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Abstract: Fault detection problems in dynamic objects and their localization are a very 

critical and rather challenging tasks for many practical applications. The Kalman-filter 

technology is used for these purposes most often. The correct operation indicator of the 

specified filter is the innovation process to be represented as a normal uncorrelated 

stochastic process with zero mean value and a priori calculated covariation matrix, except 

the specified conditions, are violated in case of unforeseen perturbations. The aim of the 

presented work is to develop a method allowing to restore the normal performance of the 

Kalman filter in the presence of uncertain disturbances. This aim is attained by applying a 

special one-to-one transformation of the output equation of the testing system, as a result of 

it, the disturbance component is modified by the extrapolation equation of the state vector 

dynamic system. This feature will be used in the sequel when modified Kalman filter is 

applied to the transformed system. The properties of the obtained filter concerning the 

stability of estimation errors, their convergence, and optimality are discussed. The 

efficiency of the method has been verified by the method of statistical modeling on a test 

example of a third-order dynamic system. 

Keywords: states estimation; linear dynamic systems; Kalman filter; uncertain structure 

perturbations 

1 Introduction 

The fault detection problems in dynamic objects and their localization are relevant 

and rather difficult tasks for many practical applications [1-9]. IFAC 

SAFEPROCESS (Symposium on Fault Detection, Supervision and Safety for 

Technical Processes) defines a fault, at least, as the inadmissible deviation of one 
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feature or parameter from its rated value to have been regulated by the standard 

norms [10-11]. A performance impairment can happen in separate modules of a 

control subject, in the regulator subsystems, switching equipment, or in 

observations channels, etc. The FDIR system (Fault Detection, Isolation, and 

Reconfiguration) is defined as a design strategy of control systems to be capable 

to ensure continuously functional safety or operating capacity of a control subject 

at beginning of a fault by its timely detection and isolation (FDI) with a possibility 

of the subsequent reconfiguration of the control unit in response to fault influence. 

Usually, problems of fault detection and their localization are solved in two 

stages. On the first of them, it is necessary to make the binary decision from two 

mutually excluding alternative hypotheses "a system it is operational" - "the 

system is faulty". This stage is imperative for any functional diagnostics system. 

At the second stage, the place of fault emergence and its possible reason is 

defined. This stage, as a rule, is desirable, but isn’t regulated strictly [12].  

In general, this design strategy is geared to the introduction of the redundancy 

concept, both by a physical layer and an analytical level. 

The procedure of comparison of the duplicated signals created by the various 

hardware is the basis for the concept of physical redundancy introduction.  

For example, the same signal is observed by means of several sensors operating at 

different modes of operation. The standard practice implementing the hardware 

redundancy consists in the application of cross procedures of measuring channels 

cross-check, difference signals forming on the basis of a parity relations method, 

and further processing of the received signals by the corresponding methods, for 

example, using of Wavelet [41] or TP [42] transformations. 

Conversely, the concept of analytical redundancy actively uses a mathematical 

model of a system in aggregate with the special methods of estimation considering 

features of the FDI systems. This concept doesn’t assume installations of the 

additional hardware, and in this sense is preferable in comparison with the concept 

of introduction of hardware redundancy. Distinctly, the maximum effect can be 

gained by a combination of both concepts in the uniform integrated system. 

However, methods of introduction of analytical redundancy are more difficult as it 

is necessary to guarantee stability in relation to the operating noise, unknown 

perturbations and incomplete information about parameters of a mathematical 

model. 

So far the problem subject of FDI can be considered almost created. It found the 

reflection in the conventional classification of the existing methods, the published 

books, and periodical review articles. For example, the methods of analytical 

redundancy introduction can be separated into two major sub-classes. In the first 

of them the methods oriented to the application of quantitative models in an 

explicit form and based on are used: concepts of the parity relations [13-16]; full 

order observers or unknown input observers [17-20]; properties of the updated 

process created by a Kalman filter [21-24]; procedures of joint states estimation 
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and unknown parameters [25-26]; stochastic algorithms [27, 29]; optimization 

methods [28, 30]. The general property of the above-mentioned methods is the use 

of specified sections of the modern control theory for the purposes to form special 

signals in the FDI systems. The missing information, at the same time, is 

generated from the results of observations. 

In the second case, qualitative models on the basis of artificial intelligence 

methods using a mathematical apparatus of fuzzy logic [32] are applied; 

qualitative methods; the methods using knowledge bases; linguistic methods.  

For the analysis of fuzzy logic methods, we will consider a problem of difference 

signal forming. The difference signal, even in nominal conditions, is never equal 

to zero in accuracy. There is a lot of reasons for that: incomplete separation, 

nonlinearity, perturbations, noise, etc. Therefore, the main problem becomes to 

make a correct decision in the conditions of inadequate or incomplete information. 

As opposed to classical logic, fuzzy logic allows for making justified decisions, 

based on fuzzy knowledge, heuristic logic, and their combinations. Conceptually, 

signals processing by means of fuzzy logic consists of three stages. At the first 

stage, the difference signals are compared by means of special membership 

function. In most cases it has the triangular format. At the second stage, the 

smaller exit from two previous is selected. At the third stage, the procedure of 

center balance finding or another averaging method is used. It allows to resolve 

uncertainties and to lead to the probable correct decision. However, in this case, 

the major problem preventing of perspective technology implementation in 

practical applications is caused by the complexity of the training process. So, for 

example in [33, 34] used the basic principles of fuzzy logic for the solution of a 

difference signal estimation problem. The procedure of the weighed summing was 

made use of there instead of the categorical procedure of type "yes" - "no”. In this 

area, it is possible to find out more about the latest advances in works [35-37] and 

also in the recent review publications [3, 38] related to application aspects of FDI 

in the context of chemical and technology objects based on AI technology. 

In as much as formulation of the correct mathematical model of a control system 

is time-consuming method and complicated problem, many attempts to construct 

an acceptable qualitative diagnostic model on the basis of declarative knowledge 

of a system, for example, the pole analyzing of the variable, trend like "increase or 

decrease", a variable or a constant, etc. were made in due time. These concepts are 

the baseline of the qualitative method, and with their help, entirely possible, to 

construct the diagnostic system steadily in a sense. Moreover, comprehensive 

diagnostics of faults demands of, as a rule, different levels of prior information 

beginning from quantitative, analytical, heuristic, and finishing by expert level.  

It can be carried out on the basis of the expert systems functional diagnostics [39, 

40] by using the complex integrated solution. 

The submitted paper belongs to a subclass of the functional diagnostic methods be 

actively using in an explicit form quantitative mathematical model of a controlled 

system and relies on characteristics of the innovation process created by a Kalman 
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filter. In [43] the possibility of faults diagnostics, using well-known statistical 

methods of the likelihood ratio or the generalized likelihood ratio for testing of a 

difference signal for "whiteness", its mean square value and an error covariation 

matrix of prediction was attempted for the first time. A little later, in [44, 45] was 

offered the adaptive estimation algorithm constructed on the basis of model 

conditional Kalman filter bank (MMAE-a method). The difference signal 

characteristics of the MMAE method were in detail studied in work [46]. 

Applications of these methods to FDI problems in the flight control systems are 

known in [47, 48]. 

By today, in this direction, two concepts of estimation problems with present 

faults and perturbations were formulated. The first of them is based on the 

conception of state vector expansion at the cost of connecting to it the additional 

unknown input associated with the active faults and perturbations influence.  

At the same time, it is supposed that the mathematical model of an unknown input 

dynamics is a priori available, and the optimal solution of an estimation problem 

is guaranteed by an expanded Kalman filter (EKF). However, at a large number of 

the considered faults and perturbations, the dimensions of the filter will be much 

more the control system dimensions. In [49] it was offered, by the introduction of 

special UV-of transformation, the procedure of EKF separation into smaller 

dimension constituent parts working in parallel and independently. Further, the 

basic idea [47] was adapted to stochastic type of faults and perturbations [51, 52]. 

The main efforts of researchers in this direction are made for the search of the 

EKF approximation methods to combine acceptable estimation accuracy with the 

restrictions not too complicated in terms of practical applications [53, 54]. 

The basis of the alternative concept is the assumption of total absence of the prior 

information in regard to dynamic properties of unknown inputs. In [55] it was for 

the first time solved this problem for the purpose of the derivation of linear 

unbiased estimations with the minimum generalized variance by the introduction 

of the certain restrictions imposed on structure of the analyzed system. In [56-57] 

the results [55] were generalized having applied a parametrical approach to 

deduce of optimum estimations. Later in [59] the optimum filter with the 

minimum generalized variance considering a problem of degradation 

characteristics inherent in the filter [55] was offered. In [60, 61] solved a fault 

detection problem of fault detection and their localization by means of geometrical 

approach, creating at the same time difference signals with the directed properties. 

A specific feature above the proposed solutions is the complexity of the applied 

mathematical apparatus connected with the use of function spaces transformations 

of finite dimensions. It is to a certain extent by exposing to difficulties the 

practicing engineers as these sections of mathematics, often, remain outside to the 

standard training programs of the engineering profile specialists. Therefore, it is 

desirable to obtain a rather simple theoretical justification of the difference signal 

separation from the influence of uncertain disturbances, applying at the same time 

a mathematical apparatus of minimum acceptable level complexity. Unlike a 
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traditional way of the filter structure adaptation to the mathematical model 

structure the authors used a reduction way of the mathematical model to the 

equivalent form where the disturbance component is absent in an explicit form.  

It allowed for it to be limited to the application of the well-known (standard) form 

of Kalman filter guaranteeing the derivation of the estimate state convergence in 

more usual terms "an bounded input – an bounded exit". 

The following structure of the article is assumed: in Section 2 – the problem 

statement is formulated in the mathematical sense; in Section 3 – discusses a one-

to-one mathematical transformation of the output of the original system, designed 

to absorb disturbances in the output; the results of applying the Kalman method to 

the transformed system are discussed in Section 4 and the main properties of the 

offered filter in Section 5. In Section 6 the illustrative example of the third 

dynamic system order for the operability purpose demonstration of the offered 

method is given. Subsequent sections present the results of modeling, summarize 

the research results, and list the literature used. 

2 Problem Definition 

Let's consider a linear discrete stochastic system, a mathematical model that can 

be described in terms of state variables 

( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( );s sk k k k k k k k    s W s G u D d n  (1) 

( ) ( ) ( ) ( )yk k k k y H x n , (2) 

where ( ) nk s  – the current system state, ( ) mk y  – the output vector,  

( ) pk u  – exactly known control influence, ( ) qk d  – the indefinite structure 

perturbation, ( ) n

s k n  – the noise of a state variables, ( ) m

y k n  – the system 

output noise, W(k), G(k), Ds(k), H(k) –the known system matrices of the 

corresponding dimensions. The initial state (0) ns  represents a Gaussian 

random vector with mean value E{s(0)} and a positive definite covariation matrix 

P(0). Random sequences ns(k), ny(k) are independent white Gaussian noise 

uncorrelated with s(0), have zero mean values and limited covariation matrixes 

E{ns(k), ns
T
(k)} = Q(k) and E{ny(k), ny

T
(k)} = R(k), respectively. The listed 

assumptions coincide with those that are usually accepted in the classical theory of 

linear filtration without taking into account the matrix Ds(k) which is missing 

there. It is in the case under consideration supposed that perturbations d(k) have 

neither the probabilistic description nor even property of limitation from above. 

Otherwise stated, it is absolutely indefinite function. However, for the solvability 

of the problem, the following additional assumptions are introduced: 

– the sequence of matrixes H(k + 1) Ds(k) should be limited; 
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– q ≤ m i.e. the number of perturbations are no more than number of output 

sensors; 

– for all 0k , the smallest singular values of the matrix product H(k + 1) Ds(k) 

not less γ, where γ – is the set of positive numbers. The last two restrictions 

essentially mean that the matrix product H(k + 1) Ds(k) has a full rank in the 

columns, and they are necessary for the perturbation absorption procedure.  

The task is to develop a simplified method for estimating the state vector s(k), free 

from the influence of disturbances d(k), based on the availability of observation 

results y(k), a sequence of precisely known control actions u(k) and system 

matrixes W(k), G(k), Ds(k), H(k). In the theory of optimal linear filtration, the 

stability of the Kalman filter is guaranteed by the introduction of assumptions 

about the controllability and observability of the system under study [3]. Similar 

conditions will be formulated for the case under consideration after the procedure 

for absorbing the disturbances has been carried out. 

3 One-to-One Transformation System Exit 

In this section, a local goal is pursued, namely, the justification of the procedure 

for absorption of the component H(k + 1)Ds(k) in the equation of state of the 

system by introducing a supplementary transformation of the output equation so 

that later it becomes possible to use the standard Kalman filter. It, in turn, will 

promote the forming of states estimation errors free from the influence of 

perturbations, subject to the transformed exit. For the first time, the problem of a 

difference signal separation from influence of unknown perturbations was 

considered in [55], where the structure of a linear filter was determined by the 

equation 

               1
1 1 1k k k

k k kk k k k k


     
 

s W s L y H W s . (3) 

It is worthy of note that in this equation the component G(k)u(k) was not taken 

into account, since it is a precisely known quantity and is insignificant for the 

problem of optimal linear filter synthesis. For this case, the state vector estimation 

is equivalent to vector error estimation of filtering. The transfer matrix of the filter 

L(k + 1) was defined by minimization of an error covariation estimation matrix on 

condition that introduced restriction to be correct. 

( 1) ( 1) ( ) ( ) 0s sk k k k   L H D D . (4) 

This restriction guaranteed the lack of influence of a component Ds(k)d(k) on a 

state estimation error. The solution of the local optimization problem taking into 

account (4) led to a significant complication of the process of calculating the 

transfer matrix L(k + 1) compared to the classical Kalman filter, and it was not 
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entirely obvious how to analyze the stability of the synthesized filter. Therefore, in 

this article, the main attention is paid to the issue of disturbance absorption even 

before the filter design process and at the second stage, the modified Kalman filter 

option is applied to the transformed state equation (1) where the perturbation 

component Ds(k)d(k) are missing. 

Suppose there is some bounded matrix sequence ( ) n mk M  the specific type of 

which will be determined a little later. Then, relation (2) immediately implies 

( 1) ( 1) ( 1) ( 1) ( 1) 0yk k k k k         M y H s n . (5) 

Further we will add to each party of the equation (5) the equation (1) 

( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( 1) ( 1) ( 1) ( 1) ( 1) .

s s

y

k k k k k k k k

k k k k k

     

         

s W s G u D d n

M y H s n
 (6) 

After reducing such terms, we get an expression in which the equation for the 

output of participation no longer takes: 

( 1) ( 1)[ ( 1) ( ) ( ) ( ) ( ) ( )]

( 1) ( 1) ( 1) ( ) ( 1) ( 1),

s

s y

k k k k k k k k

k k k k k k

      

       

s Z W s G u D d

M y Z n M n
 (7) 

where ( 1) [ ( 1) ( 1)]nk k k   Z I M H . 

If the matrix sequence M(k + 1) is chosen so that in each instant of k restriction 

Z(k + 1) Ds(k) = 0 is carried out, then the equation (7) will take a form: 

( 1) 1( ) ( ) 1( ) ( ) ( 1) ( 1) ( ),k k k k k k k k      s W s G u M y w  (8) 

where 

1( ) ( 1) ( ); 1( ) ( 1) ( );k k k k k k W Z W G Z G

( ) ( 1) ( ) ( 1) ( 1)s yk k k k k   w Z n M n . 

In this case, the covariance matrix of the transformed state noise w(k) should be 

calculated on each computation cycle by the formula 

         1 ( 1) ( 1) 1 1T T Tk k k k k k k    Q Z Q Z M R M . (9) 

Turning to equation (8) it is easy to notice that now the disturbing effect  

Ds(k) d(k) is excluded from further transformations in an explicit form. At this 

stage, it is important that the perturbation is absorbed at the moment k + 1 instead 

of k an instant is important. The condition that the transmission matrix of the filter 

under consideration must satisfy M(k + 1) similar to that introduced in [12], 

namely Z(k + 1)Ds(k) = [In – M(k + 1)H(k + 1)]Ds(k) = 0. However, there is a 

significant difference here. Expression in square brackets provides more degrees 

of freedom in choosing the value of the matrix transmission coefficient M(k + 1) 

since it is not related to solving the minimization problem. This matrix can be 
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determined by solving the matrix equation M(k + 1)H(k + 1)Ds(k) = Ds(k). Since 

it is assumed that the assumption is valid that in the matrix product H(k + 1)Ds(k) 

the number of columns does not exceed the number of rows, this means that the 

solution for M(k + 1) must exist. In most practical applications, this inequality is 

satisfied. Taking this remark into account, we obtain [5] 

       1 1s sk k k k


    M D H D , (10) 

where the symbol [∙]⋇ the pseudoinverse Moore-Penrose matrix is denoted [63]. 

4 Result of the Kalman Filter Method Application 

Returning to the transformed state model (8), it is easy to see that state vectors 

s(k), an entrance u(k), and an exit y(k) remained the same. Thus, the original 

model (1) and the modified (8) are essentially equivalent, since they describe the 

same system, and the component M(k + 1) y(k + 1) can be interpreted as a new 

known input. In this case, there are no formal obstacles to the application of the 

standard estimation procedure by the Kalman method, since the disturbance 

component Ds(k) d(k) is not present. Then, the application of the classical Kalman 

filter to the transformed model (8) 

( ) ( ) ( ) ( ),yk k k k y H x n  

( 1) 1( ) ( ) 1( ) ( ) ( 1) ( 1) ( ),k k k k k k k k      s W s G u M y w  

will generate in a recurrent form the following estimates of the states s⋇(k/k) and 

their covariation matrixes P(k/k) for all 0k , 

         1 1 1 1 ;Tk k
k kk k k  P W P W Q                                                             (11) 

       111 1 1 ;Tk
kk k k   

r
K P H P                                                            (12) 

              1 1 1 1 1 1 ;T Tk
kk E k k k k k       

r
P r r H P H R          (13) 

       1 1
1 1 1 ;k k

k kn k k 
      P I K H P                                                      (14) 

       11 1 1 * ;k
kk k k     r y H s                                                                (15) 

             1* 1 * 1 1 ;k k
k kk k k k k    s W s G u M y                                    (16) 

       1 1
1* * 1 1 .k k

k k k k 
    s s K r  (17) 
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    

   

0
0

0
0

* 0 ,

0 .

E



s s

P P
                                                                                             (18) 

where matrixes Z(k + 1), M(k + 1), W1(k), G1(k) have to be previously calculated 

according to formulas (7), (10), (8), respectively, with initial conditions (18). 

At the same time, it is necessary to emphasize that the offered filter differs from a 

normal Kalman filter a little. First, the distribution matrix of again entered control 

input is calculated (10) using a pseudoinverse concept, and secondly, more 

significantly, the covariation matrix of the generalized perturbation, being  

non-stationary, has to be updated in each computing cycle. In these repeated 

calculations there is the absorption perturbations procedure with indefinite 

structure in the implicit form. Besides, the seeming simplicity of the offered filter 

presents the additional problem in the form of generalized perturbation correlation 

components. Usually in practice, for simplicity of the estimation procedure 

neglect this correlation often. At the same time, the filter becomes quasi-optimal 

filter. 

5 Analysis of the Modified Kalman Filter Properties 

In order for the modified Kalman filter to be guaranteed to be stable, it is 

necessary to formulate two more constraints, in addition to those already given 

in the second section. Their essence is reduced to uniform full observability of 

the pair [W1(k), H(k)] and uniform full controllability of the pair {W1(k)[In –

 K(k)H(k)]Q
1/2

(k)}, defined using the Gram matrix. They differ somewhat 

from those accepted in the theory of linear Kalman filtration since this theory 

cannot be directly applied to the specific problem under consideration. 

Moving on to the discussion of the properties of the synthesized filter, the 

following should be noted: 

1) Data limitation. If the above-introduced assumptions are valid, then the 

recursively calculated matrices P(k + 1/k + 1) and P(k + 1/k), so and Pr(k + 1), 

K(k) are limited. In other words, this property guarantees the boundedness of all 

recurrent computations, excluding the estimates of the state vector. Due to the 

presence of white Gaussian noise, the state estimation errors, in principle, cannot 

be limited (11), (15) but the second point is limited – the covariance matrix of 

filtering errors. This property is important for applications where all calculations 

must be performed in real-time. 

2) Stability. At the made assumptions, dynamic errors of state estimates (17), (18) 

will only be exponentially stable, since in this case one of the main conditions of 

the Kalman filter theory is violated – the reversibility of the transition matrix of 

states W1(k). In fact, this matrix according to expression (8) is always singular. 
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However, if we introduce the notation for the estimation error of the state vector 

s∼(k/k) ≜ s∼(k) – s*(k/k) then the dynamics of estimation errors can be represented 

by the equation 

         

         

1
1 1 1 1

1 1 1 1 .

k k
k kn

n y

k k k

k k k k k


       

        

s I K H W s

I K H w K n
 (19) 

It is common knowledge that the convergence of estimation errors is defined only 

by the determined member of equation (19) which is characterized by the 

expression W1(k)[In – K(k + 1)H(k + 1)]. As calculations K(k + 1) are 

determined, then the stability of the dynamics of filtering errors is provided only 

by the assumptions made with respect to W1(k), H(k + 1), Q1(k). Therefore, these 

properties don’t affect the correlation processes w(k) and ny(k). More complete 

proof of the estimations convergence can be deduced using of Lyapunov functions 

or (and) having investigated at the same time stability of the Riccati solutions at a 

singular transfer matrix [60]. However, it goes beyond the objects set in this work. 

3) Optimality. It should be noted here that ignoring the correlation between 

processes w(k), ny(k) leads to the loss of optimality of the modified filter. 

However, as shown by further modeling, these losses are relatively small. Besides, 

it is not entirely obvious how one should take into account the correlation caused 

by the introduced transformation of the equation of the system's output, and this 

can be the subject of further research. 

6 Results of the Method Feasibility Testing 

As the illustrative example, untied any specific application, let's consider the 

continuous third-order dynamic system with transfer function [64] 

 
 
    2 2

1 1 2

1

2 1 1

out

in

U p
F p

U p T p T p T p


  

 

where matrixes T1, T2 – the time constants of the oscillatory and aperiodic links 

connected consistently, ξ  – the damping factor (1 < ξ < 0), p = (σ + jω) – the 

complex variable. As numerical values of the specified parameters we will choose 

T1 = 1, T2 = 4, ξ = 0,5. Let's convert this system in terms of a state variable.  

For this purpose we will use the method of direct programming [65] and will 

perform the following transformations: 

     
  

 
2 2

1 1 2

1

2 1 1
out in inU p F p U p U p

T p T p T p
  

  
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 

   

3

3 2 2 1 2

1 2 1 1 2 1 22 2

inр U p
.

р T T p T TT p T T



  


     
 

Let's enter new denotation 

 
 

   3 2 2 1 2

1 2 1 1 2 1 22 2

inU p
Е р .

р T T p T TT p T T       
 

We will solve the obtained relation relatively E(p) 

   
 

 
 

   
2

1 1 21 23 2 1

2 2 2 2

1 2 1 2 1 2 1

221 1
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T TTT T
Е р Е р р Е р p Е р p U p .

T T T T T T T T

  


   
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As state variables we will choose the integrators outputs and will make a 

functional diagram having the next parameters: 

 2

1 1 2

2

1 2

2T TT
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T T

        1 2

2

1 2

2 T T
b;

T T

      
2

1 2

1
с.

T T

 

 

Figure 1 

The function circuit of an illustrative system in terms of the state variables 

On the basis of the function circuit we make the equation system 

         

         

         

1 1 2 3

2 1 2 3

3 1 2 3

0 1 0 0

0 0 1 0

вх

вх

вх

s t s t s t s t u t ;

s t s t s t s t u t ;

s t c s t b s t a s t c u t .

       


       
         

 

Therefore, system matrixes in the absence of perturbations will be such: 

 
 
 
 

1

2

3

;

s t

t s t

s t

 
 

  
 
 

s    

0 1 0

0 0 1 ;t

c b a

 
 


 
    

W   

0

0 ;t

c

 
 


 
  

G   
1 0 0

.
0 0 1

t
 

  
 

H  

Under determining an observation matrix it was supposed that the structure of 

measuring means allows a possibility of states measurements s1(t) and s3(t).  
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The matrix of perturbations distribution was defined from the following 

conditions [66]. It was supposed that a perturbations source are changes of 

parameters a, b, c, and changes of matrixes W(t), G(t) we will provide linear 

approximations ∆W(t), ∆G(t), i.e 

                  ;s s int t t a t b t c t t c t u t      D d D s  

- when determining a matrix D
T

s (t)=[1 0 0]
T
 we will be limited to a case when 

changes of parameters influence a component s1(t). 

The system discrete equivalent was calculated by formulas [63]: 

         1 1
3 3; ;T

s sk k k k k            
W

W e G W W I G D W W I D  

At above preset values T1, T2, ξ  and ∆T = 4 system matrixes accept values 

 
5

;

0.4729  0.5765  0.6260

0.1565 0.3096 0.2060

0.0515 0.1010 0.0 21

k   

 

 
 


 

 

W  

0.5271

0.1565 

0

;

.0515

k

 
 


 
  

G  

3.2121

0.5271

0.1565]

s k 

 

 
 


 
 

D
 

Covariance matrices of noise processes ns(k), ny(k), took the values 

Q = 0.0025I(3); R = 0.0001I(2), respectively, and the mean values were assumed to 

be zero. The modeling process was carried out in the computing MATLAB 

environment according to formulas (11)-(18). The perturbations process was 

imitated by expression: 

 

 

 

 

0

40, 0;

4  0.2   .025*0,

60, 0

;

.

k d k

d k k d k

k d k

randn

 


  


 





  

The following values were taken as the initial conditions: s
T
(0) = [1; 0; – 1]

T
 

u(k) = 1; s
T*

(0/0) = [0; 0; 0]
T
; P(0/0) = I(3). Results of estimating the first two 

components of the state vector s1
*
(k/k), s2

*
(k/k) for system transient response and 

differential signal r(k) are shown in Fig. 2 a, b. 
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b) 

Figure 2 

Modeling results of states estimation process: a) standard Kalman filter; b) modified Kalman filter 

If the Kalman filter works correctly, then the difference process, called the 

updating process, is an uncorrelated Gaussian random process with a zero mean 

value and a covariance matrix recursively calculated by the formula [46]: 
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              1 1 1 1 1 1T Tk
kk E k k k k k       

r
P r r H P H R . (20) 

Matching charts r(k) located in the bottom line of Fig. 2, confirms the correct 

operation of only the modified Kalman filter, the estimates error are not affected 

by the appeared disturbance. Consequently, the problem of decoupling 

(decomposition) of the estimation process from disturbances with an indefinite 

structure is satisfactorily solved. 

Conclusions 

The problem of obtaining estimates of the states of linear dynamic systems, free 

from the influence of disturbances, the structure of which is not defined, is 

relevant for many of the applied research, including in the field of functional 

diagnostics. 

Unlike the traditional way based on an adaptation of the filter structure to the 

model set structure of, authors solved a problem by modification of the model set 

model to an equivalent form where the perturbations component in an explicit 

form is absent. It allowed for being limited to the application of one of Kalman 

filter forms guaranteeing convergence of states estimations. 

In comparison with other known design methods, the proposed method is natural 

and simple, and the conditions for the existence of a solution are easily verified. 

Considerations are presented regarding the guarantee of the properties of the 

obtained solution: stability, boundedness and optimality. Since the issues under 

consideration have not yet found sufficient coverage in the periodicals, there is 

reason to believe that the presented results introduce an element of novelty into 

the research topics related to obtaining estimates of the dynamical systems states 

that are indifferent to disturbances of an indefinite structure. 
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