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Abstract: In this paper, a systematic procedure for identifying the dynamics of industrial 
robots is presented. Since joint friction can be highly nonlinearwith time varying 
characteristics in the low speed region,a simple and yet effective scheme has been used to 
identify the boundary velocity that separates this “dynamic” friction region from its static 
region. The robot’s dynamic model is then identified in this static region, where the 
nonlinnear friction model is reduced to the linear-in-parameter form. To overcome the 
drawbacks of the least squares estimator, which does not take in any constraints, a 
nonlinear optimization problem is formulated to guarantee the physical feasibility of the 
identified parameters. The proposed procedure has been demonstrated on the first four 
links of the Mitsubishi PA10 manipulator, an improved dynamic model was obtained and 
the the effectiveness of the proposed identification procedure is demonstrated. 

Keywords: Dynamic Modeling, Model Identification, Friction Models, Model-based 
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1 Introduction 

The robot’s dynamic model is required in the implementation of most advanced 
model-based control schemes. The dynamic model is crucial because it can be 
used to linearize the nonlinear system in both joint space [1] and task space [2]. 
Since the robot’s dynamic parameters are normally not available for industrial 
manipulators, proper procedures should be carried out to identify these 
parameters. 

One way to identify the dynamic parameters is to dismantle the robot and measure 
link by link [3]. However, it is obvious that this approach is not always feasible in 
practice. Another problem with the dismantling approach is that it does not 
account for the effects of joint friction. 
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In order to account for joint frictions, several methods were proposed. These 
methods can be roughly divided into two groups: to identify joint friction and rigid 
body dynamics separately [4] or to identify joint friction and rigid body dynamics 
simultaneously [5-7].The former first identifies the friction parameters for each 
joint and then continues to identify the rigid body dynamic parameters using the 
identified friction parameters. Since friction parameters are identified joint by 
joint, nonlinear dynamic friction models such as Stribeck and/or hysteresis effects 
can be considered [8].The main drawback of this method comes from the fact that 
friction can be much time-varying [7]. Moreover, friction forces/torques are 
always coupled to the inertial forces/torques, thus, one cannot be precisely 
identified without the other. It is also argued that it is more tedious to identify 
friction parameters and rigid body dynamic parameters separately. 

From the literature, more researchers adopt the latter method, i.e. to identify joint 
frictions and the rigid body dynamics at the same time [5-7]. It is worth noting that 
the robot’s dynamic model (excluded joint frictions) can be linearized w.r.t to its 
parameters. Thus, many proposed identification methods was accomplished based 
on the assumption that joint frictions can be modeled in a linear-in-parameter 
form. However, this linearity is not valid for velocities. At slow velocities, the 
friction parameters exhibit some dynamics, and we refer to this region as the 
“dynamic” region of friction. When velocities exceed a threshold velocity, the 
friction parameters become “static” and the friction is now linear in the parameter 
form. We therefore refer to this region as the “static or linear” regiion. The use of 
the linear friction model outside this linear region can lead to significant errors on 
the identified parameters as demonstrated in [9]. In this paper, a simple and 
effective scheme which has been introduced in our previous work [9] will be used 
to identify the threhshold velocity that separates the joint friction into dyanimic 
(and nonlinear) and static (and linear in parameter) regions regions. The robot 
dynamic model is then identitied only in the linear region, thus more accurate 
dynamic parameters are obtained. 

Since the robot’s dynamic model is linear w.r.t its parameters, these dynamic 
parameters can be identified using the well-known least-squares estimator. Note 
that not all ten inertial parameters of each robot’s link can be identified due to the 
raltive configuration of the links of the robot. It is therefore necessary to 
reduce/simplify the robot model to ensure that the observation matrix of the least-
square estimator has full rank [10]. This problem can be solved  either 
symbolically [10] or numerically [11]. 

Since the measured torques are normally noisier than the measured position, a 
proper trajectory should be designed to ensure the robustness of the identified 
results [12]. To guarantee the robustness of the estimation process, several 
criterions have been proposed in the literature such as maximizing the determinant 
or minimizing the condition number of the observation matrix [6]. Note that all the 
above criteria result in solving a nonlinear constrained optimization problem. The 
results from this optimization problem are the so-called exciting/optimal trajectory 
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that can guarantee the excitation of all the parameters to be identified. Because of 
the complexity of the dynamic model, genetic algorithm (GA) is used in this paper 
to find out the above optimal trajectory. 

It is worth pointing out that the above exciting trajectory can only account for the 
uncertainties of the measured torque. In practice, uncertainties can also occur in 
the motion data (i.e. joint position, velocity and acceleration). Moreover, due to 
the fact that most industrial manipulators do not come with velocity and 
acceleration sensor, thus, these information are normally obtained through 
numerical differentiation of the joint position measurements. As a result, the 
quality of the observation matrix of the least square estimator can be significantly 
degraded. A direct consequence of this observation is that the results from the 
least square estimator can deviated from its true value. Since no constraints are 
imposed on the least-squares technique, it is possible for the least-squares 
estimator to produce results which are physically impossible [13-14]. Although 
there are other methods to cope with uncertainties on the observation matrix such 
as the maximum likelihood method [15], most of them do not consider the 
physical feasibilty of the identified parameters as an important criteria. Noting that 
a physically non-feasible dynamic model cannot be used in model-based control 
because this model can result in a non-possitive definite inertial matrix, thus, 
destabilize the closed loop control system. One promising solution for this 
problem is to use constrained optimization tools to adjust the least-squares result 
[16]. However, this method requires the initial guess of the virtual parameters 
which are not always available in practice. 

Although there is a vast amount of results on the dynamic identification topics in 
the literature, a systematic procedure which includes all the above considerations 
is still missing. Thus, the aim of this paper is to present a systemantic procedure 
for identifying the robot’s dynamic model. This dynamic model can then be used 
in advanced model-based controllers. 

2 Rigid Body Modeling and Identification 

2.1 Rigid Body Modeling 

It is well known that the dynamic model of an n-degree-of-freedom (n-DOF) serial 
manipulator can be expressed in the following analytical form: 

( ) ( , ) ( ) fricM q q C q q G q+ + +Γ = Γ  (1) 

where: 
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- , ,q q q  are n by 1 vectors of joint acceleration, velocity and position, 
respectively. 

- ( ), ( , ), ( )M q C q q G q are the inertial matrix, Coriolis-Centrifugal and gravity 
vector in joint space. 

- fricΓ is an n by 1 vector of joint friction and Γ is a n by 1 vector of force/torque 
at each joint. 

For identification purpose, the above equation is re-written in the linear form: 

( , , , ) fricW q q q DH h + Γ = Γ  (2) 

Here, DH is the kinematic parameters from the Denavit-Hartenberg parameters 
and h  is a 10n x 1 vector of the inertial parameters: 

[ ], , , , , , , , , T
i i i i i i i i i i ih XX XY XZ YY YZ ZZ mX mY mZ m=  (3) 

[ ]1 ... T
nh h h=  (4) 

where ( ), , , , ,i i i i i iXX XY XZ YY YZ ZZ  are the inertial tensor of link i, 

( ), , ,i i i imX mY mZ m  are the first moments and the link mass. Noting that, here, we 
only focus on the inertial parameters of the links. The rotor inertias of motors are 
assumed to be known because these values are normally available from the motor 
specs. From (2), it is clear that if joint friction model are linear w.r.t its 
parameters, the problem of identifying the dynamic model is a linear problem. In 
the next section, condition for which the linear-in-parameter friction model is 
valid will be derived. 

2.2 Nonlinear Friction Model and Boundary Velocity 

Although joint frictions is complicated in reality, simple model, which is the 
combination of viscous and Coulomb friction, is normally used to describe the 
friction phenomenon for all joint(s): 

_ ( )fric i ci i vi iF sign q F qΓ = +  (5) 

where where ciF  and viF  are Coulomb and viscous friction coefficients of joint i 
respectively. However, this assumption can lead to a significant degradation of the 
accuracy of the identified parameters. One solution for this problem is to make use 
of the boundary velocity where the nonlinear and linear friction are separated as 
discussed in [9]. By analyzing the velocity-torque map, one should be able to 
identify the boundary velocity for each joint. 

The following part briefly describes the step-by-step procedures for obtaining the: 
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- Step 1: re-mount the manipulator in such a way that the gravity has no 
effect on the joint of interest. Apply a sinusoidal torque to the joint. 
Notice that the frequency and magnitude of this signal have to be chosen 
in such a way that the result joint motion is within the joint limit and the 
motion also excites the dynamic friction. During this step, 1:( , , , )i Nq q q τ =  
is recorded ( N  is the number of recorded points). Since only one joint is 
excited at the time, the equation of motion of the system is: 

( )C VIq F sign q F q τ+ + =  (6) 

where , ,C VI F F are the lumped inertia, Coulumb and viscous friction 
coefficients of the joint of interest. If (6) can describe the friction model 
at joints, , ,C VI F F  can be resolved from the following linear system: 

1 1 1 1( )
... ... ... ...

( )
C

M M M V M

q sign q q I
F

q sign q q F

τ

τ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (7) 

where M N≤ is the number of data points which are used for the 
identification. 

- Step 2: slowly increasing thresq  from 0 to max( )iq . Solve (7) for the 
parameters of the dynamic model using only the data points for which 

i thresq q> . The parameters of the dynamic model should be constant. By 

analyzing the convergence of the inertial parameter Î , one can 
experimentally find out the region in which the linear friction model is 
held. Based on this result, we can actually reconstruct the joint velocity 
vs. friction torque plot (or friction map). For instance, Figure 1a shows 
the convergence of Î  w.r.t thresq , Figure 1b shows the friction map of the 
first joint of the PA10 manipulator. 

     
Figure 1 

(a) thresq  vs. Î , (b) q  vs. frictionτ of the first joint of the PA10 manipulator 
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- Step 3: The experiment is then repeated for the rest of the joints. The 
resulting thresq will be used as constraints in designing the exciting 
trajectory (as presented in the next section). 

In summary, if joint velocity is outside the range ( ),thres thresq q− , joint friction can 
be modeled as a combination of Coulomb and viscous friction (Eq. 5). By 
incorporating (2) and (5), the robot dynamic model can be rewritten as: 

( , , , )c cW q q q DH h = Γ  (8) 

where ,c cW h  are the combinations of inertial parameters and friction coefficients: 

1,: 1 1
1

1
,:

( ) ... 0 0
... ... ... ... ... ... ,

0 0 ... ( )
...

c
c c

v
n n n

h
W sign q q

F
W h

F
W sign q q

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

 (9) 

It is worth noting that equation (9) indicates that in order to re-solve for ch , 

cW matrix has to be full rank. It is well-known that not all the inertial parameters 
contribute to the dynamic behaviour of the robot [1, 10, 17]; thus, a set of 
identifiable parameters (the so-called base parameters [10]) should be deduced 
from h . For instance, the original dynamic parameters of the 7-DOF Mitsubishi 
PA10 manipulator h  has 70 parameters but the final identified dynamics of the 
manipulator is reduced into 18 lumped-parameters [14]. The final form of the 
dynamic model becomes: 

b bW h = Γ  (10) 

where bh is comprised of the base parameters and linear friction model. 
Theoretically, by resolving (10), one can accurately estimate the inertial 
parameters bh  provided that the observation matrix bW  and the joint torque Γ can 
be accurately obtained. In practice, these assumptions are always violated. As a 
result, the identification experiment should be designed in such a way that the 
results from the least-square estimator are robust w.r.t to the noise. This 
observation leads to the discussion in the next section: the design of the exciting 
trajectory. 

2.3 Exciting Trajectory 

In order to estimate bh  from (10), { }( , , ) ,b b i
W q q q Γ  need to be acquired through the 

identification experiment. By stacking the matrix together, the observation matrix 
can be formed as follows: 
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1 1

... , ...
b b

o o

bN bN

W
W

W

Γ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= Γ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Γ⎣ ⎦ ⎣ ⎦

 (11) 

Theoretically, as long as the determinant of the observation matrix oW , which 
depends on the exciting trajectory which has been used in the identification 
experiment, is non-zero, the unknown parameters bh  can be estimated by the well-
known least-squares/weighted least-square estimator: 

( ) 1ˆ T T
b o o o oh W W W τ

−
=  (12a) 

However, if the measured torques are corrupted by noise, a constraint should be 
imposed on the experiment trajectory to ensure the robustness of the identified 
results. Physically, finding this constraint is equivalent to finding an optimal 
trajectory that can excite most the identified parameters. Several criteria have been 
proposed in literature [18]. In this paper, minimizing the condition number and 
maximizing the smallest singular value of the observation matrix oW  as in [6] is 
adopted. Moreover, if the information on the noise is available, weighted least-
square can be used: 

( ) 1ˆ T T
b o o o oh W RW W Rτ

−
=  (12b) 

where R  is the inverse of the covariance noise matrix [19]. 

Notice that, because we want to minimize the effect of the non-linear friction on 
the identified result(s), only the data points which have velocities above a 
threshold/boundary value (from the previous section) are considered. This differs 
from other researchers which normally take into account all data points along the 
optimum trajectory. Since the optimum trajectory will be executed on the 
manipulator, parameterizing the optimum trajectory is also an important step. Two 
most common type(s) are the quintic polynomial trajectory [6] and periodic 
trajectory [20]. The former is suitable for most of industrial manipulator(s) which 
only accepts simple velocity command while the later targets the open-architecture 
controller which allows user to program an arbitrary trajectory. In this paper, 
periodic trajectory, which can be parameterized as a sum of finite Fourier series 
(13), is adopted because of their advantages in terms of signal processing [21]: 

0
1

( ) sin( ) cos( )
N

i i il f il f
l

q t q a w lt b w lt
=

= + −∑  (13a) 

1

( ) cos( ) sin( )
N

i il f f il f f
l

q t a w l w lt b w l w lt
=

= +∑  (13b) 
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( ) ( )2 2

1

( ) sin( ) cos( )
N

i il f f il f f
l

q t a w l w lt b w l w lt
=

= − +∑  (13c) 

where fw is the fundamental frequency of the excitation trajectories and should 

be carefully chosen not to excite the un-modeled dynamics of the manipulator. 
The problem of finding the optimal trajectory becomes determining the 
coefficients 0( , , )i i

i k kq a b  in order to minimize the following cost function: 

1 2
0

1( ( )) ( )
( )i c

c

f q t cond W
W

λ λ
σ

= +  (14) 

where the scalar 1λ and 2λ  represent the relative weights between the condition 
number of the observation matrix: ( )ccond W  and its minimum singular value: 

0 ( )cWσ  [6]. Note that the above problem is a constrained optimization problem 
because physical limits of joint position, velocity and acceleration have to be 
considered. As can be seen from (9) and (10), the cost function is nonlinear and 
discontinuous e.g. the sign function in (9). This can make the optimization process 
become significantly difficult. In practice, one can avoid the discontinuity by 
replacing the ( )isign q  function in (9) with an approximated continuous function 
such as ( )iatan cq . The extra coefficient c  is used to adjust the steepness of the 
slope when q approaches zero. Due to the complexity of the problem, a good 
initial guess for this optimization is hard to achieve. Thus, a genetic algorithm 
(GA) is used to solve the above optimization problem. 

Once the optimization has been solved, the optimum trajectories ( )iq t  for all joints 
are obtained. The manipulator will be commanded to follow this optimal trajectory 
by any available controller. For instance, an independent joint control scheme 
which includes a high-gain PID controller at each joint was used in our 
experiment. The responses of the robot along the trajectories will be recorded. It is 
worth noting that the collected data should be pre-processed as suggested in [20] 
in order to improve the data quality before using them to estimate the dynamic 
parameter. A brief description is as follows: 

- Firstly, the joint position data can be filtered by a low-pass filter with an 
appropriate cut-off frequency which depends on the choice of the 
fundamental frequency fw  in (13). This is reasonable because the 
frequency components in the optimal trajectory from previous section are 
already predefined in the design state. 

- If joint velocity and acceleration are not available due to the lack of joint 
sensors, this information can be obtained through a numerical 
differentiation. However, since the exciting trajectory are designed in the 
form of (13), a linear least square fit (15) can be performed to estimate 
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the coefficients 0( , , )i il ilq a b of the actual optimal trajectory (i.e. the actual 
motion of the robot) as suggested in [15]: 

0

1 1 1 1

1

( 0) 1 sin( 0) cos( 0) ... ...
( ) 1 sin( ) cos( ) ... ...

( )
... ... ... ... ... ...

( ) 1 sin( ) cos( ) ... ... ...

i f f i

i f f i
i

i

i f f f f f

q t w w q
q t t w t w t a

q t
b

q t T w T w T

= −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (15) 

As a result, joint velocity and acceleration can be obtained by substituting 
these coefficients into Equations (13b) and (13c). 

Note that the above method should only be used if the independent joint control 
scheme is able to control the manipulator to closely follow the optimal trajectory. 
The reason is because the above approach totally ignores all the frequentcy 
components that are not in the form of (13) in the observation matrix (the left-
hand side of (10)). However, the measured torques (the right-hand side of (10)) 
are indepedently filtered, thus, it is possible that the information on two-side of 
equation (10) is not consistent. 

2.4 Parameter Estimation 

Although the unknown inertial parameters can be estimated by a least-square 
technique as in (12), there will be a potential problem on the identified results, the 
so-called physical feasibility of the results [13]. One promising solution for this 
problem is to use constrained optimization tools to adjust the least-squares result 
[16]. By doing this, the physical meaning of the identified parameters can be 
guaranteed by imposing appropriate constraints on the estimator. The physically 
feasible characteristic is especially useful for advanced control because it implies 
that the mass matrix ( )M q  in (1) is always positive definite. 

Motivated by the idea of virtual parameters [13], a constrained optimization is 
used in order to find the unknown inertial parameters. The input vector X  to the 
optimization problem is: 

[ ]70 1 1 1 ... ... T
c vX h F F×=  (16) 

where h  is the standard dynamic parameters of links as in (3). Constraints on the 
parameters h  will be imposed in order to make sure that the result will always 
physically feasible. Based on this input, the base parameters vector bh  is 
calculated. This base parameters vector is then compared to the least-squares 
solution b̂h  from (12). The cost function for this constrained optimization is 
constructed as: 
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( )1 2min o b o b cCF W X X hα τ α= − + −  (17) 

Here, the two scalars 1 2,α α  define how believable the least-squares solution is. 
Clearly the result of the above non-linear optimization problem will give us a set 
of physically feasible parameters which also minimizes the error between the 
measured and predicted torque. 

Since the purpose of this paper is to demonstrate a step-by-step procedures for 
identifying the dynamic model of industrial robots, the above procedures is 
applied for the first four link of the PA10 manipulator. The results from the 
identification process has been verified by comparing the reconstructed torques 
and the measured torques for an arbitrary joint space trajectory. In addition, the 
identified model has been tested in a conventional computed-torque controller. A 
singificant improvement in terms of  tracking errors was obtained which also 
shows the usefulness of the identified model. 

3 Case Study – The Mitsubishi PA10 Manipulator 

3.1 Experimental Testbed 

To validate the proposed identification method, the 
identification procedures were applied to the first four links 
of the Mitsubishi PA10 manipulator. A custom controller has 
been used instead of the original controller in order to achieve 
a critical real-time performance. Seven custom amplifiers are 
installed together with an 8-axis motion controller card. A PC 
which is running the QNX 6.3 operating system is used to 
control the manipulator as depicted in Figure 2. 

 
Figure 2 

Experimental test bed 

As mentioned above, the following steps were carried out in order to identify the 
dynamic model: 

1 Derive the rigid dynamic model of the robot as in (9) and (10). Noting that 
the Coriolis-Centrifugal and gravity term is included in this model. Gravity 
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terms can only be set to zero when robot joints are considered separately as 
in Section 2.2. 

2 Identify the boundary velocity thresq  in which the dynamic friction model 
becomes linear for each joint (see Table 1 for the experimental results). 

Table 1 
Boundary velocity for the first four links of the PA10 

Joint ( / )thresq rad s  

1 0.25 
2 0.27 
3 0.3 
4 0.6 

3 Carry out the optimum exciting trajectory as in Section 2.3. By making use 
of the Matlab Genetic Algorithm (GA) Toolbox, the optimum trajectory 
was found with the minimum condition number around 65. 

4 Execute the optimum trajectory on the PA10; obtain the joint motion and 
joint torque data. Note that because the PA10 manipulator does not have 
joint torque sensor, the joint torques are obtained by measuring the motor 
currents. An independent joint control scheme is used at each joint to make 
the joints follow the reference/optimal trajectory. 

5 The inertial parameters are estimated using the method as in Section 2.4. 
The equivalent virtual parameters as in (16) and (17) are shown in Table 2. 
Note that these parameters were obtained with the constraint ( ), 0

i
m I > to 

make sure the physical feasibility of the identified results. 

Table 2 
Virtual parameters X  (15) that minimize the cost function (16) 
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3.2 Model Verification 

3.2.1 Torque Reconstruction 

As noted in Section 2.2, the result of the above identification process is the 
parameter b̂h  which is the combination of the base parameters and joint friction 
coefficients. Since the base parameters are lump from the link inertias h , it is 
impossible to directly check the correctness of the identified parameters. Instead, 
the identified model is verified by comparing the reconstructed torques, which are 
generated from the identified model, and the measured torques, which are the 
actual joint torques that are used to control the manipulator. Since the major 
difference between the approach in this paper and others is the use of the boundary 
velocity, it is necessary to check whether the identified parameters using the 
boundary velocity has any advantages. To this end, two sets of data have been 
used to identify b̂h . The first set (set A) only includes the data points which 
have thresq q>  while the second set (set B) includes all the experimental points. In 
the case of the PA10 manipulator, the number of data points in set A is about 30% 
of the number of data points in set B. Figure 3 shows the measured torques vs. the 
re-constructed torques of joint 1-4 for an arbitrary and different trajectory in joint 
space. Motion data ( , , )q q q  and joint torque (namely “measured torque”) was 
recorded. The “re-constructed torque” is then computed as (10). In Figure 3, red 
represents the measured torque (MT), blue represents the re-constructed torque 
using ˆB

bh  (RTall ˆB
b bW h= ) and green represents the re-constructed torque using ˆA

bh  

(RTthres ˆA
b bW h= ). Noting that the time scale for the x-axis is time 10 (ms). 

 
a) Joint 1 
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b) Joint 2 

 
c) Joint 3 

 
d) Joint 4 

Figure 3 
Measured torque vs. Re-constructed torque 
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The root-mean-square (RMS) errors between the measured torque and re-
constructed torque are shown in Table 3. 

Table 3 
RMS errors between the measured and re-constructed torque 

Joint RT(thres): Set A RT(all): Set B 
1 4.1 3.9 
2 5.9 7.1 
3 1.5 2.1 
4 3.7 5.8 

Theoretically, one should expect the quality of the identified parameter ˆA
bh  using 

set A is worse than the one using set B ˆB
bh  because there are more data in set B. 

However, as can be seen in Table 2, an opposite result was obtained. The RMS 
errors in the first case (set A) are smaller than the second case (set B) for most of 
the joints. This observation implies that the extra data points in set B contribute 
negatively to the accuracy of the identified result ˆB

bh in low velocity regions [9]. 

3.2.2 Computed Torque Control 

Since the purpose of the identification process in this paper is to obtain a model 
that  can be used in advanced model based control schemes, the identified model 
has been further tested in another experiment as descrbed below: 

1 All the joint(s) of the manipulator is commanded to follow a sinusoidal 
trajectory (amplitude: 30 degree, period = 4s). 

2 Two controller schemes were implemented: 
a) Independent joint control: no dynamic information was used to 

compensate for the inertial effects. This control scheme is widely 
adopted in most industrial manipulator controller because of its 
simplicity. 

b) Dynamic control: the identified dynamic parameters were used. A 
standard joint space computed control was implemented. The 
identified dynamic model was used to decouple the dynamic 
behavior among the axes. Notice that the feed-forward frictions i.e. 
the compensated frictions are computed based on the desired joint 
velocities. 

The tracking errors for the first four joints are shown in Figure 4: blue represents 
the joint tracking errors using the indepedent joint control scheme, red represents 
the joint tracking errors using the dynamic control. 
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Figure 4 

Joint tracking error comparison between kinematic and dynamic control (left to right, top to bottom: 
joint 1 to 4) 

It is clear that there is a significant improvement in term of the tracking error for 
joint 1, 2 and 4. The tracking error for joint 3 is not as much different as others. 
One explaination that has been pointed out in [9] is because of the structure of the 
PA10 that makes the inertial effects at joint 1, 2, 4 are much easier to be excited 
than the rest of the joints. As a result, the quality of the identified parameters 
which contribute to the joint torque of joint 3 are poorer. This observation implies 
that further constraints need to be imposed on the optimum trajectories in order to 
excite the dynamic effects from different joints evenly. 

It is worth pointing that the above identified dynamic model was obtained in the 
high speed region. Consequently, it is neccessary to see how good the identified 
model in the low speed region is. In order to check the performance of the 
identified parameters in the low speed region, the above experiment has been 
redone with the period of the desired trajectory incresed from 4 s to 40 s. Tracking 
errors are shown in Figure 5 (blue: indepedent joint control scheme, red: dynamic 
control). 
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Figure 5 

Joint tracking error (low speed) comparison between kinematic and dynamic control (left to right, top 
to bottom: joint 1 to 4) 

As is seen, the differences between the model based control and non-model based 
control are no longer significant as in the previous case. One possible explaination 
is that the inertial effects of the dynamic model has been dominated by joint 
frictions at low speed region. As a result, the control performance will mainly 
depend on how joint frictions are compensated in this region. 

Conclusions 

We have presented a systematic procedure for identification the dynamic model of 
robot manipulator(s). Two main considerations has been addressed through the 
process. Firstly, the validity of the most commonly used joint friction model, the 
combination of viscous and Coulomb friction, was considered. Secondly, the 
problem of the so-called physical feasibility of the identified parameters has been 
mentioned. Instead of using the standard linear least-square estimator, a 
constrained optimization problem was used to obtain the identified parameters. 
The proposed approach has been implemented on the first four links of the 
Mitsubishi PA10 manipulator. The correctness of the identified dynamic model 
was verified by comparing the reconstructed torques from the identified model 
and the measured torques from each joint. Furthermore, the usefulness of the 
identified parameters has also been justified by incorporating the identified 
dynamic model to the conventional computed-torque control scheme. Significant 
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improvement in terms of the joint tracking errors was obtained in comparison to 
the one using non-model control scheme in the high speed region. In the low 
speed region, however, this observation is no longer true. Thus, a different model 
should be used to describe the dynamic behavior of the manipulator in this region. 
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