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Abstract: In recent years, natural language processing tasks, like sentiment analysis, can be 
solved with high performance techniques, if a pre-trained language model is fine-tuned. 
However, in most cases, the pre-training of language models require huge computational 
resources and training corpora. Our paper addresses the issue of developing deep neural 
network language models for low resourced languages, such as Hungarian. Pre-training 
language models like BERT, requires a prohibitive amount of computational power and huge 
amount of training data. Unfortunately, neither of these prerequisites are commonly 
available for low resource languages. The question is how well the system can perform with 
limited resources (both in data and hardware). We focus our research on five transformer 
models: ELECTRA, ELECTRIC, RoBERTa, BART and GPT-2. To evaluate our models, we 
fine-tuned the models in six different natural language processing tasks: sentence-level 
sentiment analysis, named entity recognition, noun phrase chunking, extractive 
summarization and abstractive summarization. Our results suggest that while our 
experimental models obviously cannot surpass the performance of the state-of-the-art 
Hungarian BERT model, they require a smaller carbon footprint, may bring neural network 
technology to mobile applications and, finally, they may lower the threshold to engaging with 
neural network technology in low resourced languages, which has been an obstacle so far, 
in the synergistic co-development of cognitive info-communication systems and its related 
disciplines. 

Keywords: ELECTRA; ELECTRIC; RoBERTa; BART; GPT-2; sentiment analysis; named 
entity recognition; noun phrase chunking; text summarization 

1 Introduction 

Natural languages provide an important platform for thought and communication, 
which are considered as pivotal human cognitive characteristics. Therefore, natural 
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language processing can provide valuable insights into human cognitive processes 
[1]. Communication between a human and an artificial cognitive system is called 
inter-cognitive communication (information transfer occurs between two cognitive 
beings with different cognitive capabilities) [2] [3]. Machine Learning methods are 
vital elements of modern cognitive info-communication systems because they can 
be used in various ways such as behavior modeling or sentiment analysis [4]. 

Modern cognitive science aims to develop a general theoretical framework that 
encompasses the entire set of human mental capabilities including language. 
Several attempts have been made to implement human cognitive processes as 
computer algorithms, for example by using artificial intelligence to explain various 
aspects of language acquisition and processing [5]. Thus, we can refer to these 
artificial intelligence-based solutions not merely as language models, but as 
cognitive models as well. 

Natural language processing (NLP) has seen spectacular progress with the 
application of neural network technology, in particular, the Transformer model [6]. 
The first breakthrough was the word embedding method [7], which represents 
words as multi-dimensional continuous vectors. The vector representation of the 
words creates a multidimensional semantic space in which words with similar 
meaning are located close to one another. Alongside their semantic content, the 
word vectors can be trained to incorporate syntactic features, as well. A major 
drawback of this method was that the vectors were computed on word forms and 
the system was not able to handle wordforms which had different or even unrelated 
meanings. In order to solve this issue, alternative models were created, which are 
based on contextual embedding, for instance ELMo [8], BERT [9], or derivatives 
of BERT (for example RoBERTa [10]), in which the word vectors reflect context-
dependent variation in meaning. As noted above, one major limitation of building 
neural network-based language models is that it requires extreme amountnumber of 
resources in terms of data and computational power. In order to overcome these 
previously described limitations Google Inc. developed the ELECTRA model [11], 
which is able to achieve similar results to the traditional BERT models by using less 
resources (1 GPU) and under less time. Furthermore, the size of the trained models 
is considerably smaller as well, which is important in our current ‘mobile’ world. 
But ELECTRA cannot solve every kind of natural language processing task, for 
instance text generation tasks. Thus, we also performed experiments with other 
types of language models in this research. We also conducted experiments with 
RoBERTa, BART and GPT model architectures as well. In recent years, a lot of 
interest has been developed towards the scientific investigation of human-computer 
interaction. The extremely fast pace of infocommunication device development and 
the rapidly growing number of device users, hence the increasing occurrence of 
human-machine interactions renders it especially important to systematically 
address the challenges that might arise during such encounters. Cognitive Info-
communication can greatly benefit from the advancements and innovative solutions 
developed by cognitive linguistics. Furthermore, several important new models 
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supported by artificial intelligence could further elevate the successful outcome of 
these synergistic approaches [2]. Therefore, we aim to contribute to these ground-
breaking initiatives by presenting our low-resource applications. 

BERT (abbreviation of Bidirectional Encoder Representations from Transformer) 
is defined as a multi-level, bidirectional Transformer encoder [6]. The BERT model 
is pre-trained on two language modeling tasks: word masking and next sentence 
prediction. In the course of the masking procedure 15% of the words in the training 
corpus is randomly masked and the system has to guess the masked words. In the 
next sentence prediction tasktask, the system is to guess whether two sentences are 
consecutive in relation to one another in the text or just randomly chosen. In order 
to drastically reduce the size of the dictionary, words are broken into pieces on 
statistical grounds (what is called ‘wordpieces’) using a tokenizer algorithm [12]. 
Following the initial training of the BERT, the pre-trained model is fine-tuned in 
order to be optimal for a certain task. 

The first native BERT model in Hungarian was published by Dávid Márk 
Nemeskey [13], named huBERT. Three different huBERT models were created: 

- huBERT: BERT base trained on Hungarian Web Corpus 2.0 [14] 

- huBERT Wikipedia cased: BERT base trained on Hungarian Wikipedia 
without uppercase to lowercase transformation 

- huBERT Wikipedia lowercased: BERT base trained on Hungarian Wikipedia 
with uppercase to lowercase transformation 

The huBERT base pre-trained on Hungarian Web Corpus reached remarkable 
results in such tasks as name entity recognition and noun phrase identification [15]. 
Feldmann et al. have built the first BERT large model for Hungarian [16]. 

The models and scripts are can be found in our Github sites [17] [18]. 

2 Experimental Models 

2.1 ELECTRA 

The ELECTRA [11] is based on the GAN (Generative Adversial Network) [19] 
method. The basis of this methodology is that two networks are trained: one is the 
generator and the other is the discriminator. In the course of pre-training the 
generator randomly creates vector representations, from which its output is derived. 
Next, a real output is presented to the generator, and based on this it optimizes the 
random vector generation process. Consequently, the generator becomes ‘smarter’ 
by the end of the training it will be able to generate an output that is similar to the 
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real one. Meanwhile, the discriminator is trained to decide whether a given dataset 
is true or false. In order to achieve this, real datasets from the training corpus and 
generator-derived datasets are both presented to the discriminator. As opposed to 
the word-masking approach of the BERT, here the task of the system is not to decide 
what the masked word was, but rather whether the word in question is the original 
one or exchanged. The two networks are interconnected and their function is 
facilitated by one another during training. The ELECTRA employs the GAN 
method in order to train language models. It is differentiated from the BERT model 
in that the network does not predict the masked words, rather the generator creates 
words corresponding to masked words, then the discriminator is trained to decide 
whether the word derived from the generator is original or randomly generated. 
Therefore, the generator is trained which words are the best-fitting in relation to the 
masked words, while the discriminator is trained to decide whether the words from 
a given text input are actually real or not. After the training the generator is 
discarded and only the discriminator is used further for the fine-tuning. 

Google Inc. developed three different ELECTRA models: 

ELECTRA small:  12 layers; hidden layer size: 256; 14M parameters 

ELECTRA base:  12 layers; hidden layer size: 768; 110M parameters 

ELECTRA large:  24 layers; hidden layer size:1024; 335M parameters 

The ELECTRA small model requires the least amountnumber of resources, 
therefore in our research we only did experiments with ELECTRA small models. 

2.2 ELECTRIC 

Electric was developed as an implementation of the cloze task using an energy-
based model [20]. As its name suggests, it features high similarity to ELECTRA 
models. Contrary to BERT models, Electric does not use masking or a softmax-
based normalization. Instead, Electric assigns an energy score to each token position 
and calculates the distribution of possible tokens. During the training of Electric 
Noise-Contrastive Estimation is applied. Two key differences can be pointed out 
between ELECTRA and Electric models. The first major distinction is how the 
models approach noise distribution: ELECTRA uses a masking algorithm, while 
Electric applies a two-tower cloze model [21], which uses the context to both sides 
of the tokens. This involves the application of two transformers, one operates left-
to-right and the other processes the sequence right-to-left. Another important 
difference between ELECTRA and Electric models is that ELECTRA calculates 
likelihood scores only for the masked tokens, while in the case of Electric these 
scores can be computed simultaneously for all input tokens. However, a 
disadvantage of Electric over ELECTRA is the apparent inflexibility of Electric in 
the choice of noise distribution. 



Acta Polytechnica Hungarica Vol. 20, No. 5, 2023 

‒ 173 ‒ 

2.3 RoBERTa 

The RoBERTa [10] follows the pre-training procedure of BERT, but the following 
modifications are introduced to enhance the performance of the model: 

- Bigger size of the pre-training corpus: In order to train RoBERTa, the size of 
the corpus is multiplied 10 times, e.g., 160 GB data which comes from 5 
different corpora and consists of 30 billion words. 

- Longer model training step: Experimentation was done with 100 thousand, 
300 thousand and 500 thousand steps. The results indicate that including more 
steps increases the system performance. 

- Bigger batch size: Experiments have been done applying a batch size of 256, 
2000 and 8000. It was shown that higher batch size leads to better results.  
The best performance is achieved using a batch size of 8000. The number of 
training steps and the batch size are interdependent, a higher batch size 
requires less training steps in order to achieve the same outcome. 

- Exclusion of the Next Sentence Prediction (NSP) task from the pipeline: 
According to experimentally-concluded claims of the authors, the NSP task 
does not contribute significantly to the training of the system, therefore they 
eliminated this particular task. 

- Longer input texts: The RoBERTa takes maximal advantage of the sequence 
length of 512. The sequences do not contain a single sentence only with the 
rest of the sequence padded by the empty character <pad>, but, rather, they 
are filled by multiple sentences until the complete 512 character-long 
sequence is reached. Even the end of document would not mean new sequence 
opening, in that case a document separator is inserted followed by the input of 
the rest of the text. 

- Dynamic masking: Static masking is applied in BERT, in which the pre-
processing of the text involves masking 15% of the text, and this masked 15% 
stays identical during the pre-training process. As against this, RoBERTa 
applies dynamic word masking, which means that the word masking pattern is 
always reestablished before the sequence is presented to the system. 

- BPE coding: The RoBERTa encodes the internal representation of the words 
using the Byte Per Encoding (BPE) method [22], which is a hybrid of word 
and character representation. Word entities result from the iterative unification 
of character n-grams, and these are based not on UNICODE characters, but 
bytes instead. 

Three different RoBERTa models can be trained: 

RoBERTa small:  6 layers; hidden layer size: 768; 65M parameters 

RoBERTa base:  12 layers; hidden layer size: 768; 125M parameters 

RoBERTa large:  24 layers; hidden layer size: 1024; 355M parameters 
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In our research we did experiments with a RoBERTa small model. 

2.4 BART 

BART [23] is a Transformer-based denoising autoencoder that can be used for the 
pretraining of sequence-to-sequence models. It has an encoder-decoder 
architecture. It uses a ‘noised’ source text as input, then it reconstructs the original 
text by predicting the corrupted parts. BART has a similar setup to BERT [9], 
however, with characteristic differences in its architecture. Notably, one such 
difference is the additional cross-attention of the layers over the final hidden layer, 
which is present in BART, but not in BERT. The application of BART offers a high 
degree of flexibility regarding the usage of noising schemes, which is illustrated by 
the fact that any type of document corruption is compatible with the system as 
opposed to other denoising autoencoders. BART practically combines a BERT type 
model with a GPT type model. The difference from BERT model is that the 
denoising tasks are different: 

- Token Masking: random tokens are sampled and replaced with <mask> 
elements. 

- Deletion: random tokens are deleted from the input. 
- Text Infilling: number of text spans [24] are sampled, with span lengths drawn 

from a Poisson distribution. Each span is replaced with a single <mask> token. 
- Sentence Permutation: a document is divided into sentences based on full 

stops, and these sentences are shuffled in a random order. 
- Document Rotation: a token is chosen uniformly at random, and the document 

is rotated so that it begins with that token. 

BART outperforms all previously established models in summarization tasks. Two 
different BART models can be trained: 

BART base:  12 layers; hidden layer size: 768; 139M parameters 

BART large:  24 layers; hidden layer size: 1024; 406M parameters 

We conducted experiments with a BART base model. 

2.5 GPT Models 

Natural Language Processing can greatly profit from the advancement in the area 
of generative model pre-training (abbreviated as GPT), which has a decoder-only 
architecture. The OpenAI research group put the emphasis on a level of semantic 
investigation that is higher than at the level of words, which facilitates the vector 
representation of higher-level text units. Furthermore, the application of 
unsupervised pre-training can help to capture linguistic information which can be 
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extended to long-term extraction of information by choosing the right transformer 
net. Additionally, using auxiliary training objectives can increase performance as it 
is showcased in the work by Rei et al. [25]. Language models can be trained to solve 
language processing tasks without supervision if the training is performed on large 
datasets, for example WebText that includes the content from millions of websites. 
GPT-2 [22], which is a transformer model comprising 1.5 billion parameters 
reached best-in-class performance in 7 out of 8 tasks in a zero-shot setting.  
The GPT-3 model [26] improves model performance by the simultaneous increase 
of parameters and computational capacity. The model has 175 billion parameters 
and it is capable of achieving state-of-the-art results in several tasks without any 
fine-tuning. For the efficient supervised training of language models, it is crucial to 
have large datasets that are not annotated. In previous publications several corpora 
were used to train language models, for example Wikipedia, Gigaword [27], or the 
non-public Google News corpus, the RealNews database [28]. GPT models use 
BPE coding for their dictionary. The current 3+1 GPT models in comparison: 

- GPT: 12 layers, 12 attention heads; 768 word embedding size; 512 text length; 
117 million parameters 

- GPT-2: 48 layers, 12 attention heads; 1600 word embedding size; 1024 text 
length; 1.5 billion parameters 

- GPT-3: 96 layers, 96 attention heads; 12888 word embedding size; 2048 text 
length; 175 billion parameters 

- GPT Neo (Brown et al., 2021): mesh-tensorflow library implementation in 
order to train GPT-3 type models 

In our research we performed experiments with the GPT-2 model. 

3 Corpora 

3.1 Pre-Training Corpora 

The GPT-2 model was trained with the Hungarian Wikipedia, which is sequenced 
to paragraphs [14]. In order to train the ELECTRA, ELECTRIC, RoBERTa and 
BART models, three different corpora were used: 

- Hungarian Wikipedia (wiki) [14]: 13,098,808 segments (sentences); 
163,772,783 tokens. Used for training ELECTRA, ELECTRIC, RoBERTa, 
BART and GPT-2 

- NYTK corpus v1 (nytk) [16]: 283,099,534 segments (sentences); 
3,993,873,992 tokens. Used for training ELECTRA and ELECTRIC 
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- Webcorpus 2.0 (web) [14]: 100,255,504 segments (paragraphs); 
9,095,424,717 tokens. Used for training BART 

Vocabulary sizes: 

- The size of the vocabulary that was used to train the ELECTRA 31 and the 
ELECTRIC models: 31.101 

- The size of the vocabulary that was used to train the ELECTRA 64 models: 
64.000 

- The size of the vocabulary that was used to train the RoBERTa and the BART 
models: 30,000 

- The size of the vocabulary that was used to train the GPT-2 model: 33,000 
In the case of ELECTRA and ELECTRIC projects, since they are BERT-based 
models, we used the two vocabulary files that were created for the HILBERT 
model. RoBERTa and BART use the same vocabulary, which was trained on the 
Hungarian Wikipedia. In the case of GPT-2, we conducted two different 
experiments. In the first experiment, we used the same vocabulary with as 
RoBERTa and BART, while in the second experiment, we used a new vocabulary 
with a size of 33,00 that was trained on Hungarian Wikipedia and Webcorpus 2.0.  
As the second dictionary was trained from a larger corpus, we decided to utilize this 
dictionary in our current research. 

3.2 Fine-Tuning Corpora 

The following corpora were used to train the models (more information on the size 
of the corpora can be found in Table 1): 

- SENT: the Hungarian Twitter Sentiment Corpus [29] was used for sentence-
level sentiment analysis purposes that is created by Precognox [30]. According 
to the international benchmarks [31] we created three subcorpora from this 
corpus: 
 2-class: binary classification subcorpus. We converted the scores 1 and 

2 to 0 as negative, scores 4 and 5 to 1 as positive. Score 3 was ignored to 
avoid the ambiguities. Training corpus: 2,468 segments. Test corpus: 269 
segments. 

 3-class: We converted the score 1 and 2 to negative, score 3 to neutral 
and scores 4 and 5 to positive. 3,600 segments. Test corpus: 400 
segments. 

 5-class: original five-point likert scaled corpus. 1: very negative, 2: 
negative, 3: neutral, 4: positive, 5: very positive. Training corpus: 3,600 
segments. Test corpus: 400 segments. 
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- NER: As for the fine-tuning of the name recognition (NER) the Szeged NER 
(SzNer) corpus [32] and NYTK-NerKor (NerKor) corpus [33] were used. 

- NP: for the noun group recognition (NP) the Szeged Treebank [34] was used. 
In order to ensure comparability, we used the same corpora for the NER and 
NP fine-tuning, such as emBERT [15]. 

- SUM: For the summarization task, we used the H+I corpus that Yang et al. 
used in their research [35]. Training corpus: 559,162 segments, Test corpus: 
3,000 segments. 

Table 1 
Attributes of the fine-tuning corpora 

 Segment Token # Type # Avg. token # 

H+I 562,162 
147,099,485 (art) 
16,699,600 (lead) 

2,949,173 (art) 
749,586 (lead) 

263.07 (art) 
29.87 (lead) 

NerKor 67,524 1,028,114 128,168 15.26 
SzNer 9,930 214,096 28,749 22.71 
NP 82,097 1,459,227 154,254 17.78 
SENT 4,000 59,997 18,423 14.99 

4 Experiments 

4.1 Pre-Training Experiments 

Most of our pre-trained models has a HIL prefix, which is used in reference to the 
Hungarian Intelligent Language Applications Consortium [18]. One model and 
some corpora have NYTK prefix, which is used in reference to the Hungarian 
Research Centre for Linguistics (abbreviation of Nyelvtudományi Kutatóközpont). 
In this research, we have trained five models with different architectures: 
ELECTRA, ELECTRIC, RoBERTa, BART and GPT-2. 

In order to train the ELECTRA and ELECTRIC models, we used the code 
implemented by Google Inc. [36] The following two models were trained: 

- HIL-ELECTRA 64 wiki: ELECTRA small trained on Hungarian Wikipedia, 
the duration of the training was approximately 5 days. Vocabulary size: 
64,000. 

- HIL-ELECTRA 64 nytk: ELECTRA small trained on nytk corpus, the 
duration of the training was approximately 7 days. Vocabulary size: 64,000 

- HIL-ELECTRA 31 nytk: ELECTRA small trained on nytk corpus, the 
duration of the training was approximately 7 days. Vocabulary size: 31,101. 
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- HIL-ELECTRIC nytk: ELECTRIC small trained on nytk corpus, the 
duration of the training was approximately 5 days. 

- HIL-ELECTRIC nytk 10%: ELECTRIC small trained on 10% of nytk 
corpus, the duration of the training was approximately 0.5 days. 

All ELECTRA and ELECTRIC models were trained using one single GeForce RTX 
2080 Ti type video card. Training time is affected by the size of the dictionary, the 
process can be speeded up using a smaller dictionary. We did not modify any 
parameters during the training process, except for the batch size, which was altered 
to 80, because higher values were not possible due to size constraints of the CUDA 
memory. 

The training of RoBERTa was performed on a system that contained 4 Nvidia GTX 
1080Ti GPU cards, on all 4 GPUs simultaneously. Each GPU had 11 GB memory, 
thus altogether 44 GB was available for the pre-training. The total duration of the 
pre-training was 214 hours given the batch size of 8 per card, with a total batch size 
of 32. The pre-training consisted of 1,250,000 steps, the loss curve decreased from 
the initial 8.7 value to 2.5, and it got stabilized at around this value. For the pre-
training the following hyper-parameters were used: learning rate: 1e-4, epoch: 5, 
batch size: 8. To train RoBERTa model, we followed the instructions of 
Huggingface [37]. Only one model was trained: 

- HIL-RoBERTa wiki: RoBERTa small, trained on Hungarian Wikipedia, the 
duration of the training was approximately 9 days. 

To train the BART model from scratch, we followed the instructions from 
Huggingface transformers Github [38]. For the pre-training, the following hyper-
parameters were used: learning rate: 5e-8, batch size: 8, warmup steps: 10,000.  
The following two models were trained: 
- HILBART wiki: BART base trained on Hungarian Wikipedia, the duration 

of the training was approximately 4 days, epoch: 10. 
- HILBART web: BART base trained on 10% of Hungarian Webcorpus 2.0, 

the duration of the training was approximately 4 days. 

The loss curve decreased from about the initial 9 value, but never converged. We 
did experiments with checkpoints where the loss values were between 1 and 2. In 
the case of BART wiki, we used the checkpoint-250000 (loss: 1.51, eval loss: 1.42). 
In the case of BART base checkpoint-150000 (loss: 1.14, eval loss: 1.12) were used. 

To pretrain the GPT-2 model, we have followed instructions from a TDS article 
[39]. Only one model was trained: 

- NYTK-GPT-2 wiki: GPT-2 model trained on Hungarian Wikipedia; the 
duration of the training was approximately 3 days. 

The training of GPT-2 was performed on a system that contained 4 Nvidia GTX 
1080Ti GPU cards, with the following hyper-parameters: block size: 100; batch 
size: 12; buffer size: 1000; learning rate: 3e-5; epoch: 10. 
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4.2 Fine-Tuning Experiments 

In order to test our language models, we performed six different experiments: 

1) Sentence-level sentiment analysis with 2, 3 and 5 classes. We tested all kinds 
of our language model on this task. 

2) Name Entity Recognition (NER). As BART cannot be fine-tuned to token-
level classification, only ELECTRA, ELECTRIC, RoBERTa and GPT-2 
models were tested on this task. 

3) Maximal Noun Phrase recognition (NP). As BART cannot be fine-tuned to 
token-level classification, only ELECTRA, ELECTRIC, RoBERTa and GPT-
2 models were tested on this task. 

4) Extractive text summarization. Since the BertSum tool only compatible with 
BERT and ELECTRA/ELECTRIC models, only ELECTRA and ELECTRIC 
models were tested on this task. 

5) Abstractive text summarization. Since BART and GPT-2 models contain 
autoregressive decoder, only these models were tested on this task. 

For sentence-level sentiment analysis, BART, RoBERTa and GPT-2 were fine-
tuned with the code provided by huggingface transformers text classification library 
[40]. The following modified parameters were used: learning rate = 2e-4, batch size: 
32, max sequence length: 128. ELECTRA and ELECTRIC models were fine-tuned 
with the code provided by Google Inc. [36] The following modified parameters 
were used: learning rate = 2e-4, batch size: 32, max sequence length: 128. For the 
best comparison, we have measured the prediction test results on 1-15 epoch 
numbers. As for the evaluation of sentence-level sentiment analysis models, the 
accuracy method was used. 

For NER and NP fine-tuning, ELECTRA and ELECTRIC models were fine-tuned 
with the code provided by Google Inc. (same as the sentiment analysis).  
The following modified parameters were used: learning rate = 1e-3; weight decay 
rate = 0.01, batch size: 4, max sequence length: 128. GPT-2 and RoBERTa models 
were fine-tuned with the code provided by huggingface transformers token 
classification library [41]. The following modified parameters were used: learning 
rate = 1e-4, batch size: 4, max sequence length: 128. For the better comparison with 
huBERT experiments~\cite{embert}, we used the epoch: 4. As for the evaluation 
of the NER and NP models, the IOB-based seqeval [42] method and F-measure 
were used. 

In the case of extractive summarization, the ELECTRA and the ELECTRIC models 
were fine-tuned with the BertSum tool [43], without any hyper-parameter 
modification. As for the evaluation of extractive summarization models, the 
ROUGE [44] metric was used. 
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For abstractive summarization, the BART model was fine-tuned with the code 
provided by huggingface transformers summarization library [45]. The following 
modified parameters were used: learning rate: 8e-5, warmup steps: 15,000, fp16, 
batch size: 8, max source length: 512, max target length: 256, epoch: 20. In the case 
of GPT-2, in order to fine-tune the models for abstractive summary generation, 
previously published methodology [22] was applied. The texts from the news 
articles and the corresponding leads were converted into the following format: 

- 1 segment:  [news article text] TL;DR: [lead text] 

This corpus was then used to fine-tune the language model facilitated by the pre-
trained GPT-2 model. The language model was fine-tuned with the 'language 
modeling' dictionary [46] provided by Huggingface transformers with the following 
modified parameters: learning rate: 5e-5: batch size: 4, block size: 512; epoch: 10. 
As for the evaluation of abstractive summarization models, the ROUGE method 
was used. 

5 Results 

In the results, for the convenient readability, we excluded the HIL and the NYTK 
prefixes. 

5.1 Text Classification Results 

Based on the results presented in Tables 2 and 3, our experimental models could 
not outperform the state-of-the-art huBERT model. This finding is in line with our 
expectations, since our models are weaker in some properties (smaller architecture, 
less training data, smaller batch size, etc.). Despite that we can conclude that our 
models can achieve considerably high performance. For example, in the sentiment 
analysis experiments the ELECTRA, ELECTRIC and GPT-2 models are only ~2-
7% below the performance of huBERT. It is also important to emphasize that BART 
and GPT-2 models are well-suited for text generation, as a primary application area. 

Table 2 
Sentence-level sentiment analysis results 

 2-class 3-class 5-class 
huBERT 85.92 72.18 68.50 
ELECTRIC nytk 10% 81.85 66.42 63.25 
ELECTRIC nytk 82.22 68.92 65.25 
ELECTRA 32 nytk 79.55 67.67 60.90 
ELECTRA 64 wiki 76.95 62.66 58.40 
ELECTRA 64 nytk 77.41 62.91 60.25 
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RoBERTa 80.00 64.66 61.00 
BART wiki 74.07 58.39 54.50 
BART web 77.78 60.15 58.25 
GPT-2 80.37 63.66 61.00 

The Table 3 summarizes the results of NER and NP experiments. In the emBERT 
[15] experiments, the best results were achieved with 30 epoch, thus in order to 
assure comparability between different studies, the results of the measurements with 
4 epoch were reproduced by us based on the code of the emBERT experiment.  
In Table 3, as we can see in the NP measurements, the performance of our 
ELECTRA small models is only 2-3% less compared to that of the Hungarian 
language BERT (base) model. In spite of the fact that in the majority of the cases 
the ELECTRA and ELECTRIC small models cannot outperform the BERT models, 
it is important to emphasize that they can achieve similar performance with fewer 
parameters, can be trained using 1 GPU and the training lasts under 7 days even 
with the application of a large dictionary. 

Table 3 
NER and NP results 

 NerKor SzNER NP 
huBERT 90.18 97.51 96.97 
ELECTRIC nytk 10% 72.84 86.01 90.73 
ELECTRIC nytk 78.82 93.63 94.14 
ELECTRA 32 nytk 79.34 95.39 94.50 
ELECTRA 64 wiki 77.37 94.19 94.14 
ELECTRA 64 nytk 77.35 93.59 94.09 
RoBERTa 86.04 90.98 94.41 
GPT-2 69.43 88.06 85.05 

Furthermore, the ELECTRA and ELECTRIC models are customer-friendly in 
terms of the application of smaller size models, which has proved to be a very 
important viewpoint. Experiments with ELECTRA showed that decreasing the 
vocabulary size did not affect the performance of the system, in fact a higher 
performance was registered. Another noticeable result is that the ELECTRIC 10% 
used only 10% of corpus and only 0.5 day for training and still achieved comparable 
performance. 

In Figure 1 we can see the evaluation of text classification tasks depending on epoch 
numbers (we exclude the 3-class and the SzNer experiments). A general finding is 
that, in the sentiment analysis task, the ELECTRA and ELECTRIC models reach 
the optimum sooner than the RoBERTa, BART and GPT-2 models. The BART 
model took the longest to achieve the optimum. It needed more epochs to reach the 
global optimum. Generally, the BART and GPT-2 models performed less well than 
other models in most of the tasks. This can be due to the fact that autoregressive 
models are more suited to text generation tasks. 
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Figure 1 

Text classification evaluation 

The marginal differences in results highlights the efficiency of transformer models, 
suggesting that smaller models with less pre-training data can still achieve 
comparable quality. But in cases where the difference is significant, it indicates that 
a model pre-trained on a larger resource provides considerable added value. 

5.2 Text Summarization Results 

To evaluate the summarization tasks, we used the ROUGE-1, ROUGE-2 and 
ROUGE-L metrics, in the result tables the format is followed: 

- ROUGE-1 / ROUGE-2 / ROUGE-L 

In Table 4, you can see the results of the extractive summarization task.  
The huBERT results is from the research of Yang et al. [35]. 

Table 4 
Extractive summarization results 

 Recall F-measure 
huBERT 49.45/21.07/40.14 27.35/10.78/21.97 
ELECTRIC nytk 10% 49.05/20.54/39.77 26.38/10.13/21.16 
ELECTRIC nytk 49.07/20.56/39.79 26.40/10.14/21.17 
ELECTRA 31 nytk 49.04/20.53/39.76 26.37/10.12/21.15 
ELECTRA 64 wiki 49.02/20.52/39.74 26.36/10.11/21.13 
ELECTRA64nytk 48.99/20.51/39.70 26.38/10.13/21.13 
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For the better comparison, recall and F-measure results are shown in Table 4.  
As we expected, we could not outperform huBERT, but our models still have 
comparable results. Our ELECTRIC model is only 0.4% below huBERT. In the 
competition between ELECTRIC and ELECTRA, the ELECTRIC models won, 
even the ELECTRIC 10%, which means the architecture of ELECTRIC is more 
suited to this task than ELECTRA. 

In Table 5, you can see the results of the abstractive summarization task. In the 
research of Yang et al. [35], the PreSumm [47] tool was used. The PreSumm tool 
support only BERT base models. In their paper, only ROUGE recall results were 
shown. In the international state-of-the-art research in this field [23], F-measure 
scores are shown in their results. In Table 5, beside recall, F-measure results are 
also published. As we can see in Table 5, our BART model could gain significantly 
higher F-score than the state-of-the-art Hungarian abstractive summarization tool. 
The recall is lower, but if we analyze the results closer, the summarized text created 
by tools of Yang et. al. [48] is long. In many cases the summarization is as long as 
the original article, thus the recall values are so high. In contrast, our BART model 
also attempts to learn the length of the lead, and it strives to generate shorter 
summaries. 

Table 5 
Abstractive summarization results 

 Recall F-measure 
huBERT 57.07/26.97/48.28 22.42/10.24/18.72 
BART 36.49/16.56/27.70 30.18/13.86/22.92 
GPT-2 40.90/11.89/27.46 23.06/06.56/15.04 

In the case of GPT-2, during the test procedure the text to be summarized was input 
to the system followed by the string "TL;DR:", which served as a trigger that a 
summary is expected as an output text. The model generated 3 different texts and 
the first sentence of each generated text was concatenated. These 3 sentences 
together are considered as the result of the summary generation. This approach is 
more like PreSumm. Thus, in the case of GPT-2, we can consider the recall results 
as well. The average length (token number) of the summaries are as follows: 

- Original leads:  Mean: 26.4, Median: 24 

- PreSumm leads:  Mean: 104.6, Median: 105 

- BART leads:  Mean: 28.2, Median: 24 

- GPT-2 leads:  Mean: 60.1, Median: 58 

As we can see from the mean and the median values, the BART model could learn 
the length of the lead as well. The PreSumm tool generates more than 4 times longer 
text as lead, thus the recall could be much higher. According to the F-scores, our 
BART model outperformed the huBERT model in abstractive text generation task. 
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In the case of GPT-2, our key findings suggest that the summary generation method 
by GPT-2 can achieve competitive results (using a methodology that is not based 
on the traditional seq2seq - encoder-decoder type architecture). Interestingly, GPT-
2 could even achieve higher ROUGE-1 F-scores than PreSumm, and the recall 
ROUGE-1 score is higher than the one achieved with BART, but if we analyze the 
generated outputs, GPT-2 generate much more "hallucination" texts than the other 
models. 

Conclusions 

In our research, we built five different kinds of language models for the Hungarian 
language, with low resources. ELECTRA, ELECTRIC, RoBERTa, BART and 
GPT-2 models were pre-trained, then to evaluate them, we fine-tuned these models 
on six different kinds of natural language processing downstream tasks. We tested 
our models on three kinds of sentence-level sentiment analysis tasks, two name 
entity recognition tasks, a noun phrase chunking, an extractive summarization task 
and an abstractive summarization task. In the case of sentiment analysis 
classification, NER, NP and extractive summarization tasks, as we expected, our 
models could not outperform the state-of-the-art huBERT models, but they could 
achieve competitively high results, despite having much fewer parameters and 
training data. In the case of the abstractive summarization task, our BART model 
gained significantly ~8% higher ROUGE-1 F-score, over the huBERT-based 
PreSumm tool. 

These results are notable, because we can achieve comparable, competitive or 
higher results with lower hardware and data resources, which can have two 
advantages. First, the application of these models results in a smaller carbon 
footprint by using less computational power, thus, less electricity and second, the 
smaller models are more user friendly, since they require less space and have a 
faster loading time. Nevertheless, the reduced complexity of these models can foster 
enthusiasm towards experimentation with new solutions and this can have a positive 
effect on accelerating the knowledge transfer between different disciplines, e.g., 
between computational linguistics and cognitive info-communication. 
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