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Abstract: This paper discusses that the selection and modification of the input and the 
transformation space, of the Tensor Product (TP) model representation, of a given quasi–
Linear Parameter Varying (qLPV) state‐space model, has an influence on the feasibility 
regions of the Linear Matrix Inequality (LMI) based control design techniques. Moreover, 
three factors affect the feasibility regions of the LMI-based control design: 
The manipulation of the position of vertices 
The number of the inputs of the TS fuzzy model representation 
Modifying the transformation space 
The proof is based on a complex control design example, where the impact of the above 
factors can be clearly demonstrated. Furthermore, the paper presents that the maximal and 
minimal parameter space of the controller depends on factors (i) and (ii). The aim of the 
feasibility test is to show that there exists a solution for LMIs or not, considering these 
factors. The example is based on the academic Translational Oscillator with Rotational 
Actuator (TORA) system. Then, the TP model transformation-based framework is used to 
vary the input space of the TP model representation. In addition, the paper gives a very 
decisive conclusion that the design technique may be sensitive for the input space of the TS 
fuzzy model, hence it is necessary to consider the number of inputs, the transformation space 
and the gains defined on the inputs when a TP model is generated to achieve the best solution 
to the control purposes. All in all, this paper investigates the effect of input space 
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modification of the TP model representation of a given qLPV state-space model on the 
feasibility regions of LMI-based controller design methods. 

Keywords: TP model transformation; LMI-based controller; input space; transformation 
space; qLPV model 

1 Introduction 
Three factors influence the feasibility regions of LMIs: 

(i) The number and the non-linearity of the inputs 
(ii) The manipulation of the position of vertices 
(iii) Variations of the transformation space 

The proof is based on a state feedback control design example, where these factors 
can be clearly detected. Accordingly, the TP model transformation is applied to 
generate various alternative TP models to represent the qLPV models. These 
alternatives have different number of inputs. Furthermore, different nonlinear gains 
are defined on these inputs to decrease the rank of the TP model. As a consequence, 
different controllers are resulted to the given qLPV model using the same Parallel 
Distributed Compensation (PDC) based LMI design technique, since different TP 
model representations have been used. This leads to a question that which one of 
the resulted controllers is the best one. This results in a very significant point that 
the design technique is sensitive to the TP model input space. Therefore, it is 
necessary to consider the number of inputs, the transformation space and the gains 
defined on the inputs when a TP model is generated to achieve the best solution to 
our purposes. Although it sounds quite obvious, most of the papers about TP model-
based control design, do not consider this fact. Without checking the proposed 
method on various alternative TP models, we cannot conclude if the design method 
is efficient essentially or not. 

Previous investigations on the topic of TP model transformation focuses on internal 
parameters, such as the number of antecedents and consequent fuzzy sets. On the 
other hand, the current article focuses on the external parameters, the number of 
inputs and their non-linearity. The present paper examines that the TP model may 
have different input space and transformation space. The suggested extension is 
capable of varying the number of inputs and decreasing the non-linearity and 
transforming the input dimensions. 

The effect of the vertices of the TP model representation was examined in paper [1] 
via the NATA model of the three degrees of freedom Aeroelastic Wing Section, 
where the feasibility regions of the LMI-based controller design was influenced by 
the factors: manipulating of the position of vertices, the size and complexity of the 
model. Paper [2] examines the statement, that the convex hull of the TP model 
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representation has influence on the feasibility of LMI based control design. Present 
paper shows the feasibility regions if the transformation space is changed. 

1.1 The Novel Contribution of this Paper 
In the current paper, the following system is represented by the qLPV form; the 
academic TORA system. The controller design method includes the TP model 
transformation-based design framework. This paper investigates a methodical 
manipulation of the TP model representation complexity via changing the input and 
the transformation space. Furthermore, it is presented how the feasibility regions of 
the LMI based design change. 

1.2 Preliminaries and Related Literature 
The TP model transformation was developed in [3] to derive multi-level TP model 
structures. In addition, the Singular Value Decomposition (SVD) based method is 
applied to decrease a given fuzzy rule set in [4] [5]. Further details, adaption, steps 
and extensions of the TP model transformation can be found in books [6] [7] and 
papers [8] [9]. 

Paper [10] presents the TP model transformation of the TORA system in the control 
of a nonlinear benchmark problem, where the stability analysis is executed via LMI-
based controller design method in PDC framework. Thus, the global asymptotic 
stabilization of the TORA system is executed. Therefore, it can be seen that the 
control design can easily be implemented. Otherwise, LMIs can give the optimal 
solution of the global asymptotic stabilization. Furthermore, the convex 
optimization via LMI-based design method can be solved rapidly. 

Paper [11] shows the state-variable feedback control design of the 2DoF model of 
NATA Wing Section via TP model transformation and LMI based controller design 
method. The aim is to derive an observer for the Wing Section to estimate the non-
measurable state values, then the output feedback control is designed using the 
LMI-based technique. The TP transformation is resulted in a tight convex hull.  
In case of observer design, the tight convex hull does not lead to feasible LMI.  
In report [12], stabilizing the 3DoF model of NATA is presented via asymptotic 
stability, decay rate and constraint of the control signal. Furthermore, the convex 
hull manipulation is investigated. 

Paper [1] presents that the vertices have influence on the feasibility regions of LMI-
based control design technique via the 3DoF model of Aeroelastic Wing (NATA). 
Furthermore, there are two factors influencing the feasibility regions: position of 
the vertices, size and complexity of the TP model representation. Moreover, the 
CNO type weighting functions are investigated from the perspective of convex hull 
manipulation. This has influences on the feasibility of LMI-based solutions. Paper 
[2] shows that the convex hull of the TP model transformation has effect on the 
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feasibility of LMI based stability representation. The investigation is achieved via 
different convex hulls. 

The novel control approaches of the TP model transformation were published in 
[14] [25-28]. Varying the input space of the TS fuzzy model is introduced in paper 
[14]. 

For additional important applications can be found in [15-38]. Most recent results 
are published in [8] [13] [14] [22-24] [39-54]. 

1.3 Structure of the Paper 
The paper is structured as follows: Section 2 defines the notation and definitions of 
the TP model transformation used in this paper. The proposed extension is 
represented in Section 3 through the statements and proofs. Section 4 presents the 
applied methods, for instance varying the input space, the transformation space and 
adapting LMI-based controller design. Furthermore, the TP transformation of the 
TORA system the applied weighting functions are presented in Section 5. Section 
6 deals with the feasibility analysis for TORA system. The globally asymptotic 
stabilization of this nonlinear system is introduced in Section 7. And finally, in 
Section 8 conclusions are presented. 

2 Notations and Definitions 
In this section the notations and definitions are presented that used in current paper. 
For detailed definitions, see paper [14]. 

• Indices: 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 are the upper bounds of the indices e.g., 𝑖𝑖 = 1,2, … , 𝐼𝐼 and 𝑗𝑗 =
1,2, … , 𝐽𝐽 and 𝑘𝑘 = 1,2, … ,𝐾𝐾 or 𝑖𝑖𝑛𝑛 = 1,2, … , 𝐼𝐼𝑛𝑛, where 𝑛𝑛 = 1,2, …𝑁𝑁 and 𝐼𝐼, 𝐽𝐽,𝐾𝐾 
are the number of the vertices 

• Scalar: 𝑎𝑎 ∈ ℝ 

• Vector: 𝐚𝐚 ∈ ℝ𝐼𝐼 contains elements 𝑎𝑎𝑖𝑖 ∈ ℝ 

• Matrix: 𝐚𝐚 ∈ ℝ𝐼𝐼×𝐽𝐽 contains elements 𝑎𝑎𝑖𝑖,𝑗𝑗 ∈ ℝ 

• Tensor: 𝒶𝒶 ∈ ℝ𝐼𝐼×𝐽𝐽×𝐾𝐾×… has elements 𝑎𝑎𝑖𝑖,𝑗𝑗,𝑘𝑘,… ∈ ℝ 

• Interval: 𝜔𝜔 ⊂ ℝ is bounded as 𝜔𝜔 = [𝜔𝜔𝑚𝑚𝑖𝑖𝑛𝑛,𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚] 

• ℝ𝐼𝐼𝑁𝑁 is brief notation of ℝ𝐼𝐼1×𝐼𝐼2×…×𝐼𝐼𝑁𝑁. For instance, ℝ𝐼𝐼𝑁𝑁×𝑂𝑂𝐾𝐾 denotes 
ℝ𝐼𝐼1×𝐼𝐼2×…×𝐼𝐼𝑁𝑁×𝑂𝑂1×𝑂𝑂2×…×𝑂𝑂𝐾𝐾 

• System matrix 𝐒𝐒(𝐩𝐩) is determined with parameter 𝐩𝐩 = 𝐩𝐩(𝑡𝑡) ∈ Ω 
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• Transformation space Ω = [𝜔𝜔1,𝜔𝜔1] × [𝜔𝜔2,𝜔𝜔2] ×. . .× [𝜔𝜔𝑛𝑛,𝜔𝜔𝑛𝑛] ⊂ ℝ𝑛𝑛 denotes 
a closed hypercube, hence the TP model representation is interpretable only in 
this space 

• Weighting functions 𝑤𝑤𝑛𝑛 = 𝑤𝑤𝑛𝑛(𝐩𝐩(𝑡𝑡)) 

• CNO: Close to Normalized membership function, that means its largest value 
is 1 or close to 1 

• X-type weighting functions: Varying the input space with reduction of non-
linearity results less complex weighting functions, see in Fig. 1, where 
𝑤𝑤𝑛𝑛(𝐩𝐩𝐧𝐧(𝑡𝑡)) are illustrated for 𝑛𝑛 dimensions 

Figure 1 
X-type weighting functions 

• System matrix 𝐒𝐒(𝐩𝐩(𝑡𝑡)) is the parameter (𝑝𝑝) dependent matrix of qLPV 
representation 

• 𝐱𝐱(𝑡𝑡) ∈ ℝ𝑛𝑛 is the state vector, 𝐮𝐮(𝑡𝑡) ∈ ℝ𝑚𝑚 is the input vector, 𝐲𝐲(𝑡𝑡) ∈ ℝ𝑞𝑞 is the 
output vector and 𝐀𝐀𝑖𝑖(𝑡𝑡) ∈ ℝ𝑛𝑛×𝑛𝑛, 𝐁𝐁𝑖𝑖(𝑡𝑡) ∈ ℝ𝑛𝑛×𝑚𝑚 

Definition 1: TP structure. Tensors can be given as a tensor product such as 

𝒮𝒮 = ℬ ⊠
𝑛𝑛=1

𝑁𝑁
𝐔𝐔𝑛𝑛  (1) 

where ℬ ∈ ℝ𝐼𝐼𝑁𝑁×𝑂𝑂𝐾𝐾 termed as core tensor and 𝐔𝐔𝑛𝑛 ∈ ℝ𝑀𝑀𝑛𝑛×𝐼𝐼𝑛𝑛 are the weighting 
matrices. 

Definition 2:  TP model. The TP model is a continuous variant of the TP structure. 
Here, instead of weighting vectors the weighting functions are as follow: 

𝒮𝒮(𝐩𝐩) = ℬ ⊠
𝑛𝑛=1

𝑁𝑁
[𝑤𝑤𝑛𝑛,1(𝑝𝑝𝑛𝑛) 𝑤𝑤𝑛𝑛,2(𝑝𝑝𝑛𝑛) … 𝑤𝑤𝑛𝑛,𝐼𝐼𝑛𝑛(𝑝𝑝𝑛𝑛)]  (2) 

that is  𝒮𝒮(𝐩𝐩) = ℬ ⊠
𝑛𝑛=1

𝑁𝑁
𝐰𝐰𝑛𝑛(𝑝𝑝𝑛𝑛)   (3) 



A. Wéber et al. Extending the Input and Transformation Space of Different TP Models:  
 an LMI-based Feasibility Analysis 

‒ 262 ‒ 

where the vector of the weighting function is 𝐰𝐰𝑛𝑛(𝑝𝑝𝑛𝑛) =
[𝑤𝑤𝑛𝑛,1(𝑝𝑝𝑛𝑛) 𝑤𝑤𝑛𝑛,2(𝑝𝑝𝑛𝑛) … 𝑤𝑤𝑛𝑛,𝐼𝐼𝑛𝑛(𝑝𝑝𝑛𝑛)] ∈ ℝ𝐼𝐼𝑛𝑛 and 𝒮𝒮(𝐩𝐩) ∈ ℝ𝑂𝑂𝐾𝐾, 𝐩𝐩 ∈ ℝ𝑁𝑁 and core 
tensor ℬ ∈ ℝ𝐼𝐼𝑁𝑁×𝑂𝑂𝐾𝐾 contains the vertices 𝓈𝓈𝑖𝑖1,𝑖𝑖2,…,𝑖𝑖𝑁𝑁 ∈ ℝ

𝑂𝑂𝐾𝐾. 

To understand the basic steps of varying the input space, it is necessary to view 
paper [14], that presents the hyper rectangular grid and the difference between TS 
fuzzy model and TP model in detail. 

3 Statements and Proofs 
Present section explains the statements about the TP model representation of a given 
qLPV model and the feasibility regions influencing the LMI-based controller design 
method. Furthermore, it is shown how the behavior of the LMI-based control is 
changed via modifying the transformation space Ω to Ω𝑚𝑚𝑖𝑖𝑛𝑛 and Ω𝑚𝑚𝑚𝑚𝑚𝑚 and via 
selecting the input space. Control design of TP models of the academic TORA 
system is executed by LMI. The statements are as follows: 

Statement 1. Varying the input space and the non-linearity of inputs of the TP 
model has influence on the feasibility of the LMI-based design. Hence, the 
complexity of the model is reduced, but the controllers are different in each 
example. The proof is based on that the position of the vertices is modified 
(see in paper [14]). 
Statement 2. It is possible to modify the transformation space Ω provided that 
the LMI is still feasible. Thus, it is shown how the behaviour of the LMI-based 
controller changes. Changing the transformation space does not always result 
in a feasible solution for LMI. 
Statement 3. Decreasing the non-linearity through varying the input space and 
changing the transformation space results in increasing feasibility regions. 

The proofs are based on a complex control design example of nonlinear dynamic 
qLPV system. The investigations follow these key points: 

1) Control design and all investigations are executed on the nonlinear models. 

2) Selecting the input space is based on the non-linearity of the model 
examples. These non-linearities belong to the original state-space 
representation of qLPV models. The aim is to reduce or remove these non-
linearities of the different TP models of TORA system. 

3) Modification of the transformation space is based on the fact, that LMI is 
influenced by many factors. These modifications belong to the original 
transformation spaces of the TP models. 

Hence, the proofs show through the statements, which TP model results the better 
controller depending on varying the input and transformation space. 
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4 Applied Methods 
In this section, the applied methods are presented. Manipulation of the input space 
is a new extension of the TP model transformation, that is discussed in paper [14]. 
The input space can be changed in such a way that the new inputs are functions. 
Thereby, the suggested method can reduce or remove the non-linearity from the TP 
models. However, paper [14] does not include the analysis of transformation space, 
so this is a novel contribution of the current investigations. 

4.1 How to Vary the Input Space of the TP Model 
Transformation 

Consider the qLPV state-space representation: 

��̇�𝐱(𝑡𝑡)
𝐲𝐲(𝑡𝑡)� = 𝐒𝐒(𝐩𝐩(𝑡𝑡)) �𝐱𝐱(𝑡𝑡)

𝐮𝐮(𝑡𝑡)�  (4) 

where 𝐱𝐱(𝑡𝑡), 𝐮𝐮(𝑡𝑡) and 𝐲𝐲(𝑡𝑡) are the state, input and output vectors, 𝐒𝐒(𝐩𝐩(𝑡𝑡)) is the 
system matrix respectively. Thus, the aim is to control this system by reducing non-
linearity. 

The first step is to determine the Higher Order Singular Value Decomposition 
(HOSVD) based canonical form for the above qLPV model [6]. The model is based 
on the number of inputs and the position of the vertices. Furthermore, the LMI based 
control design requires a convex TP model structure of the system matrix 𝐒𝐒(𝐩𝐩(𝑡𝑡)). 
In the present paper, the examples follow the current TP based model structure: 

��̇�𝐱𝐲𝐲� = �𝒮𝒮 ⊠
𝑛𝑛=1

𝑁𝑁
𝐰𝐰𝑛𝑛(𝑝𝑝𝑛𝑛)� �𝐱𝐱𝐮𝐮�  (5) 

Paper [14] shows more detailed research about the new extension of the TP model 
transformation. Therefore, this extension is capable to transform an alternative input 
space. Hence, consider the following function: 

𝒮𝒮(𝐩𝐩) ∈ ℝ𝑂𝑂𝐾𝐾 , 𝐩𝐩 ∈ Ω𝑝𝑝 ⊂ ℝ𝑁𝑁  (6) 

then the TP model transformation for all 𝐩𝐩 is: 

𝒮𝒮(𝐩𝐩) = 𝒮𝒮 ⊠
𝑛𝑛=1

𝑁𝑁
𝐰𝐰𝑛𝑛(𝑝𝑝𝑛𝑛)  (7) 

The alternative input space is 𝐛𝐛 ∈ Ω𝑏𝑏 ⊂ ℝ𝑀𝑀, where the relation between 𝐩𝐩 and 𝐛𝐛 is 
defined. Thus, the expected result for all 𝐩𝐩 is: 

𝒮𝒮(𝐩𝐩) = 𝒯𝒯(𝐛𝐛) = 𝒜𝒜 ⊠
𝑚𝑚=1

𝑀𝑀
𝐯𝐯𝑚𝑚(𝑏𝑏𝑚𝑚)  (8) 

where the input space 𝐩𝐩 ∈ Ω𝑝𝑝 is replaced by 𝐛𝐛 ∈ Ω𝑏𝑏, 𝒜𝒜 is the core tenzor and 𝐯𝐯𝑚𝑚 
is the weighting function. For more detailed presentation see in paper [14]. 



A. Wéber et al. Extending the Input and Transformation Space of Different TP Models:  
 an LMI-based Feasibility Analysis 

‒ 264 ‒ 

4.2 Modification of the Transformation Space 
In addition to vary the input space, present paper focuses on the investigations of 
extended transformation space. Ω is determined by a hyper-rectangular space, 
where the weighting functions are defined. Thus, the TP model representation is 
interpretable only in this space, see [6]. Moreover, for the examination, the 
transformation space to Ω𝑚𝑚𝑖𝑖𝑛𝑛 and Ω𝑚𝑚𝑚𝑚𝑚𝑚 is extended. These steps influence the 
feasibility of the LMI-based controller design method.  

Current investigation is based on paper [14]. Thus, the values of the applied 
transformation spaces Ω for each TP models are the same, as in paper [14]. In the 
present paper, it is proved that varying the transformation space is possible if the 
LMI is feasible. 

5 TP Model Transformation of TORA 
In this section, the academic TORA system is investigated which was a key example 
to test the first variants of TP model transformation [6]. 

Previous research through this example [18] presented that TP model 
transformation and LMI-based control design approach can readily be 
accomplished independently of the given problem. Therefore, no analytical 
derivation is required, thus the controller designing is less time consuming. Those 
analyses focused primarily on the shape of the fuzzy antecedent sets, hence the 
convex hull defined by the vertices, and the number of fuzzy rules. 

In the present section, we focus on the number of inputs as well as in [14]. In this 
example, the same 137 × 137 grid density and CNO type weighting functions are 
used. See the MATLAB code for the CNO type functions in paper [14]. 

5.1 qLPV Model of the TORA 
The applied parameters and equations of motion are given in [6] [14] [18]. Thus, 
the state-space variables of TORA system are selected as: 

𝐱𝐱(𝑡𝑡) = �

𝑥𝑥1(𝑡𝑡)
𝑥𝑥2(𝑡𝑡)
𝑥𝑥3(𝑡𝑡)
𝑥𝑥4(𝑡𝑡)

� =

⎣
⎢
⎢
⎢
⎡
𝜉𝜉(𝑡𝑡)
�̇�𝜉(𝑡𝑡)
𝜃𝜃(𝑡𝑡)
�̇�𝜃(𝑡𝑡)⎦

⎥
⎥
⎥
⎤
  (9) 

where, the system matrix 𝐒𝐒(𝐩𝐩(𝑡𝑡)) of the model takes form of: 



Acta Polytechnica Hungarica Vol. 20, No. 9, 2023 

‒ 265 ‒ 

𝐀𝐀(𝐩𝐩) =

⎣
⎢
⎢
⎢
⎢
⎡0 1 0 0

−1
𝑓𝑓(𝑚𝑚3(𝑡𝑡))

0 0 𝜌𝜌𝑚𝑚4(𝑡𝑡)𝑠𝑠𝑖𝑖𝑛𝑛(𝑚𝑚3(𝑡𝑡))
𝑓𝑓(𝑚𝑚3(𝑡𝑡))

0 0 0 1
𝜌𝜌𝑐𝑐𝑐𝑐𝑠𝑠(𝑚𝑚3(𝑡𝑡))
𝑓𝑓(𝑚𝑚3(𝑡𝑡))

0 0 −𝜌𝜌2𝑚𝑚4(𝑡𝑡)𝑠𝑠𝑖𝑖𝑛𝑛(𝑚𝑚3(𝑡𝑡))𝑐𝑐𝑐𝑐𝑠𝑠(𝑚𝑚3(𝑡𝑡))
𝑓𝑓(𝑚𝑚3(𝑡𝑡)) ⎦

⎥
⎥
⎥
⎥
⎤

  (10)  

𝐁𝐁(𝐩𝐩) =

⎣
⎢
⎢
⎢
⎡
0
−𝜌𝜌𝑐𝑐𝑐𝑐𝑠𝑠(𝑚𝑚3(𝑡𝑡))
𝑓𝑓(𝑚𝑚3(𝑡𝑡))

0
1

𝑓𝑓(𝑚𝑚3(𝑡𝑡)) ⎦
⎥
⎥
⎥
⎤

  (11) 

where 

𝑓𝑓(𝑥𝑥3(𝑡𝑡)) = 1 − 𝜌𝜌2𝑐𝑐𝑐𝑐𝑠𝑠2(𝑥𝑥3(𝑡𝑡))  (12) 

and 𝑝𝑝1(𝑡𝑡) = 𝑥𝑥3(𝑡𝑡) and 𝑝𝑝2(𝑡𝑡) = 𝑥𝑥4(𝑡𝑡). The system matrix 𝐒𝐒(𝐩𝐩(𝑡𝑡)) is: 

𝐒𝐒(𝐩𝐩(𝑡𝑡)) = [𝐀𝐀(𝐩𝐩(𝑡𝑡)) 𝐁𝐁(𝐩𝐩(𝑡𝑡))]  (13) 

where the elements of matrix 𝐀𝐀(𝐩𝐩(𝑡𝑡)) and 𝐁𝐁(𝐩𝐩(𝑡𝑡)) are defined numerically by 
HOSVD method and CNO type weighting functions into vertices. 

5.2 TP Model 1 
This subsection presents the previous version of the TP model transformation (7). 
Therefore let 𝑝𝑝1(𝑡𝑡) = 𝑥𝑥3(𝑡𝑡) and 𝑝𝑝2(𝑡𝑡) = 𝑥𝑥4(𝑡𝑡). The transformation space is Ω =
[−0.8,0.8] × [−0.8,0.8]. The resulted TP model representation is: 

𝐒𝐒(𝐩𝐩(𝑡𝑡)) = 𝒮𝒮 ⊠
𝑛𝑛=1

2
𝐰𝐰𝑛𝑛(𝑝𝑝𝑛𝑛(𝑡𝑡))  (14) 

thus, 𝑤𝑤1,𝑖𝑖(𝑝𝑝1) CNO type weighting functions in parameter space Ω are shown in 
Fig. 2. For parameter 𝑝𝑝2(𝑡𝑡), the HOSVD results 𝑤𝑤2,1 and 𝑤𝑤2,2 in the X-type 
weighting function. The number of the resulting linear time invariant (LTI) systems 
is 5 × 2 = 10. 

Figure 2 
CNO type weighting functions of TP model 1 
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5.3 TP Model 2 
The TP model 1 has minimal number of weighting functions. In order to decrease 
the non-linearity of the model, the parameter space is defined as 𝑝𝑝1(𝑡𝑡) = 𝑥𝑥3(𝑡𝑡), 
𝑝𝑝2(𝑡𝑡) = 𝑥𝑥4(𝑡𝑡), 𝑝𝑝3(𝑡𝑡) = 1

𝑓𝑓(𝑚𝑚3(𝑡𝑡))
, where a new dimension is introduced. Thus, the 

transformation space is Ω = [−0.8,0.8] × [−0.8,0.8] × [1,1.05]. Applying the 
HOSVD on the qLPV model 2, results in 4 × 2 × 2 = 16 LTI systems. Therefore, 
the second TP model form is: 

𝐒𝐒(𝐩𝐩(𝑡𝑡)) = 𝐓𝐓(𝐩𝐩(𝑡𝑡)) = 𝒜𝒜 ⊠
𝑛𝑛=1

3
𝐰𝐰𝑛𝑛(𝑝𝑝𝑛𝑛(𝑡𝑡))  (15) 

The membership functions of 𝑝𝑝1(𝑡𝑡) are illustrated in Fig. 3. For 𝑝𝑝2(𝑡𝑡) and 𝑝𝑝3(𝑡𝑡), 
weighting functions 𝑤𝑤2,1,𝑤𝑤2,2 and 𝑤𝑤3,1, 𝑤𝑤3,2 are depicted on the Fig. 1 X-type. 
Furthermore, the complexity of the weighting functions is reduced. However, the 
non-linearity can be further reduced, see in TP model 3. 

Figure 3 
CNO type weighting functions of TP model 2 

5.4 TP Model 3 
In order to further decrease the complexity of the first dimension, the new input 
parameters are 𝑝𝑝1(𝑡𝑡) = 𝑠𝑠𝑖𝑖𝑛𝑛(𝑥𝑥3(𝑡𝑡)), 𝑝𝑝2(𝑡𝑡) = 𝑥𝑥4(𝑡𝑡) and 𝑝𝑝3(𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑠𝑠(𝑥𝑥3(𝑡𝑡)). Then 
the space Ω = [−0.8,0.8] × [−0.8,0.8] × [0,0.8] is defined. The resulting number 
of the LTI systems is 2 × 2 × 3 = 12, thus the TP model structure is: 

𝐒𝐒(𝐩𝐩(𝑡𝑡)) = 𝐓𝐓(𝐩𝐩(𝑡𝑡)) = 𝒜𝒜 ⊠
𝑛𝑛=1

3
𝐰𝐰𝑛𝑛(𝑝𝑝𝑛𝑛(𝑡𝑡))  (16) 

The weighting functions of 𝑝𝑝3(𝑡𝑡) are shown in Fig. 4. For 𝑝𝑝1(𝑡𝑡) and 𝑝𝑝2(𝑡𝑡), 
weighting functions 𝑤𝑤1,1,𝑤𝑤1,2 and 𝑤𝑤2,1, 𝑤𝑤2,2 are depicted on the Fig. 1 X-type.  
The rank of the first dimension is minimised, in the third dimension there are 3 
weighting functions in contrast to TP model 2. Consequently, the resulted model is 
less complex than the previous two examples. 
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Figure 4 
CNO type weighting functions of TP model 3 

5.5 TP Model 4 

Let is the parameter space 𝑝𝑝1(𝑡𝑡) = 𝑥𝑥4(𝑡𝑡)𝑠𝑠𝑖𝑖𝑛𝑛(𝑥𝑥3(𝑡𝑡)), 𝑝𝑝2(𝑡𝑡) = 1
𝑓𝑓(𝑚𝑚3(𝑡𝑡))

 and 𝑝𝑝3(𝑡𝑡) =
𝜌𝜌𝑐𝑐𝑐𝑐𝑠𝑠(𝑥𝑥3(𝑡𝑡)), and the transformation space Ω = [0,1.6] × [1,1.05] × [0,0.2]. 
Executing the proposed TP model transformation, there are 2 × 2 × 2 = 8 LTI 
systems: 

𝐒𝐒(𝐩𝐩(𝑡𝑡)) = 𝐓𝐓(𝐩𝐩(𝑡𝑡)) = 𝒜𝒜 ⊠
𝑛𝑛=1

3
𝐰𝐰𝑛𝑛(𝑝𝑝𝑛𝑛(𝑡𝑡))  (17) 

The membership functions are depicted in Fig. 1, where the weighting functions 
𝑤𝑤1,1, 𝑤𝑤1,2, 𝑤𝑤2,1, 𝑤𝑤2,2 and 𝑤𝑤3,1, 𝑤𝑤3,2 for parameters 𝑝𝑝1(𝑡𝑡), 𝑝𝑝2(𝑡𝑡), and 𝑝𝑝3(𝑡𝑡) are 
illustrated. Compared to the previous TP model 1,2,3 examples, this is the simplest 
model. 

5.6 TP Model 5 

Let us define the parameter space as 𝑝𝑝1(𝑡𝑡) = 𝑚𝑚4(𝑡𝑡)𝑠𝑠𝑖𝑖𝑛𝑛(𝑚𝑚3(𝑡𝑡))
𝑓𝑓(𝑚𝑚3(𝑡𝑡))

, 𝑝𝑝2(𝑡𝑡) = 1
𝑓𝑓(𝑚𝑚3(𝑡𝑡))

 and 
𝑝𝑝3(𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑠𝑠(𝑥𝑥3(𝑡𝑡)). and Ω = [0,1.6] × [1,1.05] × [0,1]. The number of the LTI 
systems are 2 × 2 × 2 = 8 again: 

𝐒𝐒(𝐩𝐩(𝑡𝑡)) = 𝐓𝐓(𝐩𝐩(𝑡𝑡)) = 𝒜𝒜 ⊠
𝑛𝑛=1

3
𝐰𝐰𝑛𝑛(𝑝𝑝𝑛𝑛(𝑡𝑡))  (18) 

The membership functions are given in X-type for all parameters 𝑝𝑝(𝑡𝑡). This is 
similar to the previous example, but the consequences are different from it. 
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6 Feasibility Analysis 
The feasibility test checks whether there exists a solution for LMI or not. Consider 
the following solver for LMI feasibility problems: 𝐋𝐋(𝑥𝑥) < 𝐑𝐑(𝑥𝑥), where 𝐑𝐑 is the 
feasibility radius. The solver minimizes 𝑡𝑡 subject to 𝐋𝐋(𝑥𝑥) < 𝐑𝐑(𝑥𝑥) + 𝑡𝑡𝐈𝐈. Thus, the 
best value of 𝑡𝑡 should be negative for feasibility. 

Figure 5 
Feasibility regions of TP model 1 

The feasibility check for transformation space is investigated only on interval 
[−180∘, 180∘] for angles. For all figures; 𝑥𝑥-axis illustrates 𝑝𝑝𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑦𝑦-axis shows 
𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚, illustrations present that LMI is feasible or not in the different dimensions. 
Therefore, figures show the feasible (bold dotted) and non-feasible regions of the 
LMI through changing transformation space. In this section the most significant TP 
models and figures are presented. 

Figure 6 
Feasibility regions of TP model 3 for p1 and p2 

Varying the transformation space Ω has influence on the feasibility regions of LMIs. 
In the followings the feasibility of LMI based controller for TORA TP models are 
presented. 
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In the present example, there are two dimensions in the transformation space Ω =
[−0.8,0.8] × [−0.8,0.8]. The parameters are 𝑝𝑝1(𝑡𝑡) = 𝑥𝑥3(𝑡𝑡), 𝑝𝑝2(𝑡𝑡) = 𝑥𝑥4(𝑡𝑡). 
Moreover, Fig. 5 presents two cases. In the first case, the first dimension 𝑝𝑝1 of the 
transformation space is changed, and second dimension 𝑝𝑝2 is fixed on interval 
[−,−] × [−0.8,0.8]. Fig. 5 shows another case, that first dimension 𝑝𝑝1 is fixed on 
[−0.8,0.8] × [−,−] and second dimension 𝑝𝑝2 is changed. Then, it can be seen that 
LMI is feasible or not, in the dimensions of TORA TP model 1. 

Figure 7 
Feasibility regions of TP model 4 for p1 and p3 

In case of TORA TP model 2, there are three dimensions; Ω = [−0.8,0.8] ×
[−0.8,0.8] × [1,1.05], where 𝑝𝑝1(𝑡𝑡) = 𝑥𝑥3(𝑡𝑡), 𝑝𝑝2(𝑡𝑡) = 𝑥𝑥4(𝑡𝑡), 𝑝𝑝3(𝑡𝑡) = 1

𝑓𝑓(𝑚𝑚3(𝑡𝑡))
. As 

before, two cases are considered; each of the two dimensions is fixed separately. 
Thus, the results for changing dimensions 𝑝𝑝1 and 𝑝𝑝2 are the same as in Fig. 5. 

The feasibility tests for TORA TP model 3 are illustrated on Fig. 6, where the 
transformation space Ω = [−0.8,0.8] × [−0.8,0.8] × [0,0.8], and 𝑝𝑝1(𝑡𝑡) =
𝑠𝑠𝑖𝑖𝑛𝑛(𝑥𝑥3(𝑡𝑡)),  𝑝𝑝2(𝑡𝑡) = 𝑥𝑥4(𝑡𝑡) and 𝑝𝑝3(𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑠𝑠(𝑥𝑥3(𝑡𝑡)). Figures  shows that dimension 
𝑝𝑝1 is changed and, the others are fixed on interval [−,−] × [−0.8,0.8] × [0,0.8], 
then dimension 𝑝𝑝2 is changed on interval [−0.8,0.8] × [−,−] × [0,0.8]. It can be 
seen, that the feasibility regions are increased compared to TP model 1 and 2. 

Fig. 7 present the feasibility regions of TORA TP model 4. In this case, the 
transformation space is Ω = [0,1.6] × [1,1.05] × [0,0.2], and the parameter space 
is  𝑝𝑝1(𝑡𝑡) = 𝑥𝑥4(𝑡𝑡)𝑠𝑠𝑖𝑖𝑛𝑛(𝑥𝑥3(𝑡𝑡)), 𝑝𝑝2(𝑡𝑡) = 1

𝑓𝑓(𝑚𝑚3(𝑡𝑡))
 and 𝑝𝑝3(𝑡𝑡) = 𝜌𝜌𝑐𝑐𝑐𝑐𝑠𝑠(𝑥𝑥3(𝑡𝑡)). Two cases 

are examined again. Thus, it can be seen the feasibility regions if dimension 𝑝𝑝1 is 
changed on interval [−,−] × [1,1.05] × [0,0.2] and if dimension 𝑝𝑝3 is changed on 
interval [0,1.6] × [1,1.05] × [−,−]. The feasibility regions are larger, than the 
previous TP models. 
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Fig. 8 illustrates the feasibility regions of TORA TP model 5. The transformation 
space is Ω = [0,1.6] × [1,1.05] × [0,1] and the parameters are 𝑝𝑝1(𝑡𝑡) =
𝑚𝑚4(𝑡𝑡)𝑠𝑠𝑖𝑖𝑛𝑛(𝑚𝑚3(𝑡𝑡))

𝑓𝑓(𝑚𝑚3(𝑡𝑡))
, 𝑝𝑝2(𝑡𝑡) = 1

𝑓𝑓(𝑚𝑚3(𝑡𝑡))
 and 𝑝𝑝3(𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑠𝑠(𝑥𝑥3(𝑡𝑡)). So, the figures show two 

cases. In the first case, dimension 𝑝𝑝1 is changed on interval [−,−] × [1,1.05] ×
[0,1] and for 𝑝𝑝2 and 𝑝𝑝3 are fixed. In the second case,  dimension 𝑝𝑝3 is changed on 
interval [0,1.6] × [1,1.05] × [−,−], and  𝑝𝑝1 and 𝑝𝑝2 are fixed on this interval. It can 
be seen that the feasibility regions are larger, than the previous four TP models. 

Figure 8 
Feasibility regions of TP model 5 for p1 and p3 

Consequently, the figures present well that if the nonlinear behavior of the TP 
models are decreased, the LMI feasibility regions will increase. 

7 Globally Asymptotic Stabilization 
In this section, all of the examined TP models are illustrated. The results of the 
control design of the TORA system are presented via LMI based stabilization 
method, through state feedback control. The LMIs are feasible. The LMI solver can 
find the stabilizing controller using the following LMI conditions [10]: 

−𝐗𝐗𝐀𝐀𝑖𝑖
𝑇𝑇 − 𝐀𝐀𝑖𝑖𝐗𝐗 + 𝐌𝐌𝑖𝑖

𝑇𝑇𝐁𝐁𝑖𝑖𝑇𝑇 + 𝐁𝐁𝑖𝑖𝐌𝐌𝑖𝑖 ≻ 0  (19) 

−𝐗𝐗𝐀𝐀𝑖𝑖
𝑇𝑇 − 𝐀𝐀𝑖𝑖𝐗𝐗 − 𝐗𝐗𝐀𝐀𝑗𝑗𝑇𝑇 − 𝐀𝐀𝑗𝑗𝐗𝐗 + 𝐌𝐌𝑗𝑗

𝑇𝑇𝐁𝐁𝑖𝑖𝑇𝑇 + 𝐁𝐁𝑖𝑖𝐌𝐌𝑗𝑗 

+𝐌𝐌𝑖𝑖
𝑇𝑇𝐁𝐁𝑗𝑗𝑇𝑇 + 𝐁𝐁𝑗𝑗𝐌𝐌𝑖𝑖 ⪰ 0 (20) 

𝐤𝐤𝑖𝑖 = 𝐌𝐌𝑖𝑖𝐗𝐗−1  (21) 

where 𝑖𝑖 = 1,⋯ , 𝐼𝐼 and 𝑗𝑗 = 𝐼𝐼 + 1,⋯ , 𝐼𝐼, 𝐼𝐼 is the total number of the LTI vertex 
systems. Using these LMI conditions, present paper shows a stable controller design 
task. Matrices 𝐗𝐗 and 𝐌𝐌 can be found by convex optimization methods involving 
LMIs. 

 



Acta Polytechnica Hungarica Vol. 20, No. 9, 2023 

‒ 271 ‒ 

Figure 9 
State variables x3, x4 and control signal u of TORA 

The resulted LTI vertex systems defined by TP transformation are substituted into 
the above LMI conditions. 

The overall TP controller is: 

𝐮𝐮(𝑡𝑡) = −(∑𝐼𝐼
𝑖𝑖=1 𝑤𝑤𝑖𝑖(𝐩𝐩(𝑡𝑡))𝐤𝐤𝑖𝑖)))𝐱𝐱(𝑡𝑡) = −𝐤𝐤𝑇𝑇𝐱𝐱(𝑡𝑡)  (22) 

where the same membership functions are applied as in the TP model examples.  
It can be seen that the various inputs of the TS fuzzy models influence the feasibility 
of the LMI based controller design. 

Angular position 𝜃𝜃, and angular speed �̇�𝜃 of TP model 1, 2, 3, 4, 5 examples and 
control signal 𝑢𝑢 are illustrated in Fig. 9, where the overall initial conditions are 
[𝜉𝜉, �̇�𝜉,𝜃𝜃, �̇�𝜃]𝑇𝑇 = [0.023,0,0,0]𝑇𝑇. Notice that the TP model 2, results in the best 
controller performance. In example TP model 2, a new dimension is introduced and 
the number of LTI systems are 4 × 2 × 2 = 16. Although, the complexity of the 
weighting functions is still exists, decreasing the non-linearity results in a better 
controller. 

It can be seen that control signal 𝑢𝑢 is stabilized after 50 seconds. Therefore, the 
simulation results show that the system reaches the steady state quicker and the 
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complexity of the TP model 2 is less than the other ones. Furthermore, varying the 
input space, it results in different TP models, as shown in Fig. 3. Number of the 
dimensions and complexity of the weighting function have influence on the 
feasibility of LMI based control design method. Consequently, the TP model 2 is 
the better model. 

Conclusions 

This work shows the proposed extension of the TP model representation, where it 
is capable of generating an alternative input space. This step has influence on non-
linearity and complexity of the model. In this paper, the investigation is based on 
the TORA system. Moreover, modifying the transformation space affects the LMI-
based control design methods. Consequently, the controller can be sensitive for 
varying the input space and transformation space. Decreasing the non-linearity via 
changing the input space, results in increasing feasibility regions varying the 
transformation space. Furthermore, the new properties improve the capability of the 
TP model in achieving the best possible solution of the control design methods. 
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