Acta Polytechnica Hungarica Vol. 12, No. 2, 2015

Secure Web Server System Resources
Utilization

Liberios Vokorokos, Anton Balaz, Norbert Adam

Technical University of KoSice, Letna 9, 042 00 Kosice, Slovakia,
liberios.vokorokos@tuke.sk, anton.balaz@tuke.sk, norbert.adam@tuke.sk

Abstract: One of the main goals of an operating system is the efficient usage of system
resources and their management. Modern systems offer complex mechanisms for the
management of these resources. Their system-wide use may be separated into multiple
layers — from the lowest (the operating system kernel) to the highest (various virtualization
techniques). Somewhere in the middle are the applications consuming these system
resources. An example of such an application is the Apache web server. It implements some
of the resource management mechanisms at application level. However, the system
contains elements, the management of which is not possible at application level or its
implementation has a significant overhead and may negatively affect the performance and
secure usage of the server. The aim of the study is to create a more efficient resource
management mechanism at the level of the Apache web server. The proposed architecture
allows the treatment of possible security threats, such as DoS attacks, makes the use of
system resources more efficient, thus — indirectly — it also addresses the environmental
impacts of data centers. The reason for selecting the Apache web server as the referential
implementation of the resource usage improvement are its market share and its open
source nature, which renders making amendments to the server simple.

Keywords: security; system resources; management; Apache; cgroups; CGI

1 Introduction

System resource management is a topic often related to operating system
mechanisms. Solving system resource management problems is therefore left over
to the authors of operating systems or architects. Even though it is required — to a
certain extent — that the operating system manages most of the system resources,
there are cases, when the task of system resource management has to be left over
to the application, or to ensure that the application increases the level of use of the
allocated resources.

With today's web applications at hand, web servers often have to deal with
enormous loads — millions of web content generation requests coming from their
clients. Generating content has a price in terms of memory, computation time,

L. Vokorokos et al. Secure Web Server System Resource Utilization

power, CPU time, etc., especially if one has to deal with extreme amount of
requests. By improving resource management we may improve security, make the
use of the resources more efficient and — in the end — decrease the power costs by
improving system usage efficiency.

We know of experiments to improve the resource usage of web servers used in in-
house solutions, producing certain results [1], nevertheless there is still room for
improvement — both in the field of implementation or the results themselves. With
the advent of new technologies, new approaches are being developed to improve
and make the current resource management solutions more efficient.

This work describes the approaches in use, presents the new technologies
available in the field of resource management, and — most importantly —
implements an improvement in this field and proposes the implementation of such
an extension of the Apache web server.

2 Efficient Use of System Resources

In modern operating systems, the use of system resources is considered to be a
more or less solved problem. Resource management is being done efficiently at
the lowest OS level by the kernel, which may be configured to a certain extent,
depending on the system in use.

Recently, great effort has been put into higher level system resource management,
mainly to separate programs executed at application level and the operating
system itself. This field is represented by various virtualization technologies — for
their application in modern systems, seen in the work G. Banga et al.

2.1 Virtualization and Separation

Virtualization is a method of executing various virtual environments (virtual
machines) on a single physical machine.

The virtual environment is where the programs are executed; it behaves as a
separate entity and represents a real computer system. The individual
environments are mutually isolated and thus have no knowledge of the existence
of similar environments, if multiple virtual environments are being executed
simultaneously on a single physical machine. However, this kind of isolation
requires full resource management, therefore in the text below we have described
the approaches used in virtualization and resource management.

Virtualization is based on the principle of having virtual machine monitor
software managing the allocation of computer resources to the respective virtual
environments. This monitor is the abstraction layer between the hardware — the
physical machine — and the given virtual environment. There are multiple types of

Acta Polytechnica Hungarica Vol. 12, No. 2, 2015

virtualization, depending on the executed virtual environment and the
implementation of this monitor.

Kolyshkin described three basic virtualization principles, differing in the methods
and conditions of execution of the virtual environments [1]. These are:

. Full virtualization or emulation
. Para-virtualization
. OS-level virtualization

Each of these approaches has its advantages and disadvantages, related to the
execution performance of the given virtual environment. The respective
virtualization approaches are thus compromises between performance and
modifications made to the executed system.

2.2 OS-level Virtualization

Virtual environments using this approach are called containers — they represent the
execution environment of the operating system [5]. Operating systems running on
a single kernel are being executed in the individual containers. The resources are
allocated to such environments upon creation and they are often altered
dynamically during the execution.

Applications, as well as the individual environments behave as individual units,
which may be isolated (seen from the other containers) [10]. Such isolation is not
performed by virtualization of the whole operating system, just the mechanisms
offered by the operating system itself (the kernel), which executes all containers.
These mechanisms include process identifiers (PIDs), user identifiers (UIDs),
shared memory, etc. Contexts and filters are created to perform the separation of
the respective containers. Contexts represent the separation of the identifiers used
in the said mechanisms: each container has its own context of identifiers, relevant
only for it. On the other side, filters control the access of the respective containers
to the kernel objects by controlling the privileges of the individual containers.

There are multiple container implementations available in operating systems
running a Linux kernel. The most widely known is OpenVZ Linux VServer, while
the newest addition to these is a solution called LXC Linux containers. They differ
is the way they implement the container and resource management levels. To
prevent attacks between the environments, the system must distribute the
resources among the respective virtual environments securely.

These containers often implement processor time management in two levels [11].
One level is the CPU scheduler of the operating system. The second level is the
scheduler of the respective implementation, which is either part of the
amendments applied to the system or a separate entity, similar to the virtual
machine monitor. CPU time scheduling is then done using known algorithms.

L. Vokorokos et al. Secure Web Server System Resource Utilization

The remaining resources, such as physical memory, disk space, etc. may be
managed in the respective containers separately by using the appropriate memory
management mechanisms [16] or a resource driver may be introduced, such as a
memory controller [17], which can limit the amount of memory available to
certain application groups (e.g. to an application in the context of a specific
container).

Interesting is the implementation of system resource limitations in LXC Linux
containers. It uses various novel attributes of the Linux kernel, even a mechanism
called Control Groups [9]. This allows setting constraints using control groups.
The running processes (i.e. tasks) are then allocated to the respective groups as
needed. The system kernel will then allocate the system resources in accordance
with the rules specified in the respective groups.

From this point, the respective groups (cgroups) are treated as standard Linux
processes. Thus, they form a certain hierarchy and the descendant groups in the
hierarchy inherit the attributes, in this case the constraints of the parent groups.
These group constraints are implemented by means of so-called subsystems.
These are linked to the directory structure of the system. The whole directory
structure of the link represents a hierarchy of constraints — it contains files of the
constraint rule applicable to the individual subsystems. The basic subsystems, thus
also the system resources, influenced by the cgroups are the following:

» CPU - controlling processor access of the tasks by using the CPU scheduler,
. CPUACCT - generates messages concerning the usage of CPU resources,

. CPUSET - assigns the individual processors and memory nodes to tasks,

. MEMORY - manages task memory constraints,

» BLKIO — manages I/O device data transfer constraints,

. NET_CLS — marks packets with identifiers for the network traffic controller,

. NET_PRIO - sets the network traffic priority in case of the network
interfaces.

The newly created group is a directory in each of the subsystems in the directory
structure. It also contains the files of the respective subsystems required to define
new constraints, as well as the file with the identifiers of running processes
belonging to the particular group.

Cgroups may be used even beyond the scope of virtualization tools to separate
applications and thus this technique is an appropriate candidate for the
implementation of the solution — our improvement to web server resource
management.

The advantage of virtualization at the level of the operating system is the
performance, comparable to that of native code execution. By removing the
virtualization layer — the virtual machine monitor — the execution costs decrease.

Acta Polytechnica Hungarica Vol. 12, No. 2, 2015

The separation of the respective virtual environments is not as significant as with
emulation or paravirtualization, but it is sufficient enough. The security of the
system as such is ensured by the separation of the important applications into
separate environments. Dynamic resource management allows runtime application
migration.

A disadvantage may be the requirement of using the same kernel with the
virtualized operating systems. Thus, in case of Linux only Linux systems may be
virtualized.

3 The Solution Proposal

The proposed security improvement in server resource usage lies in ensuring a
more strict allocation of the individual system resources to the processes executing
the programs generating dynamic web server content. These are especially the
programs using the Common Gateway Interface (CGI) protocol. Stricter system
resource allocation allows more efficient system operation by defining system
resource consumption constraints and thus achieves the required service quality.
Strict allocation of processor time and memory to the respective processes helps
solve possible Denial of Service (DoS) attacks, limit the impact of badly written
web applications by using well-defined constraints to prevent any request from
consuming all available system resources.

3.1 Design of Architecture

The goal is to limit the respective system resources as required, during the
assignment of CGI programs to the respective processes or immediately after it.
The reason of preferring such a direct assignment of resource constraints to
processes before allocating the resources during process creation is the fact that
the same process may be used for the sequential execution of multiple
independent programs, using a process pool. In such a case the resource constraint
of a single program would remain valid for other programs, if they were executed
in the same process.

The respective CGI programs may be identified by the UID of the executed
program at the time of system resource constraint allocation. Normally, the UID
of the executed program (web) is identical to the one of the executed web server.
The UID is altered using the suExec module. Using UIDs to identify the programs
allows resource constraints to be assigned according to the user (web page), the
program was executed by.

The proposed improvement is implemented as a server module. Due to the
modular architecture of the web server, this module is connected to the web server
architecture and the other modules, required for the correct function of this

L. Vokorokos et al. Secure Web Server System Resource Utilization

module. This provides the following: a connection between the module and server
functionalities; a mechanism to define, process and store the module
configuration; the possibility to initialize the module upon server start-up. The
architecture of the resulting solution is shown in Figure 1. The mod_cgrp module
is the outcome of this work.

Web server

mod_cgi]—p{ mod_suexec
— —

suexec

]_.{ mod_cgrp]]
[S

Configuration
files

cgi_php

[libegroup]

l

/

Control Groups

Coroun 3 \
Cproun 2 \
Cgroup 1
CPU, MEMORY, NET_PRIO - |
[CPU] [MEMORY] [BLKIO] [NET PRIO
1 1 1 I
Y L] Y |]
CPU MMU 110 Network
scheduler devices devices
Kernel

Figure 1
System architecture

Constraining system resources is provided by a system mechanism called Control
Groups. This mechanism is supported by the kernel itself. Resource management
is implemented by the control groups organized in the file system. The kernel
allocates resources to the respective groups according to the group attribute
settings.

The processes are identified by means of the configuration files. These contain the
data required for the identification of the respective processes, as well as the
processes, which have to be assigned to specific cgroups. These data are stored in
data pair records. The first member of the pair is the PID of the process assigned
to the constraint group. The other member of the pair is the identifier of the
cgroup. Only a single constraint group may be assigned to a process having a
specific PID.

-10-

Acta Polytechnica Hungarica Vol. 12, No. 2, 2015

3.2 Principles of Resource Constraint

Designed module assigns newly created processes to groups with limited
privileges to consume specific system resources, as shown in Figure 2.

System

- oo

Configuration
entry XY

User X

Cgroup Y

UID X, Cgroup Y

wlo z
Web server

Cgroup
ﬁ module
* -
CGl Process Z I ,

Figure 2
System resource assignment

The execution of the module starts with loading the configuration. Configuration
processing is executed automatically by the web server upon its initialization,
along with the other modules. Next, the UID of the executed process is retrieved.
The server checks, if there is an entry in the configuration for the specified
identifier. If the identifier in question is not present in any of the entries, the
execution terminates. Otherwise, the ID of the process running the CGI program is
retrieved. The module checks the existence of the constraint group stated in the
configuration and as in case of the configuration itself, if the existence is not
confirmed, the execution terminates and an error message is written to the log file.
If the group exists, the retrieved process identifier is assigned to the particular
group and the execution terminates with a message stating successful assignment
of the process to the group with the given constraints.

4 Experimental Validation

To evaluate the reliability and functionality of the proposed and implemented
solution, we have performed some measurements. These measurements focused
on the performance and the correct server functionality during the use of the
proposed module. The measurements were performed with the tools provided by
the operating system and the web server itself.

-11-

L. Vokorokos et al. Secure Web Server System Resource Utilization

The computer system used to perform the measurements was a HW system with
the following parameters:

. Intel i3 processor working at 2.20 GHz,
. 4096 MB RAM system memory,
. 500GB hard drive spinning at 5400 RPM.

As to the software, the system was running a GNU/Linux Fedora 20 operating
system with a 3.13.7 Linux kernel. The web server version number was 2.4.6.

The results of all measurements were recorded by redirecting the standard output
of the top and Apache Benchmark (ab) tools to separate files. The stress testing of
the respective resources was performed using a series of php scripts allocating
small or large chunks of data (depending on the types of the measured resources)
in cycles.

4.1 Module Performance

The following measurements focused on comparing the web server performance
with various amounts of requests executed in parallel. Test performed with the ab
program. The output of the program was — in addition to other things —
information on the transfer time and the average time of execution of a single
request. We have executed multiple measurements, with varying amounts of
parallel requests. Each of these measurements was performed twice, with the
module active and inactive. This way we could test the effect of the module on the
performance of the web server.

Figure 3 and Figure 4 show that the presence of the module does not significantly
impact the speed of request processing. Differences in server performance having
the module inactive or active are negligible with low amounts of requests and
increase along with the increasing the amount of the requests. The overall
evaluation of the presence of the module when responding to the requests aimed at
simple HTML or more complex CGI programs is positive. The module has no
significant impact on the web server itself.

—12-

Acta Polytechnica Hungarica Vol. 12, No. 2, 2015

60

- 50 —
e

~ L
£ 0 \\
% 30 hat
E \ —#— Modul inactive
% 20 \,
& Modul active
F 10

0

10 50 100 500 1000
Nr. of requests
Figure 3
Transfer speed

30
= 25 il
: /
% 20
@
5 /
o 15
= B -
5 0 L1 / —¢— Modul inactive
o B s—
E Modul active
F 5

0

10 50 100 500 1000
Nr. of requests

Figure 4
The average time spent by the execution of a single request

4.2 High System Utilization

In this section, we have focused the measurement efforts on comparing the
activities of the web server with the module inactive and active, using requests of
programs stressing selected system resources. Each measurement was performed
individually, with the same program, specifically written for the given system
resource. To gather the results we have used the ab toolset; we used the top
program monitoring various system resources to create a specific number of
requests.

-13-

L. Vokorokos et al. Secure Web Server System Resource Utilization

The subsequent two measurements are aimed at CPU load. The created cgroup has
been crafted to prevent the CPU load values from exceeding 50%. The executed
program is a cycle, in which the number Pl is allocated 3 million times as part of
the Foo class. The chart in Figure 5 (with the module being inactive) shows the
CPU load — three of the five processes cause CPU loads surpassing 50% during
the execution.

100
_ 80
g \A
< —4—Process 1
., A
[A ﬁl Process 2
3 40
E ——Process 3
(=}
20 — || ==—Process 4
0 —t=—Process 5
1 2 3 4 5 6
Nr. of top iteration

Figure 5
CPU time usage, with the module being inactive

Figure 6 (with the module being active) shows that none of the processes
surpassed the 50% CPU load constraint. Each process utilizes approximately the
same CPU time during execution and the remaining parts of the system do not
degrade due to eventually malicious code.

100
. 80
R
= == Process 1
g 60
] Pracess 2
3 10 " K
2 === Process 3
Q
20 | ===—Process 4
0 —+=—Pracess 5
1 2 3 4 5 6
Nr. of top iteration

Figure 6
CPU time usage, with the module being active

The next measurement focused again on the CPU as a system resource. However,
unlike the previous case focused on CPU time, this time we focused our
measurements on one of the CPUs of a multiprocessor system. Again, we
executed the same PHP program aimed at stress testing the system CPU. The test
system contained multiple processors.

—14-

Acta Polytechnica Hungarica Vol. 12, No. 2, 2015

100 —FW
—~ 80
e/
g 60 =—+—CPUO
m
S a0 | CPU1
g
S 5 == CPU 2
0 l =—=(CPU 3

123 4567 8 910
Nr. of top iteration

Figure 7
Multi-core CPU load, with the module being inactive

Figure 7 (with the module being inactive) shows the load of all processors in the
system from the start of the execution of the respective CGI servers on the server.
In this measurement, the server did not have the module functionality activated, so
all four processors were loaded to almost 100%.

100
- 80
g/
E) 60 " —4—CPU O
(2]
3 A0 CPU1
2 0/

L N= Q% N

12345678910

Nr. of top iteration

=]
I

Figure 8
Multi-core CPU load, with the module being active

In the next measurement, the module was active and the cgroup was set up to
allow the respective CGI processes of the given user (web) only to the CPUOQ
processor. As it is shown in the chart in Figure 8 (with the module being active),
only the CPUO processor was running. The other processors did not run the above
malware; therefore their load did not exceed 20%.

The last server functionality measurement focused on memory as a system
resource. Again, a special PHP script, representing malware was written, but this
time it stressed the system memory. The program works again in cycles, but
instead of a small number- PI, it allocates a number equal to the iteration
multiplied by 100 and inserts it into a dynamic array.

-15-

L. Vokorokos et al. Secure Web Server System Resource Utilization

The PHP interpreter contains mechanisms to limit the amount of memory
allocated to the respective processes. This is 128 MB by default. To demonstrate
the functionality and flexibility of the module configuration, we have altered this
setting to 2 GB. There are plenty of languages — in addition to PHP — which may
be used to run CGI programs and have no such limitation implemented.

700000
IV,
- 600000 = T
g | _:I = -
= 500000 -+
g an —4—Process 1
@ 400000 H
3 Process 2
£ 300000 -
E == Process 3
g 700000 - == Process 4
= 100000 -
0 J Process 5
12345678910
Nr. of top iteration

Figure 9
Memory usage, with the module being inactive

Figure 9 (with the module being inactive) shows the memory usage after loading
the malicious program. The chart contains the first 10 iterations of the log of the
top program. The chart shows that after the first iteration more than 600 MB of the
memory of all processes was allocated. All 5 processes used all available system
memory. If there are many client-side requests, the memory resources run out fast
and the service is going to be unavailable.

In the second measurement focused on memory this module was active. A cgroup
was set up to limit the maximum memory allocated to the process in this group.
The constraint set up was 10 MB. The chart in Figure 10 showed the results of this
measurement. As it is evident, none of the processes has produced a load greater
than 10 MB to the physical memory of the system. The load was approx. 5
MB/process. The constraint was working well and we may state that this module
setting is more flexible, since it may be used even for programs written in other
languages than PHP. Moreover, we may define different constraints for different
users (web sites).

-16 -

Acta Polytechnica Hungarica Vol. 12, No. 2, 2015

== Process 1

Process 2

—#— Process 3

Memory usage (KB)

=i Process 4

Process 5

12345678910

Nr. of top iteration

Figure 10
Memory usage, with the module being inactive

Conclusions

The output of this article is an efficient solution of using system resources. The
solution designed and implemented at the level of a web server, allows limiting
key system resources, such as CPU time and memory.

The system was subject of performance and functionality tests of the module with
various configurations. The module as such does not degrade the performance too
much to have a significant impact on the execution of the web server. Our tests
showed that the module does not have any significant performance impact and all
results achieved without the module stopped were approximately the same as
those achieved with the module running.

As far as functionality tests are concerned, some attributes in the implementation
have already been implemented but are not flexible enough or they do not cover
all cases, in which insufficient resource management could affect the performance
and stability of the whole system.

In addition to the tested resource constraints, cgroups provide significantly
broader system resource configuration possibilities — other than CPU time and
memory — therefore they provide a far better way of system resource management
and a more stable environment for applications running on such a system, which
provides further development possibilities in the proposed solution.

We may also state that the limitations, achievable by means of this resource
management facility, are a more coherent and transparent configuration system
applicable to various system resources, managed at a single place. It prevents
configuration errors, eventual stability problems or various security threats to the
system.

The work presented here, allows data centers to use their system resources more
efficiently and securely, taking the costs related to power consumption into

-17 -

L. Vokorokos et al. Secure Web Server System Resource Utilization

account — being an important attribute of data centers, monitored not only to
decrease operating costs but also the environmental impact.

Acknowledgements

This work was supported by the Slovak Research and Development Agency under
the contract No. APVV-0008-10 and project KEGA 008TUKE-4/2013:
Microlearning environment for education of information security specialists.

References

[1] Kolyshkin Kirill: Virtualization in Linux, OpenVZ Technical Report,
Kirkland 2006

[2] Banga Gaurav, Druschel Peter, Mogul Jeffrey: Resource Containers: A
New Facility for Resource Management in Server Systems. Proceedings of
the Third Symposium on Operating Systems Design and Implementation
(OSDI), New Orleans 1999

[3] Soltesz Stephen et al.: Container-based Operating System Virtualization: A
Scalable, High-Performance Alternative to Hypervisors, ACM SIGOPS
Operating Systems Review (EuroSys), Vol. 41, No. 3, New York 2007, pp.
275-287

[4] Singh Balbir, Srinivasan Vaidyanathan: Containers: Challenges with the
Memory Resource Controller and its Performance, Proceedings of the
Ottawa Linux Symposium, Vol. 2, Ottawa 2007, pp. 209-222

[5] Tomasek Martin: Computational Environment of Software Agents, Acta
Polytechnica Hungarica, Vol. 5, No. 2, Budapest 2008, pp. 31-41

[6] Totok Alexander, Karamcheti Vijay: Optimizing Utilization of Resource
Pools in Web Application Servers, Concurrency and Computation: Practice
and Experience, Vol. 22, Danvers 2010, pp. 2424-2444

[7]1 Diao Yixin, Hellerstein Joseph, Parekh Sujay: Using Fuzzy Control to
Maximize Profits in Service Level Management, IBM Systems Journal,
Vol. 41, No. 3, New York, 2002, pp. 403-420

[8] Prpi¢ Martin et al.. RedHat Enterprise Linux 6.5 GA Resource
Management Guide [online], New York 2013, Available on:
https://access.redhat.com/site/documentation/en-
US/Red_Hat_Enterprise_Linux/6/pdf/Resource_Management_Guide/Red_
Hat_Enterprise_Linux-6-Resource_Management_Guide-en-US.pdf
[quoted: February 2, 2014]

[91 Mihalyi Daniel, Novitzka Valerie: Towards the Knowledge in Coalgebraic
Model of IDS, Computing and Informatics, Vol. 33, No. 1, Bratislava 2014,
pp. 61-78

-18 -

Acta Polytechnica Hungarica Vol. 12, No. 2, 2015

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Mihalyi Daniel, Novitzka Valerie: What about Linear Logic in Computer
Science?, Acta Polytechnica Hungarica, Vol. 10, No. 4, Budapest 2013, pp.
147-160

Sitko Maro$, Mado$ Branislav: Specialized Information System for Web
Content Management, Computer Science and Technology Research
Survey, Vol. 6, Kosice 2012, pp. 364-370

Barham Paul et al.: Xen and the Art of Virtualization, Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles (SOSP),
Bolton Landing 2003, pp. 164-177

Sugerman Jeremy, Venkitachalam Ganesh, Lim Beng-Hong: Virtualizing
I/0 Devices on VMware Workstation's Hosted Virtual Machine Monitor,
USENIX Annual Technical Conference, General Track, Boston 2001, pp.
1-14

Gulati Ajay et al.: Cloud-Scale Resource Management: Challenges and
Techniques, Proceedings of the 3 USENIX Conference on Hot Topics in
Cloud Computing, Portland 2011, p. 3

Engler Dawson et al.: Exokernel: An Operating System Architecture for
Application-Level Resource Management, ACM SIGOPS Operating
Systems Review, Vol. 29, No. 5, New York 1995, pp. 251-266

Seawright Love, Mackinnon Richard: VM/370—a Study of Multiplicity
and Usefulness, IBM Systems Journal, Vol. 18, No. 1, Riverton 1979, pp.
4-17

Vokorokos Liberios, Pekar Adrian, Adam Norbert: Data Preprocessing for
Efficient Evaluation of Network Traffic Parameters, Proceedings of 16"
IEEE International Conference on Intelligent Engineering Systems (INES),
Lisbon 2012, pp. 363-367

Vokorokos Liberios, Balaz Anton, Trelova Jana: Distributed Intrusion
Detection System using Self Organizing Map, Proceedings of 16" IEEE
International Conference on Intelligent Engineering Systems (INES),
Lisbon 2012, pp. 131-134

Mados, Branislav: Architecture of Multi-Core System-on-the-Chip with
Data Flow Computation Control, International Journal of Computer and
Information Technology (1JCIT) Vol. 3, No. 5 (2014), ISSN 2279-0764,
pp. 958-965

-19-

