
Acta Polytechnica Hungarica Vol. 10, No. 5, 2013

 – 63 –

Innovative Operating Memory Architecture for

Computers using the Data Driven Computation

Model

Liberios Vokorokos, Branislav Madoš, Norbert Ádám,

Anton Baláž

Department of Computers and Informatics, Faculty of Electrical Engineering and

Informatics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia

{liberios.vokorokos, branislav.mados, norbert.adam, anton.balaz}@tuke.sk

Abstract: This paper deals with the data flow computing paradigm, with the characteristics

of program execution control using a flow of data instead of a flow of instructions. Data

flow computing represents an important alternative to the control flow computing

paradigm, which is currently the mainstream computing paradigm represented by

architectures mostly based on the Von Neumann principles, in which the flow of program

execution is controlled by a flow of instructions. This paper also deals with the tile

computing paradigm – a modern approach to designing multi-core microprocessors with

components laid out in two-dimensional grids with various geometries of cores, memory

elements and interconnection networks with architectures using both data flow and control

flow program execution control. In this paper we introduce a data flow computer

architecture designed at the Department of Computers and Informatics, Faculty of

Electrical Engineering and Informatics, Technical University of Košice, Slovakia,

employing the principles of tile computing. Efficient data flow architectures applying a

different approach to the control of program execution flow also demand a different

operating memory design. As the part of our effort to build data flow computer

architectures, we have designed an innovative memory architecture that fulfils the specific

needs of data flow computer architectures. In the final section of the paper we describe the

functions and operations possible with this kind of memory.

Keywords: tile computing; data flow computing; data driven architecture; data flow graph;

operating memory

1 Introduction

In the previous decades – starting from the middle of the last century – we have

witnessed a tremendous expansion of the computer and electronics industry,

connected to a long-term, unprecedented increase in the communication and

computing performance of integrated circuits, accompanied with the increase of

L. Vokorokos et al .

 Innovative Operating Memory Architecture for Computers using the Data Driven Computation Model

 – 64 –

memory chip capacities. This trend was driven by the increase of the number of

basic building blocks [1] integrated onto the silicon chips and also by the increase

of the density of their integration. This situation has brought the industry to the

opportunity to gradually increase the communication and computing performance

of superscalar monolithic uniprocessors. Unfortunately, it is not easy to use this

opportunity to appropriately increase the computing performance of monolithic

uniprocessors parallel to the increase of the number of transistors integrated on

chips.

Microprocessor designs reflect the problem outlined above using the multi-core

approach or single-chip multiprocessors [2]. Commercially available

microprocessors are integrating more than one complex superscalar core on a

single chip.

Other strategies are promoting downsizing of the superscalar core reducing its

complexity and footprint in favour of the possibility to integrate even more cores

on the chip. The core complexity ratio and the number of cores integrated onto the

chip can therefore become an important parameter of multi-core microprocessor

architectures. The future will bring the integration of not only tens, but hundreds

and even thousands of cores. Integrating memory onto a single chip with the

processing elements may become a further step in avoiding bottleneck problems

related to accessing operating memory.

Researchers evaluate various layouts of cores, memory elements and especially

interconnection networks, along with various program execution organization and

control approaches [3]. Not only control flow driven architectures, along with

Very Long Instruction Word (VLIW) approaches are being used, but the

possibilities of architectures using the data driven computation model, called data

flow architectures, are being continually investigated, too [4] [5] [6] [7] [8] [9]

[10] [11].

A very important approach to microprocessor architecture design is tile

computing, introduced in [12]. One can describe tile computing as the use of

standardized components – including processing elements (small and simple

processing elements, arithmetic and logic units or more complex cores), memory

elements and modules, as well as various types of communication networks – in

easily and highly scalable microprocessor and computer-on-a-chip architectures,

where scaling the architecture up requires only minimal changes to the

components in use and the architecture as such.

Tens of cores are being integrated not only in experimental architectures, but also

in commercially available microprocessors – with more than hundred cores in

some cases.

There are commercially available, as well as research and experimental processors

and computer-on-the-chip architectures, in which the control of program

execution is done by means of a control flow and a data flow; besides general

Acta Polytechnica Hungarica Vol. 10, No. 5, 2013

 – 65 –

purpose architectures there are also specialized designs, such as digital signal

processors.

Architectures range from 16 to 121 cores, such as TilePro64 (Figure 1), TeraScale,

VGI, TRIPS, Monarch and others [13] [14] [15] [16] [17] [18].

Figure 1

Tilera TilePro64 Block Diagram. Source: Tilera Corporation.

2 The Proposed Architecture

The architecture of the dataflow computer, proposed as a part of our research is a

32-bit computer-on-the chip with program execution driven by the flow of

operands, according to the dataflow computing paradigm. The architecture was

designed with the principles of tile computing in mind, with the aim to prepare a

highly scalable design that could be scaled up in terms of integration of further

processing elements and other components of the architecture on the chip with

minimal changes to the design. One may scale this architecture up not only by

redesigning the chip, but also by using the proposed computer-on-the-chip in a

multichip configuration – in which chips are placed in a bi-dimensional grid

layout, forming a consistent array of processing elements.

L. Vokorokos et al .

 Innovative Operating Memory Architecture for Computers using the Data Driven Computation Model

 – 66 –

2.1 Elements of the Chip

The proposed computer architecture utilizes small elements with a simple design

to allow the integration of as many elements as possible, in accordance with the

number of transistors available on the chip. The basic element of the architecture

is the Processing Element (PE), executing the dataflow program. Each processing

element contains an integrated operating memory, used as the Activation Frames

Store (AFS). All PEs are in a bi-dimensional grid, forming a Processing Array

(PA). Other components integrated on the chip are Input/Output Elements (I/O)

interconnecting PEs with the neighbouring components of the computer (Fig. 2).

Figure 2

The processing array containing 64 processing elements, located in a two-dimensional, 8 × 8 layout, 32

input/output elements, communication channels intended for short-range communication (SCN) and

the bus intended for global communication (GCN).

In the prototype built using Xilinx Field Programmable Gate Array (FPGA)

technology, 64 processing elements (PE) are accompanied with 32 input/output

elements (IO). The ratio (R) of the number of the integrated processing elements

and the input/output elements may be calculated using formula (1). The ratio

increases with the value of n.

Acta Polytechnica Hungarica Vol. 10, No. 5, 2013

 – 67 –

n4

n
R

2

 (1)

where

n is the number of PEs forming the edge of PA

2.1.1 Processing Elements

Each processing element (Figure 3) has a simple design and it consists of the

following:

 an Activation Frames Store (AFS): a unit consisting of the operating

memory developed as the part of the present research. The AFS has a

capacity of 1024 × 144 bits. It is not only used as the instruction store but

it also performs the Fetch phase of instruction cycle and it is capable of

other operations, as described in section 3 of this paper.

 an Arithmetic and Logic Unit (ALU): the unit performing the Execute

phase of the instruction cycle of integer arithmetic and logic operations.

 a Control Unit (CU): the unit controlling the execution of instructions

and the communication with the neighbouring elements.

Figure 3

The structure of the processing element (PE), consisting of the Activation Frames Store (AFS), the

Arithmetic and Logic Unit (ALU) and the Control Unit (CU), connected to the Global Communication

Network (GCN) and a set of Short-range Communication Network (SCN) channels

L. Vokorokos et al .

 Innovative Operating Memory Architecture for Computers using the Data Driven Computation Model

 – 68 –

Each activation frame stored in the AFS is addressable and all activation frames of

all PEs integrated on the chip form a virtual cube of addressable space of the

computer with addresses consisting of three components: X(2:0), Y(2:0) and

Z(9:0). The X and Y components of the memory address, integrated in the

processing element of the processing array and the Z component represents the

address of the activation frame in the AFS of the particular PE. Each PE is

allowed to address only activation frames stored in operating memory integrated

in the particular PE; it is not allowed to address activation frames of other PEs.

2.1.2 Input/Output Elements

Processing elements situated on the edges of the processing element array are

connected to the input/output elements surrounding this processing array. Each

input/output element allows communication with other components of the

computer system, when serving as the entry point of operands produced beyond

the processing array, or as the exit point, when operands are leaving processing

array and are used as inputs of other components of the computer system.

In a multichip configuration, two input/output elements, each on different chip

form an I/O bridge that interconnects two processing elements of different chips

and allows the transmission of operands between the chips. An I/O bridge forms

an interconnection with the same function as a local network communication

channel (Figure 4).

Figure 4

The multichip computer configuration allows scaling the computer beyond the borders of the chip.

This figure presents four chips in a bi-dimensional layout, interconnected by I/O elements.

Acta Polytechnica Hungarica Vol. 10, No. 5, 2013

 – 69 –

2.2 Communication Networks

To produce an efficient computer architecture design with the tile computing

principles in mind, one also has to focus on the efficient communication of

computer components. In the proposed architecture we have created two types of

communication networks: for short-range and global-range communication.

Short-range communication (SCN) is performed by means of communication

channels interconnecting each PE with each of its eight neighbouring elements.

This allows pairs of chip elements to communicate in parallel; the high bandwidth

short-range parallel communication of chip elements is implemented as follows:

each PE is allowed to communicate with one of its neighbouring elements by

passing tokens. A token consists of a 32-bit operand accompanied by a 10-bit

target activation frame address and a 1-bit target operand flag (Figure 5). Short-

range communication is used in Compute Mode, when the data flow program is

executed.

Figure 5

Each token consists of a 32-bit operand (OP), a 1-bit target operand flag (AB) and a 10-bit activation

frame address in the AFS (ADR)

Global-range communication (GCN) is implemented as a bus interconnecting all

PEs, allowing data flow graph mapping onto the operating memory of each PE in

three different manners developed as the part of the present research, as described

below. This communication network is used in Load Mode, when the data flow

graph is mapped onto the operating memory of each of the processing elements.

2.3 Data Flow Graph Mapping

A unique characteristic of the proposed architecture is that in Load Mode it is

possible to map the data flow program as a data flow graph into the activation

frames stores of the processing elements; this is done by means of the global range

communication network, utilizing three different approaches. One can switch

among these dynamically, immediately after each activation frame is mapped.

The first mode is sequential mapping; this allows mapping the instructions onto

activation frames in the traditional way: one activation frame at once. Concurrent

instruction mapping to the different AFS’s of different PEs is not possible. All

three components (X, Y and Z) of the activation frame are used.

The second mode, global multi-mapping allows mapping the same instruction

onto all AFS’s of all PEs in the PA concurrently in one machine cycle; the

activation frame is addressed using the Z component of the address only.

L. Vokorokos et al .

 Innovative Operating Memory Architecture for Computers using the Data Driven Computation Model

 – 70 –

The third mode, mask multi-mapping mode allows concurrent mapping of the

same instruction into the AFS’s of selected PEs of the PA. The PEs may be

selected using a mask. The Z-component of the address, along with two 8–bit

vectors representing the mask are used to specify which activation frames are

targeted.

One may switch between the data flow graph mapping modes during the process

to optimize the execution time of data flow graph mapping process. The mapping

techniques are described in detail in [19].

2.4 Activation Frame

Instructions are represented as 144-bit vectors, mapped as activation frames onto

the activation frame stores of the particular processing elements at time of data

flow graph mapping, when the computer and the memory are in Load mode. Each

instruction vector consists of components specified in Figure 6.

Figure 6

Instructions are represented by 144-bit vectors stored in activation frames

where:

INIT is a 1-bit instruction execution flag;

OPCODE is the 7-bit operation code of the instruction;

PA is a 1-bit flag indicating that operand A is required for instruction execution;

RA is a 1-bit flag indicating the availability of operand A;

PB is a 1-bit flag indicating that operand B is required for instruction execution;

RB is a 1-bit flag indicating the availability of operand B;

CA is a 1-bit flag indicating immediate operand A;

CB is a 1-bit flag indicating immediate operand B;

AB is a 1-bit flag indicating the target operand instructions;

RES is a 1-bit reserved flag;

COLOR is a 32-bit subgraph tag;

Acta Polytechnica Hungarica Vol. 10, No. 5, 2013

 – 71 –

OPA is the 32-bit operand A;

OPB is the 32-bit operand B;

ADR is 32-bit target address of the instruction.

3 The Memory Subsystem of Processing Elements

The conventional concept of using operating memory in the control flow model –

utilizing Random Access Memory (RAM) – has the advantage of simple design,

high integration density of memory elements and low power consumption;

however, it appears to be less useful for use in data flow computing. One of the

basic operations of a data flow computer is to search for the next executable

instruction stored in memory; therefore – in the worst case – all memory must be

searched sequentially. This kind of operation requires logic beyond the memory

and can be extremely time-consuming.

A solution to this problem is Content Addressable Memory (CAM), typically used

in active network devices – for searching in routing tables [20] or in cache

memory [21], for example. CAM has been designed with the aim to allow search

of the entire memory in a single operation and it allows much faster search

operations for immediately executable instructions, in comparison to RAM.

However, Unlike RAM (having simple storage cells), each CAM bit is

accompanied by a comparator to detect a match between the stored bit and

searched bit and an additional circuit to evaluate if all bits of the data word match.

This additional circuitry increases the physical size of the CAM chip, or – in other

words – decreases the density of the memory elements, increases manufacturing

costs and power consumption of the memory, as it is discussed in [22] [23]. With

Ternary Content Addressable Memory (TCAM) it is possible to use not only 1 and

0 values, but also X as the “Don’t care” value for one or more bits in the data

word to make searches more flexible.

In our research, we are proposing a memory (Figure 7) philosophically based on

TCAM. This memory incorporates not only memory cells, but also combinational

logic to perform search operations, with which the immediately executable

operation can be found, making use of parallel searches of the whole memory. We

have altered the CAM concept and incorporated a priority generator into the

memory to select the matching data word with the lowermost memory address. At

any given time, there is only a single data word – representing the activation frame

containing the immediately executable instruction – in the output of the memory.

One can write to the memory in an addressed fashion: a specific part of the data

word will be stored at the specified address. This is used to store operands during

program execution.

L. Vokorokos et al .

 Innovative Operating Memory Architecture for Computers using the Data Driven Computation Model

 – 72 –

Another important feature of the proposed computer architecture is the ability to

initialize or de-initialize subgraphs of the data flow graph with/without the

preservation of operands. This is required to evaluate if the activation frame is part

of the subgraph – that is why this operation must be performed on each activation

frame stored in memory. After the evaluation, the instructions, which are part of

the target subgraph, are initialized or de-initialized, according to the instruction

type. All of those operations are performed on each activation frame stored in the

activation frame store in parallel in a single machine cycle, by means of the built-

in combinational logic circuit.

The memory operations of the proposed memory can be divided into two main

groups, according to the operating mode of the memory and the computer: Load

mode (L) and Compute mode (C).

Operations performed in the traditional manner – including reading and writing of

a specific activation frame using an address – are the first group of operations (I)

performed in Load mode, when memory behaves as conventional RAM.

Another group of operations are data-flow-specific operations (II): these are

performed on particular activation frames stored in memory (IIa) using an address

or a specific attribute of the activation frame; or they are performed on all

activation frames stored in memory in parallel (IIIa). The two aforementioned

operation subgroups are available only in Compute mode and they are performed

in connection with particular instructions of the data flow graph during data flow

graph execution.

I. Load mode

1. Read;

2. Write.

II. Compute mode (data flow specific operations)

a. Operations on a single activation frame:

1. Writing operand A;

2. Writing operand B;

3. Reading the activation frame.

b. Operations on all activation frames:

1. Data flow graph initialization;

2. Data flow subgraph initialization with operands;

3. Data flow subgraph initialization without operands;

4. Data flow graph de-initialization;

5. Data flow subgraph de-initialization.

Acta Polytechnica Hungarica Vol. 10, No. 5, 2013

 – 73 –

Instead of having separate Load and Compute inputs to control the two groups of

operations, we have defined the CL/ control signal. If the CL/ input is set, the

memory is in Load mode, otherwise it is in Compute mode. In Load mode, the

WR/ signal determines the particular operation of reading and writing,

respectively (Figure 7).

Figure 7

The schematic symbol of the data flow computer memory

3.1 Read Operation

The cycle of reading the activation frame memory is performed by setting the

CL/ and WR/ signals to 1. The activation frame is addressed in the traditional

manner, as used in RWM memory, with the A address present at the address

input (A), while the activation frame can be read at the memory data output (DO).

]M[A:DO) WR/ . CL/ (2)

3.2 Write Operation

The cycle of writing operates on a memory address provided by the PE. The PE

applies the address to the address input (A), the activation frame vector to the data

input (DI) and sets the CL/ signal to 1 and the WR/ signal to 0. Then, the PE

transfers the data to the activation frame during the positive transition of the next

Ti pulse, which can also change the address and checks if there is another memory

request. In this mode, the data flow graph is mapped onto the operating memory

L. Vokorokos et al .

 Innovative Operating Memory Architecture for Computers using the Data Driven Computation Model

 – 74 –

of the processing element sequentially for subsequent execution. No data flow

program activation frame is executed until CL/ is set, even if there are executable

instructions in the memory.

DI:]M[A) WR/ . CL/ (3)

3.3 Writing Operand A

The process of writing operand A to the memory can be performed in Compute

Mode, which is indicated by setting both the CL/ and the WR/ signals to 0. The

activation frame is addressed at the addressing input of the memory (A) and the

set BA/ signal indicates that operand A will be stored in the activation frame.

Operand A must be present in the appropriate part (bits 95:64) of the memory data

input (DI) during writing.

64):DI(95:]M[A) B.A/WR/ . CL/ (4)

3.4 Writing Operand B

A change of the BA/ signal to 0 indicates the process of writing operand B to the

memory, when the CL/ and WR/ signals are set to 0. Operand B must be present

in the appropriate part (bits 63:32) of the memory data input (DI) during writing.

32):DI(63:]M[A) BA/.WR/ . CL/ (5)

3.5 Evaluation of Instruction Executability

An important operation that the memory performs on each stored activation frame

is the evaluation of instruction executability. Each activation frame contains

information as to whether the instruction is initialized or not (the INIT bit of the

activation frame vector is set when the instruction is initialized). After mapping

the data flow program into the operating memory and during program execution,

instructions can be in an initialized state (i.e. they are ready for being executed,

assuming that their operands are present), or the instructions are de-initialized (i.e.

the instructions were executed or they have been prepared for subsequent

initialization). Another condition of instruction executability is that the instruction

operands must be present. Unary instructions require only a single operand –

operand A – while binary instructions need operands A and B. The operand

presence requirement is indicated by the PA and BB bits of the activation frame

vector. If the operand is present, the RA and RB bits are set, respectively.

Acta Polytechnica Hungarica Vol. 10, No. 5, 2013

 – 75 –

An instruction is executable, if the following conditions are fulfilled: INIT is set,

RA = PA and RB = PB. The evaluation can be performed by a small logic circuit,

as stated in Figure 8.

PB)) (RBPA) ((RA INIT = Y (6)

Figure 8

A logic circuit for evaluating instruction executability

The Y signal is set if the instruction is executable. If more than one instruction is

executable at the same time, the memory evaluates the situation and selects

(utilizing the priority generator) a single executable activation frame with the

lowest memory address.

3.6 Reading the Activation Frame

Reading the activation frame in Compute mode is controlled by the operating

memory itself and there is no need to activate the address input of the memory

(A). The CL/ control signal is set to 0 and the WR/ signal is set to 1 during

activation frame reading. At any time during program execution, the data output

of the memory activation frame contains the activation frame vector of an

instruction that is executable immediately. After the execution of the instruction,

this frame is de-initialized and another frame is selected for execution.

Executability evaluation is performed on each activation frame in parallel via the

logic circuits described above. If more than one activation frame is executable

concurrently, the priority generator is used select the appropriate one.

Selecting the executable activation frame is very important for proper and

effective program execution in data flow computers. It requires a lot of time when

using traditional operating memories.

]M[A:DO) WR/ . CL/ (7)

L. Vokorokos et al .

 Innovative Operating Memory Architecture for Computers using the Data Driven Computation Model

 – 76 –

3.7 Data Flow Graph Initialization

Every time the data flow graph is executed, the data flow graph may be initialized.

The DGI input of the memory is set and the initialization operation is performed

in parallel on each activation frame vector stored in memory, by setting its INIT

bit. All operands stored in memory are removed. This operation may be used to

activate another iteration of the data flow graph execution, without the need for

data flow graph mapping.

1:](0)M[A) DGI . CL/ (8)

3.8 Data Flow Subgraph Initialization with Operands

Every time the data flow graph is executed, the data flow subgraph may be

initialized. The SGOI input of the memory is set and the subgraph colour

(DFGcolor) is indicated at the appropriate memory data input.

colorDFG:DI) SGOI . CL/ (9)

A logic circuit acting as a comparator connected to each activation frame

evaluates if the memory operation is valid for the given activation frame. If this

condition is fulfilled (YSGOI = 1), the activation frame is initialized and the

operands present are preserved. By this initialization, the subgraph is prepared for

another execution iteration.

1Y|L SGOISGOI (10)

3.9 Data Flow Subgraph Initialization without Operands

The initialization of the data flow subgraph can be performed by setting the SGI

memory input to 1. The subgraph colour is indicated at the appropriate data input

of the memory.

colorDFG:DI) SGI . CL/ (11)

The comparator, connected to each activation frame, checks if the memory

operation is valid for the given activation frame. If this condition is fulfilled (YSGI

= 1), the activation frame is initialised. Operands present are removed. Now, the

data flow subgraph is ready for another iteration of execution.

1Y|L SGISGI (12)

Acta Polytechnica Hungarica Vol. 10, No. 5, 2013

 – 77 –

3.10 Data Flow Graph De-Initialization

If the DGD memory input is set to 1, de-initialization is performed on each

activation frame vector stored in memory in parallel, by resetting their INIT bits.

All operands stored in memory are preserved. This operation may be used to

deactivate the data flow graph execution immediately, using the KG (Kill Graph)

instruction that is part of instruction set of the architecture.

0:](143)M[A) DGD . CL/ (13)

3.11 Data Flow Subgraph De-Initialization

Setting the SGD memory input to 1 indicates the de-initialization process of the

data flow subgraphs having the specific colour presented at the appropriate data

input of the memory. This operation may be used to deactivate the data flow

subgraph execution immediately, using the KSG (Kill SubGraph) instruction that

is part of instruction set of the architecture.

0:](143)M[A) SGD . CL/ (14)

The comparator connected to the activation frame checks if the operation is valid

for the given activation frame. If this condition is fulfilled, the activation frame is

de-initialized by resetting the INIT bit, while the operands present are preserved.

The data flow subgraph is now ready for another initialization.

1Y|L SGDSGD (15)

Conclusions

The presented data flow computer architecture with tiled organization of

processing elements is the result of the research performed at the Department of

Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Slovakia. Within the present research, we propose

a memory with activation frame store functionality based on Ternary Content

Addressable Memory (TCAM), which behaves as conventional RAM in Load

Mode and CAM in Compute Mode and is capable of executing operations specific

for the proposed data flow computer architecture. This memory represents an

innovative approach to the construction of data flow computers; in future research

it may serve as a basis to solve problems of data flow computers that limit their

field use.

Acknowledgements

This work was supported by the Slovak Research and Development Agency under

contract No. APVV-0008-10. The project is being implemented at the Department

L. Vokorokos et al .

 Innovative Operating Memory Architecture for Computers using the Data Driven Computation Model

 – 78 –

of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Slovakia.

References

[1] Gy. Györök, M. Makó, J. Lakner: „Combinatorics at Electronic Circuit

Realization in FPAA“, In: Acta Polytechnica Hungarica. Vol. 6, No. 1

(2009), pp. 151-160, ISSN 1785-8860

[2] B. Grot, J. Hestness, S. W. Keckler, O. Mutlu: „Express Cube Technologies

for On-Chip Interconnects“, Proceedings of the 15
th

 International

Symposium on High-Performance Computer Architecture, February 14-18,

2009, Raleigh, North Carolina

[3] J. Kopják, J. Kovács: „Timed Cooperative Multitask for Tiny Real-

Timeembedded Systems“, IEEE 10
th

 Jubilee International Symposium on

Applied Machine Intelligence and Informatics (SAMI 2012) Herl'any,

Slovakia, 2012, pp. 377-382

[4] J., B. Dennis, R. P. Misunas: „A Preliminary Architecture for a Basic Data

Flow Processor“, Proceedings of the 2
nd

 Annual Symposium on Computer

architectures., 1974

[5] A. Veen: “Dataflow Machine Architecture”, ACM Computing Surveys,

December 1986, pp. 365-396

[6] P. Fanfara, E. Danková, M. Dufala: “Usage of Asymmetric Encryption

Algorithms to Enhance the Security of Sensitive Data in Secure

Communication”, 2012. - 1 CD-ROM. In: SAMI 2012: 10
th

 IEEE Jubilee

International Symposium on Applied Machine Intelligence and Informatics

: proceedings : Herľany, Slovakia, January 26-28, 2012. - Budapest : IEEE,

2012 S. 213-217. - ISBN 978-1-4577-0195-5

[7] V. V. Vlassov, A. V. Kraynikov, B. A. Kurdikov: "A Data Flow Computer

System". In: Izvestiya LETI (Proceedings of Leningrad Electrotechn.Inst.),

St. Petersburg, Vol. 436, 1991, pp. 3-7

[8] L. Vokorokos: “Data Flow Computer Principles” (in Slovak), Copycenter,

spol. s.r.o., Košice, Slovakia, 2002. ISBN 80-7099-824-5

[9] A. Arvind, D. E. Culler: "The Tagged Token Dataflow Architecture

(preliminary version)".Tech. Rep. Laboratory for Computer Science, MIT,

Cambridge, MA, 1983

[10] T. Shimada, K. Hiraki, K. Nishida, S. Sekigughi: "Evaluation of a

Prototype Dataflow Processor of the SIGMA-1 for Scientific

Computations", In: Proc. 13
th

 Annual Symposium On Computer

Architecture, 1986, pp. 226-234

[11] N. Ádám: „Single Input Operators of the DF KPI System“, In: Acta

Polytechnica Hungarica. Vol. 7, No. 1 (2010), pp. 73-86, ISSN 1785-8860

Acta Polytechnica Hungarica Vol. 10, No. 5, 2013

 – 79 –

[12] E. Waingold et al.: “Baring it All to Software: RAW Machines”, IEEE

Computer, Sep. 1997, Technical Report, MIT Cambridge, Massachusetts,

USA

[13] Tilera Corporation: TILEPro64 Processor Product Brief, 2011

[14] Sriram Vangal, et al. "An 80-Tile Sub-100-W TeraFLOPS Processor in 65-

nm CMOS," l. IEEE Journal of Solid-State Circuits, Vol. 43, No. 1, Jan

2008

[15] V. P.Sirini, J. Thendean, S. Z.Ueng, J. M. Rabaey: “A Parallel DSP with

Memory and I/O Processors. In Proceedings SPIE Conference 3452, pp. 2-

13, 1998

[16] S. Swanson, K. Michelson, A. Schwerin, M. Oskin, “WaveScalar”, Proc. of

the 36
th

 International Symposium on Microarchitecture (MICRO-36 2003)

2003, pp. 291-302, ISBN 0-7695-2043-X

[17] Garnacki, J., J. a M. D. V,: MONARCH a High Performance Embedded

Processor Architecture with Two Native Computing Modes, in High

Performance Embedded Computing, 2002

[18] K. Mai, T. Paaske, J. Nuwan, R. Ho, W. Dally, M. Horowitz: “Smart

Memories: A Modular Reconfigurable Architecture”, ISCA 00, Vancouver,

British Columbia, Canada, ACM 1-58113-287-5/00/06-161

[19] L. Vokorkos, B. Madoš, A. Baláž, N. Ádám: „Architecture of Multi-Core

Computer with Data Driven Computation Model“, In: Acta Electrotechnica

et Informatica. Roč. 2010, č. 4 (2010), s. 20-23. - ISSN 1335-8243

[20] A. J. McAuley and P. Francis: "Fast Routing Table Lookup Using CAMs",

IEEE INFOCOM 1993, pp. 1382-1391, March 1993

[21] A. Efthymiou and J. D. Garside: "An Adaptive Serial-Parallel CAM

Architecture for Low-Power Cache Blocks", In Proc. of the ISLPED, pp.

136-141, 2002

[22] H. Miyatake, M. Tanaka, and Y. Mori: “A Design for High-Speed Low-

Power Cmos Fully Parallel Content-Addressable Memory Macros,” IEEE J.

Solid-State Circuits, Vol. 36, pp. 956-968, Jun. 2001

[23] I. Y.-L. Hsiao, D.-H. Wang, and C.-W. Je:, “Power Modelling and low-

Power Design of Content Addressable Memories,” in Proc. IEEE Int.

Symp. Circuits and Systems (IS- CAS), Vol. 4, May 2001, pp. 926-929

