of system resource management has to be left over 

to the application, or to ensure that the application increases the level of use of the 

allocated resources. 

With today's web applications at hand, web servers often have to deal with 

enormous loads – millions of web content generation requests coming from their 

clients. Generating content has a price in terms of memory, computation time, 



L. Vokorokos et al. Secure Web Server System Resource Utilization 

 – 6 – 

power, CPU time, etc., especially if one has to deal with extreme amount of 

requests. By improving resource management we may improve security, make the 

use of the resources more efficient and – in the end – decrease the power costs by 

improving system usage efficiency. 

We know of experiments to improve the resource usage of web servers used in in-

house solutions, producing certain results [1], nevertheless there is still room for 

improvement – both in the field of implementation or the results themselves. With 

the advent of new technologies, new approaches are being developed to improve 

and make the current resource management solutions more efficient. 

This work describes the approaches in use, presents the new technologies 

available in the field of resource management, and – most importantly – 

implements an improvement in this field and proposes the implementation of such 

an extension of the Apache web server. 

2 Efficient Use of System Resources 

In modern operating systems, the use of system resources is considered to be a 

more or less solved problem. Resource management is being done efficiently at 

the lowest OS level by the kernel, which may be configured to a certain extent, 

depending on the system in use. 

Recently, great effort has been put into higher level system resource management, 

mainly to separate programs executed at application level and the operating 

system itself. This field is represented by various virtualization technologies – for 

their application in modern systems, seen in the work G. Banga et al. 

2.1 Virtualization and Separation 

Virtualization is a method of executing various virtual environments (virtual 

machines) on a single physical machine. 

The virtual environment is where the programs are executed; it behaves as a 

separate entity and represents a real computer system. The individual 

environments are mutually isolated and thus have no knowledge of the existence 

of similar environments, if multiple virtual environments are being executed 

simultaneously on a single physical machine. However, this kind of isolation 

requires full resource management, therefore in the text below we have described 

the approaches used in virtualization and resource management. 

Virtualization is based on the principle of having virtual machine monitor 

software managing the allocation of computer resources to the respective virtual 

environments. This monitor is the abstraction layer between the hardware – the 

physical machine – and the given virtual environment. There are multiple types of 



Acta Polytechnica Hungarica Vol. 12, No. 2, 2015 

 – 7 – 

virtualization, depending on the executed virtual environment and the 

implementation of this monitor. 

Kolyshkin described three basic virtualization principles, differing in the methods 

and conditions of execution of the virtual environments [1]. These are: 

• Full virtualization or emulation 

• Para-virtualization 

• OS-level virtualization 

Each of these approaches has its advantages and disadvantages, related to the 

execution performance of the given virtual environment. The respective 

virtualization approaches are thus compromises between performance and 

modifications made to the executed system. 

2.2 OS-level Virtualization 

Virtual environments using this approach are called containers – they represent the 

execution environment of the operating system [5]. Operating systems running on 

a single kernel are being executed in the individual containers. The resources are 

allocated to such environments upon creation and they are often altered 

dynamically during the execution. 

Applications, as well as the individual environments behave as individual units, 

which may be isolated (seen from the other containers) [10]. Such isolation is not 

performed by virtualization of the whole operating system, just the mechanisms 

offered by the operating system itself (the kernel), which executes all containers. 

These mechanisms include process identifiers (PIDs), user identifiers (UIDs), 

shared memory, etc. Contexts and filters are created to perform the separation of 

the respective containers. Contexts represent the separation of the identifiers used 

in the said mechanisms: each container has its own context of identifiers, relevant 

only for it. On the other side, filters control the access of the respective containers 

to the kernel objects by controlling the privileges of the individual containers. 

There are multiple container implementations available in operating systems 

running a Linux kernel. The most widely known is OpenVZ Linux VServer, while 

the newest addition to these is a solution called LXC Linux containers. They differ 

is the way they implement the container and resource management levels. To 

prevent attacks between the environments, the system must distribute the 

resources among the respective virtual environments securely. 

These containers often implement processor time management in two levels [11]. 

One level is the CPU scheduler of the operating system. The second level is the 

scheduler of the respective implementation, which is either part of the 

amendments applied to the system or a separate entity, similar to the virtual 

machine monitor. CPU time scheduling is then done using known algorithms. 



L. Vokorokos et al. Secure Web Server System Resource Utilization 

 – 8 – 

The remaining resources, such as physical memory, disk space, etc. may be 

managed in the respective containers separately by using the appropriate memory 

management mechanisms [16] or a resource driver may be introduced, such as a 

memory controller [17], which can limit the amount of memory available to 

certain application groups (e.g. to an application in the context of a specific 

container). 

Interesting is the implementation of system resource limitations in LXC Linux 

containers. It uses various novel attributes of the Linux kernel, even a mechanism 

called Control Groups [9]. This allows setting constraints using control groups. 

The running processes (i.e. tasks) are then allocated to the respective groups as 

needed. The system kernel will then allocate the system resources in accordance 

with the rules specified in the respective groups. 

From this point, the respective groups (cgroups) are treated as standard Linux 

processes. Thus, they form a certain hierarchy and the descendant groups in the 

hierarchy inherit the attributes, in this case the constraints of the parent groups. 

These group constraints are implemented by means of so-called subsystems. 

These are linked to the directory structure of the system. The whole directory 

structure of the link represents a hierarchy of constraints – it contains files of the 

constraint rule applicable to the individual subsystems. The basic subsystems, thus 

also the system resources, influenced by the cgroups are the following: 

• CPU – controlling processor access of the tasks by using the CPU scheduler, 

• CPUACCT – generates messages concerning the usage of CPU resources, 

• CPUSET – assigns the individual processors and memory nodes to tasks, 

• MEMORY – manages task memory constraints, 

• BLKIO – manages I/O device data transfer constraints, 

• NET_CLS – marks packets with identifiers for the network traffic controller, 

• NET_PRIO – sets the network traffic priority in case of the network 

interfaces. 

The newly created group is a directory in each of the subsystems in the directory 

structure. It also contains the files of the respective subsystems required to define 

new constraints, as well as the file with the identifiers of running processes 

belonging to the particular group. 

Cgroups may be used even beyond the scope of virtualization tools to separate 

applications and thus this technique is an appropriate candidate for the 

implementation of the solution – our improvement to web server resource 

management. 

The advantage of virtualization at the level of the operating system is the 

performance, comparable to that of native code execution. By removing the 

virtualization layer – the virtual machine monitor – the execution costs decrease. 



Acta Polytechnica Hungarica Vol. 12, No. 2, 2015 

 – 9 – 

The separation of the respective virtual environments is not as significant as with 

emulation or paravirtualization, but it is sufficient enough. The security of the 

system as such is ensured by the separation of the important applications into 

separate environments. Dynamic resource management allows runtime application 

migration. 

A disadvantage may be the requirement of using the same kernel with the 

virtualized operating systems. Thus, in case of Linux only Linux systems may be 

virtualized. 

3 The Solution Proposal 

The proposed security improvement in server resource usage lies in ensuring a 

more strict allocation of the individual system resources to the processes executing 

the programs generating dynamic web server content. These are especially the 

programs using the Common Gateway Interface (CGI) protocol. Stricter system 

resource allocation allows more efficient system operation by defining system 

resource consumption constraints and thus achieves the required service quality. 

Strict allocation of processor time and memory to the respective processes helps 

solve possible Denial of Service (DoS) attacks, limit the impact of badly written 

web applications by using well-defined constraints to prevent any request from 

consuming all available system resources. 

3.1 Design of Architecture 

The goal is to limit the respective system resources as required, during the 

assignment of CGI programs to the respective processes or immediately after it. 

The reason of preferring such a direct assignment of resource constraints to 

processes before allocating the resources during process creation is the fact that 

the same process may be used for the sequential execution of multiple 

independent programs, using a process pool. In such a case the resource constraint 

of a single program would remain valid for other programs, if they were executed 

in the same process. 

The respective CGI programs may be identified by the UID of the executed 

program at the time of system resource constraint allocation. Normally, the UID 

of the executed program (web) is identical to the one of the executed web server. 

The UID is altered using the suExec module. Using UIDs to identify the programs 

allows resource constraints to be assigned according to the user (web page), the 

program was executed by. 

The proposed improvement is implemented as a server module. Due to the 

modular architecture of the web server, this module is connected to the web server 

architecture and the other modules, required for the correct function of this 



L. Vokorokos et al. Secure Web Server System Resource Utilization 

 – 10 – 

module. This provides the following: a connection between the module and server 

functionalities; a mechanism to define, process and store the module 

configuration; the possibility to initialize the module upon server start-up. The 

architecture of the resulting solution is shown in Figure 1. The mod_cgrp module 

is the outcome of this work. 

 

Figure 1 

System architecture 

Constraining system resources is provided by a system mechanism called Control 

Groups. This mechanism is supported by the kernel itself. Resource management 

is implemented by the control groups organized in the file system. The kernel 

allocates resources to the respective groups according to the group attribute 

settings. 

The processes are identified by means of the configuration files. These contain the 

data required for the identification of the respective processes, as well as the 

processes, which have to be assigned to specific cgroups. These data are stored in 

data pair records. The first member of the pair is the PID of the process assigned 

to the constraint group. The other member of the pair is the identifier of the 

cgroup. Only a single constraint group may be assigned to a process having a 

specific PID. 



Acta Polytechnica Hungarica Vol. 12, No. 2, 2015 

 – 11 – 

3.2 Principles of Resource Constraint 

Designed module assigns newly created processes to groups with limited 

privileges to consume specific system resources, as shown in Figure 2. 

 

Figure 2 

System resource assignment 

The execution of the module starts with loading the configuration. Configuration 

processing is executed automatically by the web server upon its initialization, 

along with the other modules. Next, the UID of the executed process is retrieved. 

The server checks, if there is an entry in the configuration for the specified 

identifier. If the identifier in question is not present in any of the entries, the 

execution terminates. Otherwise, the ID of the process running the CGI program is 

retrieved. The module checks the existence of the constraint group stated in the 

configuration and as in case of the configuration itself, if the existence is not 

confirmed, the execution terminates and an error message is written to the log file. 

If the group exists, the retrieved process identifier is assigned to the particular 

group and the execution terminates with a message stating successful assignment 

of the process to the group with the given constraints. 

4 Experimental Validation 

To evaluate the reliability and functionality of the proposed and implemented 

solution, we have performed some measurements. These measurements focused 

on the performance and the correct server functionality during the use of the 

proposed module. The measurements were performed with the tools provided by 

the operating system and the web server itself. 



L. Vokorokos et al. Secure Web Server System Resource Utilization 

 – 12 – 

The computer system used to perform the measurements was a HW system with 

the following parameters: 

• Intel i3 processor working at 2.20 GHz, 

• 4096 MB RAM system memory, 

• 500GB hard drive spinning at 5400 RPM. 

As to the software, the system was running a GNU/Linux Fedora 20 operating 

system with a 3.13.7 Linux kernel. The web server version number was 2.4.6. 

The results of all measurements were recorded by redirecting the standard output 

of the top and Apache Benchmark (ab) tools to separate files. The stress testing of 

the respective resources was performed using a series of php scripts allocating 

small or large chunks of data (depending on the types of the measured resources) 

in cycles. 

4.1 Module Performance 

The following measurements focused on comparing the web server performance 

with various amounts of requests executed in parallel. Test performed with the ab 

program. The output of the program was – in addition to other things – 

information on the transfer time and the average time of execution of a single 

request. We have executed multiple measurements, with varying amounts of 

parallel requests. Each of these measurements was performed twice, with the 

module active and inactive. This way we could test the effect of the module on the 

performance of the web server. 

Figure 3 and Figure 4 show that the presence of the module does not significantly 

impact the speed of request processing. Differences in server performance having 

the module inactive or active are negligible with low amounts of requests and 

increase along with the increasing the amount of the requests. The overall 

evaluation of the presence of the module when responding to the requests aimed at 

simple HTML or more complex CGI programs is positive. The module has no 

significant impact on the web server itself. 

 



Acta Polytechnica Hungarica Vol. 12, No. 2, 2015 

 – 13 – 

 

Figure 3 

Transfer speed 

 

 

Figure 4 

The average time spent by the execution of a single request 

4.2 High System Utilization 

In this section, we have focused the measurement efforts on comparing the 

activities of the web server with the module inactive and active, using requests of 

programs stressing selected system resources. Each measurement was performed 

individually, with the same program, specifically written for the given system 

resource. To gather the results we have used the ab toolset; we used the top 

program monitoring various system resources to create a specific number of 

requests. 



L. Vokorokos et al. Secure Web Server System Resource Utilization 

 – 14 – 

The subsequent two measurements are aimed at CPU load. The created cgroup has 

been crafted to prevent the CPU load values from exceeding 50%. The executed 

program is a cycle, in which the number PI is allocated 3 million times as part of 

the Foo class. The chart in Figure 5 (with the module being inactive) shows the 

CPU load – three of the five processes cause CPU loads surpassing 50% during 

the execution. 

 

Figure 5 

CPU time usage, with the module being inactive 

Figure 6 (with the module being active) shows that none of the processes 

surpassed the 50% CPU load constraint. Each process utilizes approximately the 

same CPU time during execution and the remaining parts of the system do not 

degrade due to eventually malicious code. 

 

Figure 6 

CPU time usage, with the module being active 

The next measurement focused again on the CPU as a system resource. However, 

unlike the previous case focused on CPU time, this time we focused our 

measurements on one of the CPUs of a multiprocessor system. Again, we 

executed the same PHP program aimed at stress testing the system CPU. The test 

system contained multiple processors. 



Acta Polytechnica Hungarica Vol. 12, No. 2, 2015 

 – 15 – 

 

Figure 7 

Multi-core CPU load, with the module being inactive 

Figure 7 (with the module being inactive) shows the load of all processors in the 

system from the start of the execution of the respective CGI servers on the server. 

In this measurement, the server did not have the module functionality activated, so 

all four processors were loaded to almost 100%. 

 

Figure 8 

Multi-core CPU load, with the module being active 

In the next measurement, the module was active and the cgroup was set up to 

allow the respective CGI processes of the given user (web) only to the CPU0 

processor. As it is shown in the chart in Figure 8 (with the module being active), 

only the CPU0 processor was running. The other processors did not run the above 

malware; therefore their load did not exceed 20%. 

The last server functionality measurement focused on memory as a system 

resource. Again, a special PHP script, representing malware was written, but this 

time it stressed the system memory. The program works again in cycles, but 

instead of a small number- PI, it allocates a number equal to the iteration 

multiplied by 100 and inserts it into a dynamic array. 



L. Vokorokos et al. Secure Web Server System Resource Utilization 

 – 16 – 

The PHP interpreter contains mechanisms to limit the amount of memory 

allocated to the respective processes. This is 128 MB by default. To demonstrate 

the functionality and flexibility of the module configuration, we have altered this 

setting to 2 GB. There are plenty of languages – in addition to PHP – which may 

be used to run CGI programs and have no such limitation implemented. 

 

Figure 9 

Memory usage, with the module being inactive 

Figure 9 (with the module being inactive) shows the memory usage after loading 

the malicious program. The chart contains the first 10 iterations of the log of the 

top program. The chart shows that after the first iteration more than 600 MB of the 

memory of all processes was allocated. All 5 processes used all available system 

memory. If there are many client-side requests, the memory resources run out fast 

and the service is going to be unavailable. 

In the second measurement focused on memory this module was active. A cgroup 

was set up to limit the maximum memory allocated to the process in this group. 

The constraint set up was 10 MB. The chart in Figure 10 showed the results of this 

measurement. As it is evident, none of the processes has produced a load greater 

than 10 MB to the physical memory of the system. The load was approx. 5 

MB/process. The constraint was working well and we may state that this module 

setting is more flexible, since it may be used even for programs written in other 

languages than PHP. Moreover, we may define different constraints for different 

users (web sites). 



Acta Polytechnica Hungarica Vol. 12, No. 2, 2015 

 – 17 – 

 

Figure 10 

Memory usage, with the module being inactive 

Conclusions 

The output of this article is an efficient solution of using system resources. The 

solution designed and implemented at the level of a web server, allows limiting 

key system resources, such as CPU time and memory. 

The system was subject of performance and functionality tests of the module with 

various configurations. The module as such does not degrade the performance too 

much to have a significant impact on the execution of the web server. Our tests 

showed that the module does not have any significant performance impact and all 

results achieved without the module stopped were approximately the same as 

those achieved with the module running. 

As far as functionality tests are concerned, some attributes in the implementation 

have already been implemented but are not flexible enough or they do not cover 

all cases, in which insufficient resource management could affect the performance 

and stability of the whole system. 

In addition to the tested resource constraints, cgroups provide significantly 

broader system resource configuration possibilities – other than CPU time and 

memory – therefore they provide a far better way of system resource management 

and a more stable environment for applications running on such a system, which 

provides further development possibilities in the proposed solution. 

We may also state that the limitations, achievable by means of this resource 

management facility, are a more coherent and transparent configuration system 

applicable to various system resources, managed at a single place. It prevents 

configuration errors, eventual stability problems or various security threats to the 

system. 

The work presented here, allows data centers to use their system resources more 

efficiently and securely, taking the costs related to power consumption into 



L. Vokorokos et al. Secure Web Server System Resource Utilization 

 – 18 – 

account – being an important attribute of data centers, monitored not only to 

decrease operating costs but also the environmental impact. 

Acknowledgements 

This work was supported by the Slovak Research and Development Agency under 

the contract No. APVV-0008-10 and project KEGA 008TUKE-4/2013: 

Microlearning environment for education of information security specialists. 

References 

[1] Kolyshkin Kirill: Virtualization in Linux, OpenVZ Technical Report, 

Kirkland 2006 

[2] Banga Gaurav, Druschel Peter, Mogul Jeffrey: Resource Containers: A 

New Facility for Resource Management in Server Systems. Proceedings of 

the Third Symposium on Operating Systems Design and Implementation 

(OSDI), New Orleans 1999 

[3] Soltesz Stephen et al.: Container-based Operating System Virtualization: A 

Scalable, High-Performance Alternative to Hypervisors, ACM SIGOPS 

Operating Systems Review (EuroSys), Vol. 41, No. 3, New York 2007, pp. 

275-287 

[4] Singh Balbir, Srinivasan Vaidyanathan: Containers: Challenges with the 

Memory Resource Controller and its Performance, Proceedings of the 

Ottawa Linux Symposium, Vol. 2, Ottawa 2007, pp. 209-222 

[5] Tomášek Martin: Computational Environment of Software Agents, Acta 

Polytechnica Hungarica, Vol. 5, No. 2, Budapest 2008, pp. 31-41 

[6] Totok Alexander, Karamcheti Vijay: Optimizing Utilization of Resource 

Pools in Web Application Servers, Concurrency and Computation: Practice 

and Experience, Vol. 22, Danvers 2010, pp. 2424-2444 

[7] Diao Yixin, Hellerstein Joseph, Parekh Sujay: Using Fuzzy Control to 

Maximize Profits in Service Level Management, IBM Systems Journal, 

Vol. 41, No. 3, New York, 2002, pp. 403-420 

[8] Prpič Martin et al.: RedHat Enterprise Linux 6.5 GA Resource 

Management Guide [online], New York 2013, Available on: 

https://access.redhat.com/site/documentation/en-

US/Red_Hat_Enterprise_Linux/6/pdf/Resource_Management_Guide/Red_

Hat_Enterprise_Linux-6-Resource_Management_Guide-en-US.pdf 

[quoted: February 2, 2014] 

[9] Mihályi Daniel, Novitzká Valerie: Towards the Knowledge in Coalgebraic 

Model of IDS, Computing and Informatics, Vol. 33, No. 1, Bratislava 2014, 

pp. 61-78 



Acta Polytechnica Hungarica Vol. 12, No. 2, 2015 

 – 19 – 

[10] Mihályi Daniel, Novitzká Valerie: What about Linear Logic in Computer 

Science?, Acta Polytechnica Hungarica, Vol. 10, No. 4, Budapest 2013, pp. 

147-160 

[11] Sitko Maroš, Madoš Branislav: Specialized Information System for Web 

Content Management, Computer Science and Technology Research 

Survey, Vol. 6, Košice 2012, pp. 364-370 

[12] Barham Paul et al.: Xen and the Art of Virtualization, Proceedings of the 

Nineteenth ACM Symposium on Operating Systems Principles (SOSP), 

Bolton Landing 2003, pp. 164-177 

[13] Sugerman Jeremy, Venkitachalam Ganesh, Lim Beng-Hong: Virtualizing 

I/O Devices on VMware Workstation's Hosted Virtual Machine Monitor, 

USENIX Annual Technical Conference, General Track, Boston 2001, pp. 

1-14 

[14] Gulati Ajay et al.: Cloud-Scale Resource Management: Challenges and 

Techniques, Proceedings of the 3
rd

 USENIX Conference on Hot Topics in 

Cloud Computing, Portland 2011, p. 3 

[15] Engler Dawson et al.: Exokernel: An Operating System Architecture for 

Application-Level Resource Management, ACM SIGOPS Operating 

Systems Review, Vol. 29, No. 5, New York 1995, pp. 251-266 

[16] Seawright Love, Mackinnon Richard: VM/370—a Study of Multiplicity 

and Usefulness, IBM Systems Journal, Vol. 18, No. 1, Riverton 1979, pp. 

4-17 

[17] Vokorokos Liberios, Pekár Adrián, Ádám Norbert: Data Preprocessing for 

Efficient Evaluation of Network Traffic Parameters, Proceedings of 16
th

 

IEEE International Conference on Intelligent Engineering Systems (INES), 

Lisbon 2012, pp. 363-367 

[18] Vokorokos Liberios, Baláž Anton, Trelová Jana: Distributed Intrusion 

Detection System using Self Organizing Map, Proceedings of 16
th

 IEEE 

International Conference on Intelligent Engineering Systems (INES), 

Lisbon 2012, pp. 131-134 

[19] Madoš, Branislav: Architecture of Multi-Core System-on-the-Chip with 

Data Flow Computation Control, International Journal of Computer and 

Information Technology (IJCIT) Vol. 3, No. 5 (2014), ISSN 2279-0764, 

pp. 958-965 


