
Acta Polytechnica Hungarica Vol. 10, No. 3, 2013

 – 37 –

Yet Another Attempt in User Authentication

Liberios Vokorokos, Adrián Pekár, Norbert Ádám

Department of Computers and Informatics, Faculty of Electrical Engineering and

Informatics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia

liberios.vokorokos@tuke.sk, adrian.pekar@tuke.sk, norbert.adam@tuke.sk

Peter Darányi

AT&T Global Network Services, Einsteinova 24, 851 01 Bratislava, Slovakia

peter.daranyi@tuke.sk

Abstract: This paper deals with the Encrypted Key Exchange (EKE) authentication method,

which offers an opportunity to log on to a server and to authenticate the user itself without

using a certificate or any direct transmission of the password. This makes the method an

interesting alternative solution, where at the end of the authentication process generated is

a key that can be further used for the needs of symmetric encryption. In the paper, an

implementation of a client-server application that uses EKE authentication method is

described. This application after a successful login process enables the user to transfer

files in encrypted form, while the encryption key is generated at the end of the

authentication process.

Keywords: authentication; Encrypted Key Exchange; Secure Password Exponential Key

Exchange; shared key (secret); password; symmetric key

1 Introduction

The expert community has dealt with the issue of user authentication during login

on to a server since the inception of the Internet [21]. The main goal is safe

authentication using some of the available methods, such as a password or

certificate. These methods must be durable to attacks whose purpose is to obtain

passwords or other sensitive data. With this information (user name, password,

other data, etc.) the attacker could pretend to be an authorized user and log in on a

server. This paper describes one of the newer methods, the Encrypted Key

Exchange [2], which combines symmetric and asymmetric cryptography. This fact

L. Vokorokos et al. Yet Another Attempt in User Authentication

 – 38 –

led us to implement this method in an application allowing the encrypted

transmission of files. At present, this method is not commonly available in any

commercial application, which also contributed to the attraction of this topic.

The first chapter contains a brief description of authentication protocols (methods)

using a password and their comparison. The second chapter includes a draft of the

implemented protocol. In the third chapter the implementation of the program

with a justification for the used implementation techniques is described. The last

chapter is devoted to the verification of outputs and to evaluation of solutions.

2 Authentication Protocols

Cryptographic authentication often relies on ownership of the key authenticated

by a party. Such a key usually has a length from approximately hundred bits to

several thousand bits, depending on the used algorithm and the desired security

level. Experience showed that people have difficulties remembering passwords

having seven or eight characters. When all uppercase and lowercase letters and

digits from 0 to 9 are used, a random eight-character password represents less than

48 bits of randomness. Therefore, we can conclude that even a short random key

for cryptographic algorithms cannot be reliably memorized by people.

Cryptographic keys are frequently stored in secure memory in computers or

special equipment, such as cryptographic servers or smart cards. However, there

are situations where this form of custody is inconvenient or expensive [12], [18].

For this reason, the capability to establish a secure connection that relies on short

passwords easily memorized by people is desired.

3 Comparison of Selected Authentication Methods

Protocols for the creation of the key are designed to be safe in situations where

participants share their password with only small entropy. At first glance it may

seem impossible to achieve a key using only a short password that would not be

vulnerable to brute force attack (a progressive scan of all the possibilities) to find

the password. This is probably the reason why the first protocols based on

passwords (password-based protocols) appeared only in 1989. Such first protocols

used the additional assumption that the client knows the server’s public key

without sharing password with the server. Later, Bellovin and Merritt presented a

class of protocols that had this additional assumption implemented [1].

The idea of Bellovin and Merritt, the Encrypted Key Exchange (EKE) protocol

[1], is that the initiator of the protocol chooses a single-shot public key and uses a

shared password to encrypt the key. The respondent decrypts the public key and

uses it to send a session (relational) key safely back to the initiator. Assuming that

Acta Polytechnica Hungarica Vol. 10, No. 3, 2013

 – 39 –

the public keys are always random strings, an attacker who is trying to

sequentially test all the passwords cannot distinguish which single-shot public key

was used. Further, even if the correct public key is found, it cannot be used to

discover the session (relational) key because from the public key it is impossible

to obtain the private key. There are many variations of the Bellovin Merritt EKE

protocol as well as many alternative protocols [2], [14], [16]. Recently, the

protocol was also expanded with proven security features. The original EKE

protocol does not specify the used encryption algorithm, which is how to convert

the password into the required key.

3.1 The Original Bellovin and Merritt’s EKE Protocol

EKE is closely related to the Diffie-Hellman key agreement, and its basic idea is

to transfer transient public keys, which were encrypted by a password as a shared

key. Only parties knowing the password are able to complete the transfer.

Parameters (shared password) and L (security parameter) are the shared

information. As in the basic Diffie-Hellman [4] exchange, the shared key (secret)

is , but the algorithm for obtaining the session key
 from is not specified. The protocol requires two exponentiations by both

parties, which is the same as in case of the basic Diffie-Hellman [4] key exchange.

In this exchange, as described in Protocol 1, first both sides agree on large prime

numbers, p, n, and an element, g (2 ≤ g ≤ p - 2), that generates a subgroup of large

order (public parameters). A chooses a random number, (public key), generates

 , encrypts it with and sends to B. Sharing the password, , B decrypts

the message to obtain the shared key (secret), generates , also generates

another random number, , for the session key, encrypts them and

sends to A.

A B

→

←

→

←

Protocol 1

The original Bellovin-Merritt EKE Protocol

L. Vokorokos et al. Yet Another Attempt in User Authentication

 – 40 –

A decrypts the message to obtain the shared key (secret), also generates a random

number for the session key and sends it to B. Assuming the final verification is

successful, both parties can calculate the true session key that will be used for all

future messages between A and B. [2], [14], [16]

3.2 The Secure Password Exponential Key Exchange Protocol

(SPEKE)

The SPEKE protocol was designed by Jablon [7], [8]. Although SPEKE, like

EKE, is based on the Diffie-Hellman exchange, the main difference between them

is in the password used to determine the base that is used in Diffie-Hellman

exchange [4]. Jablon introduced the basic and extended version of the SPEKE

protocol.

Prime p and group G are chosen in a way that

 will become a prime, and

G will have a degree of q. Password, ,is considered to be a number from

and then will surely lie in group G and has a degree of q (assuming that

is not equal to 1, -1 or 0). Value P is used as a generator of group G. [2]

Except this special way of defining the generator of the group, the protocol is

exactly the same as the basic Diffie-Hellman key exchange with key confirmation

[4]. The shared key (secret) is therefore .

The original version of SPEKE has no evidence of safety, but later MacKenzie

[11] introduced the proof of a slightly modified version. These changes are:

 P is defined to include the identities of A and B:
 The hashes used to form the session key include the identities of A and B,

the exchanged messages, and , the password, , as well as the shared

key (secret), :

 The exponents are chosen randomly:

The expanded version of the protocol, with the and verifiers defined in the

version proposed by MacKenzie [11], is described in Protocol 2.

The SPEKE protocol consists of two stages. The first one uses Diffie-Hellman [4]

to establish the shared secret (key) . Where SPEKE differs from DHEKE is

that, instead of the commonly used fixed primitive base g, it converts with

function P the password into a base for exponentiation. The rest of the first

stage is pure Diffie-Hellman, where parties A and B start out by choosing two

random numbers, and . A computes by function P message and sends it to

B. B computes by function P message and sends it to A. B also computes the

shared key . A also computes the shared key . [7]

In the second stage, both A and B confirm the knowledge of before using it as

session key . B sends with message a proof of (message) – which is

obtained by a strong one-way hash function – to A. A verifies that is correct

Acta Polytechnica Hungarica Vol. 10, No. 3, 2013

 – 41 –

and sends its proof of (message) – which is obtained by a strong one-way

hash function – to B. B verifies is correct. Assuming the verifications are

successful, the protocol is complete. [7]

A B

→

←

→

Protocol 2

Secure Password Exponential Key Exchange Protocol

In this case, shared information are as follows: subgroup G of group degree

, where p and q are primes; derived password , where is

interpreted as an element of ; security parameter L.

For security reasons of the implemented version, and thus the application, we

decided to implement the above-mentioned version of the SPEKE protocol.

4 Draft of the Implementation of Authentication

Procedures

Based on [17], the SPEKE protocol was implemented in a program for file

transmission. In this way, both possibilities offered by the protocol –

authentication and password generation, which will be subsequently used to

encrypt the transmitted files – will be used. The application is divided into two

parts: Into the Secure File Share (SFS) Server and Client programs.

L. Vokorokos et al. Yet Another Attempt in User Authentication

 – 42 –

SFS Server is a server program and SFS Client is a client program in the client-

server architecture. After start the server loads the basic settings from the settings

file (if it exists), which is saved in the directory where the program runs.

Otherwise, an error message appears. Next, the servers search the database for

data on previously added users. Then the servers begin to listen on a specified port

for user log in requests. Like the server, after the client starts, it loads the basic

settings from a settings file (if it exists), and then it tries to connect to the specified

IP addresses and port. After successful connection establishment and client login,

on the basis of the exchanged messages both parties generate a shared key. From

that moment on, until an explicit or automatic logging off, the client can transfer

files located in the shared directory of the server. Files transferred over the

network are encrypted.

For the implementation of cryptographic protocols, the Java programming

language was chosen as it supports very large numbers (several hundred bits),

hash functions and cryptographic protocols. In addition, for the widest possible

usage of the resulting program, Java is not platform (PC, Macintosh, etc.) or

operating system (Microsoft Windows, Linux, Mac OS X, etc.) dependent. Since

the protocol is implemented for the users logging in to the server, for the user

management a relational database is used, with which, on the basis of the above-

mentioned criteria, Java can communicate [15]. The database server is located on

the same computer as the SFS Server. The database contains only one single table

with fields of all necessary data about the users. For each user registered, there are

an identification number, name, password, and a flag indicating whether the user

has access to the server. Field ID is the primary key table. To avoid adding more

records with the same user, name entry is set as unique. For security reasons, the

file transfer was only implemented from the server to the client, which will

prevent a possible leakage of the key, followed by logging in of the attacker to the

server and transfer potentially dangerous files to the server.

As the symmetric cryptography protocol used to encrypt the transmitted file,

Advanced Encryption Standard (AES) protocol was used. AES encrypts by blocks

in length of 128 bits and supports key in lengths of 128, 192, and 256 bits. After

successful logging in using the SPEKE protocol, the client and server agree on the

key that can be used for symmetric cryptography. In order to generate a

sufficiently strong key and also to ensure security of the logging in to the server,

primes of at least 500 bits will be used. The agreed key length has approximately

the same length as the length of primes used in the protocol, which is certainly

greater than the length of keys supported by AES protocol. For this reason the key

for AES will be the first 128, 192, or 256 bits from the agreed key. In the Protocol,

a hash function is also used. In order to ensure the highest security, the SHA-512

function will be used.

Acta Polytechnica Hungarica Vol. 10, No. 3, 2013

 – 43 –

5 Communication Principles

The complete authentication process and activities performed by the individual

sides are described in Figure 1. After the initial initialization, the application starts

to listen on a port. If someone connects to this port, another thread starts. At the

beginning, the tread waits until the connecting side sends its user name. Then it

sequentially checks the following things to see whether the user can log in:

 First it checks whether the user is logged in with that user name.

o If the user is logged in the application sends an error message.

o If not, it checks if the user name is registered in the database.

 Next, if the user is not registered it sends an error message. If yes, the

application checks whether the user has not been banned on the server.

When the user has passed the final check he can proceed with logging in.

The next procedure of authentication and generation of a common symmetric key

is in conformity to the described SPEKE protocol in the previous chapter. If a

problem occurs during the client authentication, the server immediately terminates

the connection.

After successful logging in, the server sends the structure of the shared folder to

the client. Then, until the end of connection, the server waits for a request from

the client to resend the folder structure or for file transfer. Connection can be

terminated in three ways: the client logs out, the server terminates an inactive

connection after a timeout, or disconnection occurs due to network failure.

Upon termination of the connection the thread ends. In order to facilitate the work,

the application was extended with a graphical user interface. On the client side, all

communication (logging in, reloading the shared directory tree of the server, file

transfer) with the server is performed in separate threads. With this method it is

possible to save or load client settings, which consist of an IP address, server port

and a local directory in which the files are downloaded.

After successful login, the structure of the shared directory tree of the server is

accepted. When the user wants to transfer a file, a separate thread will start and as

parameters the data obtained during logging in process are used. That is the key by

which the file transfer will be encrypted. In case the connection is not successful,

the application displays an error message.

During file transmission, for each file the server first sends a message that

indicates the client wants to transfer a file. Pieces of the file are always transmitted

in a fixed size (by default 1024 B). Before file transmission, a check is performed

as to whether the file exists in the destination directory. If so, the user chooses

whether to overwrite it. The user can terminate file transfer at any time.

L. Vokorokos et al. Yet Another Attempt in User Authentication

 – 44 –

Figure 1

Authentication process

Acta Polytechnica Hungarica Vol. 10, No. 3, 2013

 – 45 –

6 Implementation of the Authentication Procedures

Due to the requirements mentioned in the draft section of this paper, we decided to

use the Java programming language. This language contains the Java

Cryptographic Extension (JCE) extension, by which it is possible to use common

cryptographic functions. The Java Virtual Machine (JVM) allows platform

independence.

Complying with [22], we chose MySQL as the database server. However, the

structure of the database tables is not difficult for administering except that for the

command line is also possible to use GUI tools such as MySQL Administrator.

Communication with the database server consists of several steps that define the

JDBC process.

Communication with the client consists of several parts. First, the message

exchange happens in conformity with the SPEKE protocol described in chapter

two. During this exchange, the client authenticates itself and a symmetric

cryptography key is also generated. After successful completion of this phase of

the program until the end of the connection, incoming requests from the client are

awaited. The client can request a file transfer or retransmission of the shared

directory tree structure of the server. However, if the client does not send the

request within a specific amount of time (15 minutes by default), the connection is

automatically terminated. During the process of authentication and symmetric key

generation, the BigInteger variable type is used. The problem with the variables of

the common Math class is that it works with ints and doubles types. These types

can hold only finite numbers and have limited precision. The BigInteger class can

hold arbitrarily large numbers.

At first, two primes, p and q, are required to satisfy the condition

. For

safety reasons it was decided to use a prime length of 500 bits. Since sending

unencrypted primes is a security risk and since the generation of two large primes

that meet a given condition may last for an indefinite but certainly long time, these

primes are statically assigned and are to be generated by generators of

cryptographically strong pseudo-random numbers.

A cryptographically strong pseudo-random number corresponds at least with the

test of the statistical random number generator specified in FIPS [6]. Furthermore,

SecureRandom must give non-deterministic output that is a cryptographically

strong sequence of numbers corresponding with the description in RFC 1750,

Randomness Recommendations for Security [5]. Non-deterministic output that is

a cryptographically strong sequence of numbers corresponds with the description

in [5]. In the following, a probable prime number, p, is generated. Then, the

variable q is saved as a number, which is the result of p subtracted by 1. Then, it is

divided by 2. Next, a new number, q, is calculated. This will continue until primes

p and q are generated, which satisfy the equality

.

L. Vokorokos et al. Yet Another Attempt in User Authentication

 – 46 –

During initialization it is necessary to establish communication channels through

which the process of authentication can be performed. I/O in Java is based on the

use of streams. Input data streams read data by bytes and write them by bytes on

the output. All classes for working with streams are based on abstract classes

InputStream and OutputStream. After creating the communication channels, user

authentication will be performed, which was described in the previous chapter.

The generation of the symmetric key consists of sub-

processes that are specific to each number (variable) of the key. After

authentication and generation of the symmetric key, an initial AES setup is done.

After successful authentication of the client and preparation of AES cipher, the

server starts to wait for requests from the client. The following steps were

described in the previous section. Before sending a file, first it is checked whether

the file exists and if not the client is informed. In the next step, pieces of the

transmitted file will be determined. Subsequently, the file size is sent to the client

to know how many bytes to expect. Sending the file itself is performed in a cycle.

After the end of file transfer, the input stream associated with the transferred file is

closed. Finally, it is checked whether the number of sent bytes is equal to file size.

7 Verifying the Implemented Method

Verification of the solution was divided into three parts: verification of the

functionality of the implementation of cryptographic functions; verification of the

behaviour of the application during occurrence of errors; verification of overall

functionality of both programs (SFS Server and Client). These verification

procedures will be the subject of interest in the following sections.

The application was also subjected to performance tests, which showed no

noticeable lags.

7.1 Verification of Functionality of the Implementation of

Cryptographic Functions

Verifying the functionality of the implementation of the cryptographic protocols

was performed in such a way that, instead of the generation of numbers, a

message fingerprint fixed assigned numbers were used, which were chosen not to

meet the conditions necessary to continue the process of authentication:

 change of properly generated number to a number -1, 0, or 1;

 change of the used password p;

 change of the messages from which the fingerprints were generated;

 use of different symmetric keys and initialization vectors during the

encryption;

 use of user name that was denied access.

Acta Polytechnica Hungarica Vol. 10, No. 3, 2013

 – 47 –

Each test resulted in positive results, i.e. the programs behaved in accordance with

expectations: as soon as the error was detected the authentication process and

consequently the network connection was terminated.

7.2 Verification of Behavior of the Application during

Occurrence of Errors

When verifying the behaviour of the programs during error occurrence, the below

errors were intentionally created:

 At the start of file transfer, the transmitted file was not in the shared

directory of the server;

 During transmission, the network connection was interrupted;

 The network connection was first interrupted for client inactivity, and

then the client sent a request;

 Files containing the settings were not in the directory where the program

was launched;

 Interrupting the connection between the SFS Server and the database.

7.3 Verification of the Overall Functionality of the Application

When verifying the overall functionality of both programs tested, we used the

situations that occur in normal use of the program without errors. The test results

were as follows:

 adding and dropping a user from the database, denying and guaranteeing

the access, and changing the password of an existing user was always

successful;

 user authorized to access was always able to log in;

 user without access was never able to log in and he was always

announced about the reason of the failure;

 the file was always transmitted successfully;

 in the Graphical User Interface the state of the component always reflect

the actual state of the program.

Conclusion and Future Work

In the fast developing world of the Internet, more and more data and services are

being published [9]. The number of services where client authentication is

required and secure transmission of data (such as eBanking) is needed are

increasing [10]. For this reason, it is necessary to improve authentication and

encryption mechanisms and increase their security [19], [3]. Most programs and

services that support secure data transfer use the Secure Shell (SSH) or Secure

Socket Layer (SSL) technologies. Programs SFS Server and SFS Client are using

a new approach, authentication with agreement on the symmetric cryptography.

L. Vokorokos et al. Yet Another Attempt in User Authentication

 – 48 –

During the subsequent transmission of encrypted data, the Encrypted Key

Exchange (EKE) – specifically the Secure Password Exponential Key Exchange

(SPEKE) – variant is used.

The advantage of EKE over commonly used applications is the fact that EKE is

less common, which means that the methods of attack on this scheme are not yet

known, in contrast with the methods of attack on commonly used methods, which

ensures less chance of a successful attack. This advantage, with extension of EKE,

will certainly become more pronounced. Another advantage of EKE is the fact

that certificates are not required to prove the credibility of the server or the client,

which eliminates the need for certificate generation and update.

The disadvantage of EKE against SSL and SSH is its lower versatility. Any

application using EKE scheme needs to directly implement it.

Our application was designed to implement the process of authentication using the

Secure Password Exponential Key Exchange (SPEKE) scheme as a login

mechanism on to a server with file sharing capability, which is transmitted

encrypted. Applications successfully meet these requirements. During tests it was

confirmed that the processes of authentication and encryption, as well as other

parts of the programs, are fully functional. Both programs were developed with

regard to portability to other platforms and operating systems.

Although the presented approach should seem unnecessary, actual research and

development in the field of secure file downloading mechanisms are leading to the

improvement of their abilities, security and flexibility. Our approach offers a

prototype of a secure file download system that implements a narrowly spread

encryption protocol. The fact that this protocol is not as widely spread makes the

system more unique within its application domain.

In the future, the interoperability between the system and the users will be

improved by the implementation of Web technologies. The advantage of this

implementation to the users is that Web applications do not need any installations

on the client side, so they can be run on any system with an appropriate and

compatible browser. As mentioned before, in our approach, certificates are not

required to prove the credibility of the server or the client. So Web technologies

will make the proposed system more flexible. This will also result in the

improvements in interoperability with existing systems and clients.

Future work should also be aimed at the enhancement of the security of stored

passwords and reduction of the risk that an attacker would obtain the password.

This could be done by storing only the password’s fingerprint

in the database, and not the entire password. Other functions by which the

applications could be extended are, for example: the generation of a new key for

each file transfer; more detailed information on the client side (file size);

management of the shared folder (adding, removal, renaming of files) directly in

SFS Server.

Acta Polytechnica Hungarica Vol. 10, No. 3, 2013

 – 49 –

Another task in the future is to extend the application by the ability to recognize

the count of a session for a given user. At present, more than one user can connect

to the server with the same login username and password.

Acknowledgement

This work was supported by the Slovak Research and Development Agency under

the contract No. APVV-0008-10 (50%). This work is also the result of the project

implementation Development of the Center of Information and Communication

Technologies for Knowledge Systems (project number: 26220120030) supported

by the Research & Development Operational Program funded by the ERDF

(50%).

References

[1] Bellovin, S. M, Merritt, M.: Encrypted Key Exchange: Password-based

Protocols Secure Against Dictionary Attacks. IEEE Symposium on

Research in Security and Privacy, 1992, pp. 72-84

[2] Boyd, C., Mathuria, A.: Protocols for Authentication and Key

Establishment. Springer, p. 300, 2003

[3] Fanfara, P., Danková, E., Dufala, M.: Usage of Asymmetric Encryption

Algorithms to Enhance the Security of Sensitive Data in Secure

Communication. SAMI 2012, Herľany, Slovakia, 2012, pp. 213-217

[4] Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE

Transactions on Information Theory, 1976

[5] Eastlake, D., Crocker, S., Schiller, J.: Randomness Recommendations for

Security. RFC 1750, 1994

[6] Federal Information Processing Standards Publication: Security

Requirements for Cryptographic Modules. Information Technology

Laboratory, National Institute of Standards and Technology, Gaithersburg,

MD 20899-8900, 2001

[7] Jablon, D.: Strong Password-Only Authenticated Key Exchange, ACM

Computer Communications Review, pp. 5-26, 1996

[8] Jablon, D.: Extended Password Protocols Immune to Dictionary Attack.

Proceedings of the Sixth Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises (WET-ICE '97) pp. 248-255,

1997

[9] Jakab, F. [et al.]: Rich Media Delivery. Computer Science and Technology

Research Survey (CST '2008), Košice, 2008, pp. 31-36

[10] Kopják, J., Kovács, J.: Timed Cooperative Multitask for Tiny Real-Time-

embedded Systems, IEEE 10
th

 Jubilee International Symposium on Applied

Machine Intelligence and Informatics (SAMI 2012) Herl'any, Slovakia,

2012, pp. 377-382

L. Vokorokos et al. Yet Another Attempt in User Authentication

 – 50 –

[11] Mackenzie, P.: On the Security of the SPEKE Password-authenticated Key

Exchange Protocol. Cryptology ePrint Archive, Report 2001/057, 2001

[12] Madoš, B., Baláž, A.: Data Flow Graph Mapping Techniques of Computer

Architecture with Data-driven Computation Model. SAMI 2011, Slovakia -

Budapešť, 2011, pp. 355-359

[13] Michalko, M.: Video Streaming in Wireless Networks Using Avismo

Concept, Journal of Information, Control and Management Systems, Vol.

9, No. 2, 2011, pp. 109-117

[14] Raymond, J., stiglic, A.: Security Issues in the Diffie-Hellman Key

Agreement Protocol. IEEE Trans. on Information Theory, pp. 1-17, 2000

[15] Roman, S.: Access Database Design & Programming. O’Reilly Media, 3
rd

edition, 2002, p. 448

[16] Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source

Code in C. Second Edition, Wiley, p. 758, 1996

[17] Szabó, CS., Slodičák, V.: Software Engineering Tasks Instrumentation by

Category Theory. SAMI 2011, Slovakia, 2011 pp. 195-199

[18] Tomasek, M.: Encoding Named Channels Communication by Behavioral

Schemes. Acta Polytechnica Hungarica, Vol. 8, No. 2, ISSN 1785-8860,

pp. 5-19, Budapest, 2011

[19] Vokorokos, L., Ádám, N., Baláž, A.: Application of Intrusion Detection

Systems in Distributed Computer Systems and Dynamic Networks. CST

2008, 2008, pp. 19-24

[20] Vokorokos, L., Baláž, A., Madoš, B.: Intrusion Detection Architecture

Utilizing Graphics Processors, Acta Informatica Pragensia, Vol. 1, No. 1,

2012, pp. 50-59

[21] Vokorokos, L., Kleinová, A., Látka, O.: Network Security on the Intrusion

Detection System Level. INES 2006, 2006, pp. 270-275

[22] Widenius, M., Axmark, D., Dubois, P.: Mysql Reference Manual, O'Reilly

& Associates, Inc. Sebastopol, CA, USA, 2002

