
Acta Polytechnica Hungarica Vol. 18, No. 10, 2021 

 – 87 – 

An Analytical Solution of a Multi-Winding Coil 

Problem with a Magnetic Core in Spherical 

Coordinates 

Hüseyin Yıldız1,4*, Erol Uzal2, Hüseyin Çalık3 

1Istanbul University – Cerrahpasa, Department of Mechanical and Metal 

Technologies, Buyukcekmece, 34500 Istanbul, Turkey, 

huseyin.yildiz@istanbul.edu.tr 

2Istanbul University – Cerrahpasa, Department of Mechanical Engineering, 

Avcilar, 34320 Istanbul, Turkey, euzal@istanbul.edu.tr 

3Giresun University, Department of Electrical and Electronics Engineering, 28000 

Giresun, Turkey, huseyin.calik@giresun.edu.tr 

4Girift Technology Co., Avcilar, 34320 Istanbul, Turkey 

Abstract: Nowadays, technology is advancing rapidly in parallel with developments.  

The traditional concept of machine loses its function and is replaced by particular devices 

with spherical geometry such as spherical electric motors and brain stimulation systems. 

Consequently; the calculation of self-inductance (Lii) and mutual inductance (Mij) 

coefficients in the spherical coordinate system with analytical or semi-analytical methods 

has become one of the major research topics in recent years. In this study, the terms of B, 

E, and A for multi-winding coils were calculated analytically by using the single-winding 

coil approach. The same geometries were calculated with the assumption of axial symmetry 

in ANSYS Maxwell using finite element analysis (FEA). The obtained results with the FEA 

and analytical calculations were compared. Finally, two concentric coil geometries with 

magnetic core with radius r1 were determined, the variation of the self-inductance (Lii) and 

mutual inductance (Mij) coefficients of the determined geometries based on the γ angle in 

spherical coordinates were calculated analytically. Simulation studies were conducted by 

creating 3D models of coil geometries in ANSYS Maxwell program. An experimental setup 

that can be produced with 3-dimensional (3D) printers has been designed and constructed 

compatibly with the determined geometries. The variation of Lii and Mij coefficients with γ 

was studied experimentally after the production of necessary coil windings. At the end of 

the study, it was observed that the analytical results collected for the mutual inductance Mij 

and the self-inductance coefficient Lii were consistent with each other by comparing the 

FEA and experimental results. 

Keywords: Spherical coordinates; Magnetic field; Maxwell's equations; Analytical 

solution; Finite element analysis (FEA); Mutual inductance; Self-inductance 
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1 Introduction 

Recently, in parallel with technological developments, the traditional concept of 

machine has lost its function and replaced with very particular devices. By the 

advance of accelerator technology, the development of brain stimulation systems, 

the increase in wireless energy transfer studies, and the development of spherical 

electric motors, analytical calculation of self-inductance (Lii) and mutual 

inductance coefficients (Mij) in different coordinate systems has become one of 

the major research topics. Therefore, the calculation of the inductance coefficient 

by analytical or semi-analytical methods has attracted great attention in recent 

years. Much progress has been made in the solution methods in Cartesian and 

cylindrical coordinates [1-2]. The majority of the studies conducted have an 

entirely circular geometry. Calculations for circular loops [2-4], cylindrical discs 

[5], and cylindrical shells [6] can be found in the literature [1]-[7]. Some studies 

also examine the analytical form of the mutual inductance coefficient for non-

coaxial thin and thick coils [8]. These suggested solutions are usually expressed as 

elliptic integrals, Legendre functions, or Bessel and Struve functions. 

In the design of conventional machines, analyses made in Cartesian and 

cylindrical coordinate systems are sufficient. However, in the analysis of spherical 

geometry structures such as spherical electric motors and brain stimulation 

systems, analytical calculation of self-inductance and mutual inductance 

coefficients in a spherical coordinate system is required. Studies conducted in 

spherical coordinates have become one of the important research topics in recent 

years. The first studies on spherical electric motors began in the early 1980s. 

These studies derived analytical formulas expressing the magnetic field and 

electric field created by a spherical coil. In a study conducted in 1975, a model 

with an air core and axial symmetry was addressed. In the study, they obtained a 

formula giving the magnetic field using the integral transformation method [9]. 

Another study examined the magnetic field and inductance calculations of an 

isolated magnetic field analytically generated by a coil having 4π10-7 H/m 

magnetic permeability and with diameter r in the outer orbit in a linear and 

homogeneous isotropic environment [10]. 

In brain stimulation applications, an analytical method was developed in spherical 

coordinates to calculate the total electric field in the center caused by the coils 

placed in various points [11]. The analytical solution of Maxwell's equations in a 

spherical coordinate system is obtained based on the assumption of axial 

symmetry. Matute's study has revealed that the method of decomposition of 

variables is suitable for reaching the analytical solution for resolving some 

problems addressed in curvilinear coordinates that can be accepted as axially 

symmetrical [12]. One of the latest analytical studies conducted in the spherical 

coordinate system was carried out in 2019 to obtain a homogeneous magnetic 

field. In this study, they observed the sequential arrangement of a sizable number 

of coils analytically. At the end of the study, it was observed that the sequentially 
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arranged coils with a spherical structure were more homogeneous compared to 

coils of equal size [13]. Most of the studies include the calculations of vector field 

potential A, magnetic field B, electric field E and self-inductance coefficient Lii 

and mutual inductance coefficient Mij based on the single-winding coil approach. 

Most of the analytical terms involve Legendre Polynomials or Associated 

Legendre Polynomials. Analytical formulas for multi-winding coil structures are 

not yet available in studies conducted in spherical coordinates. So, finite element 

analysis (FEA) is used to calculate E, B, and torque (τ) magnitudes in the 

applications of electrical machines with spherical geometry. Spherical induction 

motor studies the most important examples are [14-18]. New results for the 

analytical calculation of E, B, and Mij sizes in spherical coordinates will 

contribute to shortening the calculation time and design process. 

In this study; Chapter 2, describes the methods used in the general solution of 

maxwell's equations in spherical coordinates. Chapter 3 presents the analytical 

solution of field vectors originating from a single-turn magnetic-core coil (i.e. the 

coil is wound in a magnetic, conductive material, in this case, iron) in a spherical 

coordinate system. Analytical formulas were obtained for the magnitudes of the 

vector field potential A, magnetic field B, and electric field E  formed by a single-

turn coil with a magnetic core structure in spherical coordinates and the 

consistency with the analytical formulas derived for the single-turn coil with air 

core in the literature was examined. Chapter 4, analytical formulas were suggested 

expressing A, E, and B for a multi-winding coil structure with a magnetic core. 

This was the first time in the literature. By utilizing the MatlabTM program, 

numerical values of A and B magnitudes on a plane surface were obtained under 

the assumption of axial symmetry in different coil structures and compared with 

FEA. In Chapter 5, the interaction problem of two concentric multi-winding coils 

is examined, and analytical formulas for self-inductance and mutual inductance 

coefficients are proposed. Chapter 6, an experimental setup was designed by 

determining the structures of two concentric coils with magnetic core and radius 

r1. The mutual inductance coefficient of the coil at different angles was calculated 

by measuring the voltage and current values in the experimental setup. 

Experimental results, the FEA analysis results, and the results of analytical 

formulas were compared. In the study, magnetic field B and electric field E 

magnitudes formed by multi-winding coil structures wound on magnetic core 

were calculated for the first time using a spherical coordinate system. In chapter 7, 

the results were evaluated.it has been presented that analytical formulas can be 

used in the preliminary design of various spherical systems, yielding much faster 

results compared to Three-dimensional FEA analyses. This is important for the 

analysis of spherical electrical machines. 



H. Yıldız et al.  An Analytical Solution of a Multi-Winding Coil Problem  
 with a Magnetic Core in Spherical Coordinates 

 – 90 – 

2 General Separated Solution in Spherical 

Coordinates 

The equations determining the function of electromagnetic systems are called 

Maxwell's equations. The solution of Maxwell's equations under the conditions of 

the boundary specific to the problem makes it possible to calculate B, E, and 

inductance coefficients. The differential form of Maxwell's equations for 

electromagnetic systems which consists of linear, isotropic, permeable, and 

conductive materials is given below [19]. 

 E      (Gauss Law)    (1) 

0 B          (2) 


  



B
E

t
    (Faraday Law)    (3) 


  



E
B J

t
 ò           (Maxwell Modified Ampère Law)                      (4) 

Here,   andò, are the magnetic permeability constant and the dielectric 

permeability constant of the field and  and J are the free electric charge density 

and the current density. E and B can be expressed in terms of scalar potential ( ) 

and vector potential (A), as follows [20]. 

2 0   

The terms of E and B are given below as the type of vector A [21]. 

 

 

E A

B A

i
 

2
2

2


   



A
A J

t
 ò        (5) 

Here, i and   indicate 90° degrees phase angle and angular frequency (R/s) 

respectively. The solution of Eq. (5) in the spherical coordinate system provides 

the representation of the vector potential in spherical coordinates. Since no current 

flows except the 
0r , 

0  coordinates in which the coil exists, we can write 0J  

outside the coil. 

2
2

2
0


  



A
A

t
ò         (6) 
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The homogeneous partial differential equation given by Eq. (6) is the 

electromagnetic wave equation, and A in linear systems with time oscillations can 

be written in the form below [12]. 

( , , ) ( , ) A A
i tr t r e 

                       (7) 

If A as the term of vector field potential given by Eq. (7) is written in Eq. (6), the 

vector Helmholtz equation is found. The vector Helmholtz equation allows us to 

find the solution to the problem based on the boundary conditions regardless of 

time. If k2<<1 when solving the Helmholtz equation, the term 
2 k   is 

ignored. 

2 0 A          (8) 

If 0 ( , )
0

A eA r   based on the assumption of axial symmetry, then the expanded 

form of Eq. (8) is found as Eq. (9) in spherical coordinates. 

2 2

2

2 2 2 2 2 2

( )1 1 cot 1

sin

  
    

 
A

rA A A A

r r r r r

   


 
                (9) 

If the partial differential equation given by Eq. (9) is solved with the method of 

the decomposition of the variables, the serial solution of A is obtained. Here, the 

term 
1(cos )nP   represents the 1st order Associated Legendre Polynomial.  

The equation given by Eq. (10) is expressed as the general separated solution in 

the spherical coordinate system [22] and so on. 

1 1

1

( ) (cos )


   n n

n n nA a r b r P                               (10) 

3 Calculation of Magnetic Field and Electric Field for 

a Single-Winding Coil with Magnetic Core 

In spherical electrical machines, rotor and stator windings are wound around a 

magnetic core. So, analyzes must be made in the spherical coordinate system.  

A spherical electric machine in its simplest form consists of a single winding coil 

structure wound on a magnetic core. In real applications, there are multi-winding 

coil structures on the magnetic core. For the first problem, the definitions and 

geometric features required in the solution of the problem are defined in spherical 

coordinates and shown in Figure 1. 

Figure 1a shows the magnetic sphere and the coil winding around it. The coil 

winding is wound outside the sphere structure and it is symmetrical concerning 

the z-axis. In Figure 1b, the coil structure is placed on the x-y plane. The coil is 
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placed in the r0 and θ0 coordinates in the spherical coordinates. By monitoring the 

electric and magnetic field components of the coil on three different fields of A0, 

A1 and A2, the representation of the vector field potential within these fields will 

be calculated. 

 

Figure 1 

The cross-section view of the sphere and the winding (a) 

The top view of the sphere and the winding (b) 

A(0), A(1), and A(2)  are the spherical cores, the gap regions inside and outside the 

radius r0  in which the coil is wound, respectively. Where r and θ are the 

coordinates of the calculated point, r1  is the radius of the spherical core geometry, 

r0 and θ0  are the coil coordinates, µ1 and µ0  are the magnetic permeability 

coefficients of the calculation points, and µ=µ1/µ0  is the respective magnetic 

permeability coefficient. Consider region A(0) (r<r1), the second term in Eq. (10) is 

neglected because it is divergent. Consider region A(1) (r1<r≤r0), both two terms 

are used together. Consider region A(2) (r≥r0), the first term in Eq. (10) is 

neglected because it is divergent. In this case, A is written separately for each of 

the three regions as follows; 
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( , ) ( ) (cos )

( , ) (cos )


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

 









n
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n n n

n
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A r a r P

A r b r c r P

A r d r P

 

 

 

                (11) 

Maxwell's equations are valid for all points where physical parameters are 

constant. However, in some cases, physical parameters may vary such as 

geometry, current, µ, ò  etc. In these cases, the boundary conditions given in  

Eq. (12) become valid [23]. 
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2 1

2 1

2 1

2 1

( ) 0

( )

( ) 0

( )

  

  

  

  

n E E

n H H J

B B n

D D n s

                (12) 

Here D is the electric current density and 
s  is the surface charge density, if the 

conductivity values of the two substances are finite, the surface current density 

J=0, and equations can be rearranged. 

2 1( ) 0  n H H                   (13) 

In the coordinates of 1r r  and 0r r , there is no electric field change in the 

direction of the surface normal. Since no current occurs on the sphere surface, 

J=0. On the surface where the winding is (
0  0r r ), J is non-zero. If it is 

solved along with the representative solutions given by Eq. (1), four equations 

with four unknowns are obtained (14). 
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                      (14) 

The obtained common solution to equations of Eq. (14), gives the coefficients of 

an, bn, cn, and dn presented in Eq. (15). Using Eq. (11) and Eq. (15), A created by a 

single-winding coil that is wound on the magnetic core can be calculated. 

1
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 
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                   (15) 

E and B is calculated with the help of Eq. (16) depending on A. The expanded 

form of B is presented in Eq. (17). 
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                    (17) 

Eq. (17) gives the general solution for the core structures with different magnetic 

permeability. In Eq. (17) the particular case of µ=1 gives the particular case of the 

analysis of a coil structure with an air core in spherical coordinates. When Eq. 

(16) and Eq. (17) are analyzed, it is seen that they are compatible with the 

equations given in the literature [22]. 

4 Calculation of the Integral Form for a Multi-

Winding Coil with a Magnetic Core 

By Eq. (17), the analytical form of B is presented for a single-winding coil wound 

on a sphere having a magnetic permeability of µ1 and a radius of r1. However, in 

practice, coil windings are wound in multiple windings to include a certain region 

(Figure 2). For the regions of A0, A1 and A2, the integral form of A formed by a 

multi-winding coil is given in Eq. (18). Where ra, rb, θa, and θb are the starting and 

ending coordinates of the coil winding, N is the number of the coil winding, and S 

refers to the surface field of the coil winding (Figure 2). 

 

Figure 2 

The structure of the multi-winding coil 
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By the principle of superposition, if the integral is taken on the coefficients of an, 

bn, cn, and dn given in Eq. (15), and on the boundaries of ra, rb, θa, and θb the 

coefficients representing the structure of a multi-winding coil is obtained. 
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                                  (19) 

Assume that the region with the coil winding is divided into two parts from the 

radius of r0 to calculate the effect of multi-winding in the region of Ac ( ar ≤ r 

≤ br ). The coils that need to be calculated in the range of ar < r and in the Ac(r,θ) 

region, perform as in the A2  region, and the coils in the range of r≤ br perform as 

in the A1  region. In this case, the total vector field potential formed by two regions 
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helps to calculate the magnitudes of A, E, and B approximately for this region. 

This assumption gives better results in case the value of  b ar r r  is smaller. 
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The coefficients presented in Eq. (19) and Eq. (20) are used to calculate the 

magnitudes of A and B given in Eq. (21) and Eq. (22). Figure 3 shows how to 

calculate A and B. With the help of the Matlab program, the analysis parameters 

given in Table 1 are calculated using the analytical formulas given in Eq. (21) and 

Eq. (22). The obtained numerical results are given in Figure 4 and Figure 5. 

 

Figure 3 

A, E and B calculation flowchart 

 

Table 1 

The analysis parameters 

Parameter Value    Parameter Value 

I  1 A    
0  45  

0( / )H m   74 10       10  

( / )H m  1, 10, 100    22.5 ,30 ,45    

0( )r mm  34   N 100 

1( )r mm  30     

( )r mm  0 50 r       

 

Figure 4 shows the variation with µ of B and A on a sphere of radius r1 of a coil 

placed in ra, rb, θa, and θb coordinates. The values of A in regions far from the coil 

winding have small and smooth transitions. Where θ=45° is the direction in which 

the magnetic effects are the highest. Thus, the graphic in Figure 4f is the one that 

the magnetic effect can be observed most clearly. It is obvious that as µ gets 

larger, magnetic effects accumulate on the surface of the sphere. 
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 a b 

c d  

e f 

Figure 4 

For θ=22.5° the graphic view of the variation of A for different µ values (a). For θ=22.5° the graphic 

view of the variation of B for different µ values (b). For θ=30° the graphic view of the variation of A 

for different µ values (c). For θ=30° the graphic view of the variation of B for different µ values (d). 

For θ=45° the graphic view of the variation of A for different µ values (e). For θ=45° the graphic view 

of the variation of B for different µ values (f). 

Figure 5, shows the variations of B and A on the x-z plane with the different µ 

values. When Figure 4 and Figure 5 are examined, it is witnessed that as µ 

increases, the magnitudes of the magnetic field and the vector potential come 

closer to the sphere surface. 

The coil and sphere geometries, the features of which given in Table 1 with the 

ANSYS Maxwell program were formed under the assumption of 2D axial 

symmetry. As the magnetostatic analysis, three different analyses were performed 

as µ=1, µ=10, and µ=100. 
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a b 

c d 

e f 

Figure 5 

For µ=1, the variation of B on the x-z plane (a). For µ=1, the variation of A on the x-z plane (b).  

For µ=10, the variation of B on the x-z plane (c). For µ=10, the variation of A on the x-z plane (d).  

For µ=100, the variation of B on the x-z plane (e). For µ=100, the variation of A on the x-z plane (f). 

The distribution of the magnitude of the magnetic field B on the x-z plane which 

was obtained with the ANSYS Maxwell program is presented in Figure 6. When 

Figure 6 and Figure 5 are observed, it is seen that the FEA results and the 

distribution of the magnetic field obtained from analytical calculations give 

similar results. 
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 a   b   c 

  Figure 6 

 For ANSYS Maxwell µ=1, the distribution of the magnetic field on the x-z plane (a). For ANSYS 

Maxwell µ=10, the distribution of the magnetic field on the x-z plane (b). For ANSYS Maxwell 

µ=100, the distribution of the magnetic field on the x-z plane (c). 

In Figure 7 for θ=30° and θ=45° the variation of B on r is compared with the FEA 

results. When the results are assessed, it is seen that the magnitudes of the 

magnetic field obtained with analytical formulas are consistent with the ones 

obtained from the model of the FEA. The differences in the results become 

apparent around the coil geometry. In this case, in the calculation of multi-

winding coil results, the formula used for the region Ac among the coil windings is 

valid for small values of rb-ra. When the distance between coil geometries 

expands, the differences increase due to the single-coil approach. 

 

a b
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c d

e f 

Figure 7 

in the coordinate of θ=30° for µ=1, µ=10, µ=100, the comparison of the magnitudes of the magnetic 

field with the FEA results (a)(c)(e). In the coordinate of θ=45° for µ=1, µ=10, µ=100, the comparison 

of the magnitudes of the magnetic field with the FEA results (b)(d)(f). 

5 Calculation of Inductance Coefficients 

5.1 The Self-Inductance Coefficient 

In electromagnetic systems, the variation of the magnetic field causes an electric 

field. The voltage is induced on a ring-shaped copper wire that is exposed to a 

variable magnetic field. The Faraday Law gives the relationship between the 

current generated in the wire exposed to a variable magnetic field and the 

variation of the magnetic field [19]. If the connection between E and A is used, 

the voltage V in the wire can be calculated applying the magnitude of A; 

The voltage generated in the N coil winding; 
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The innermost integral is the voltage formed by a single-winding coil 0 0( , )r   on 

itself; Here, E is taken as 0 0( , )E r  . This voltage is integrated on the cross-section 

and multiplied by the number of windings per unit area. 
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Where A,  c
A , 

0 0 0dS r dr d  and 
0 0sindr r d   on the cross-section, if the 

equation is arranged by substituting Eq. (24) with Eq. (21); then 
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Eq. (27) gives the self-inductance coefficient of a multi-winding coil. Since the 

integral process cannot be calculated analytically, they are calculated numerically. 
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5.2 The Mutual Inductance Coefficients 

To calculate the mutual inductance coefficient, let's consider two concentric 

single-winding coils in spherical coordinates as seen in Figure 8a. When a variable 

current flows on coil 1, a variable magnetic field is generated in the air and 

magnetic core. An electromotive force (emf-voltage) is induced on Coil 2 due to 

the changing magnetic field. Mij is used to calculate the interaction between the 

two coils. Here,  is the angle between the axes of the coils,  and  is the 

angular coordinate of the coils concerning their set of axes, a and b are the r 

coordinates where the coils are located. '  and ' are the angular coordinates 

concerning the fixed set of axes of the second coil. The representation of the coils 

as multi-windings is given in Figure 8b and Figure 8c. 

 

Figure 8 

Two concentric single-winding coils (a), two concentric multi-winding coils (b),  

three-dimensional view (c) 

If a<b in the single-winding coil method, the mathematical form of the voltage 

that the first coil generates on the second coil is given in Eq. (23). The coil with 

the N1 number of windings and radius a is located in the ∝ position in spherical 

coordinates. The vector potential of
(2) ( , ')iA b  which the coil creates is given by 

Eq. (21). 
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Using Eq. (21) and Eq. (23), the mathematical form of the voltage expression 

generated in the second coil with the N2 number of windings and located in b  and 

  coordinates is given below; 
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Here, if r=b and ' dS rdrd ; then 
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For a multi-winding coil, where a1, a2, b1, and b2 are the coil radius, 
1 2 1, ,   and 

2 are the angular coordinates concerning their set of axes,   is the angle 

between the coil axes, the mutual inductance coefficients (
12M ) of two coils is 

computed with Eq. (31) (Figure 8). Figure 9 shows how to program calculate Mij 

for each Pi(r,θ), 

 

Figure 9 

Mutual Inductance Coefficients 
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The mutual inductance coefficient is of great importance in the time-dependent 

analysis of wireless energy transfer and mobile electrodynamic systems. Magnetic 

field magnitudes in the spherical coordinate system under the assumption of  

2-dimensional axial symmetry can be calculated rapidly with the programs of 

ANSYS Maxwell, FEA, etc. However, if there is a second coil in the geometry 

that breaks the axial symmetry, it becomes necessary to design and calculate the 

models in 3 dimensions. In this case, the FEA program requires a long, time-

consuming analysis by using a large number of elements. The fact that the 

analytical equations are given in Eq. (31) can be calculated easily and quickly will 

provide the result in a short time at the preliminary design stage. 

Table 2 

The mutual inductance analysis parameters 

Parameter Coil 1 Coil 2 

r1 30 mm  

a1, b1 36.5 mm 44 mm 

a2, b2 41.5 mm 49 mm 

1 1,   75 ° 75 ° 

2 2,   105 ° 105 ° 

   0° 0°≤  ≤360° 

µ 1, 10, 100, 1000 

1 2,N N  180 150 

D1, D2 0.75 mm 0.5 mm 

R1, R2 3.35 Ω,  2.6 Ω 

R3 10.4 Ω  

   

The results of the FEA program and analytical calculations by using the geometric 

properties given in Table 2 are presented in Figure 10. The problem parameters 

discussed in the experimental studies reviewed in Chapter 6 were also chosen the 

same values. It is seen that the mutual inductance results obtained from analytical 

calculations and the FEA model are compatible. While calculations take 60 

minutes in the FEA model, calculations are completed in as little as 1 minute with 

analytical formulas using the suggested approach on the same computer. 

Therefore, the suggested approach can be prefered for the necessary calculations 

at the preliminary design stage rather than the FEA application. 
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Figure 10 

The comparison of the FEA and analytical calculations at different values of µ 

6 Experimental Results 

In order to compare the analytical formulas found for mutual inductance and self-

inductance coefficients with the experimental results, an experimental setup that 

can be produced with a 3D printer was designed (Figure 11). The experiment 

setup consists of a fixed coil (Coil 1), a moving coil (Coil 2), a magnetic core and 

carrier legs. The descriptions of the items of the experimental setup are given in 

Table 3. The design parameters are given in Table 2. 

  

Figure 11 

the Experiment Setup 
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Table 3 

The descriptions of the experimental items 

After the body parts are produced with the 3D printer, 180 turns of Ø0.75 mm 

diameter of copper wire are wound on the body (Coil 1), and 150 turns of Ø0.5 

mm diameter of copper wire are wound on the second body (Coil 2). By modeling 

the coil structures in the ANSYS Maxwell program, the self-inductance 

coefficients are compared with the experimental results in Table 4. It was 

observed that the values of the inductance coefficients in all three studies were 

quite compatible with each other. The devices and the models of which used in the 

experiment are given in Table 5. 

Table 4 

The comparison of self-inductance coefficients 

Self-inductance Coil 2 Coil 1 

Measurement 

 

4,26 mH 2,86 mH 

The Maxwell program  5,196 mH 3,729 mH  

Analytical results  

 

4.662 mH 3.334 mH 

Table 5 

The devices used in measurements and their features 

Device Type Brand/Model 

Oscilloscope  AA TECH/ADS-3072B Digital Storage Oscilloscope 

 
 Gw INSTEK/GDS-1022 DSO 

Power Unit  Gw INSTEK/SFG-2107 Function Generator 

Inductance Meter  UNI-T/UT600 

Multi-meters  BRYMEN BM510, FLUKE 106  

In the experiment, Lii was measured with the UNI-T measuring device. Since it 

was not possible to measure Mij directly, the current and voltage values in Coil 1 

and Coil 2 were measured and calculated with Eq. (32) and Eq. (33). 

 m axI I cos wt                     (32) 

1

2 12
dI

e M
dt

                    (33) 

Number Description 

1 The body part on which the fixed coil is wound 

2 The windings of the fixed coil 

3 The body part on which the moving coil is wound 

4 The windings of the moving coil   

5 Angular measuring lines marked at an angle of 15° on the 

fixed body to measure at different angles. 

6 The central rotation point 

7 The magnetic Sphere 
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Figure 12 

Electrical circuit diagram 

Figure 12 shows the experimental setup circuit. The fixed coil is connected in 

series with a 50 Hz, 12 V of power supply with a 10.4 Ω of resistance, and the 

current and voltage on the fixed coil were recorded with the voltmeter (V1) and 

ammeter (A1). R1 and R2 are due to coil wires. R3 is used for limiting current. 

The voltage value formed by connecting the moving coil leads to the voltmeter 

(V2) was recorded in the range of 0°-360° by changing the   angle at 15° 

intervals. 

 

Figure 13 

M12 at different   values, the comparison of experimental results, analytical results and FEA results 

Based on the equivalent circuit approach from the gathered data, M12 was 

calculated using Eq. (31). The comparison of the data obtained from the 

experimental results with the analytical formulas and the FEA results is presented 

in Figure 13. It is evident that the analytical calculations made for M12 are 

consistent with the experimental results and the FEA results. 
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Mean square error (MSE) [24] and root mean square error (RMSE) [25-27] are 

common methods use to compare the results of actual measurement values and 

calculation values. D is the number of elements, yn is the measured values, and 
ny  

is the located values. So, the analytical and FEA RMSE values are calculated by 

Eq. (34) of 0.0714 and 0.1073, respectively. 

Conclusions 

In this study, the terms of B and E were calculated analytically by forming the 

geometry of a multi-winding coil with a magnetic core in spherical coordinates. 

Analytical formulas were derived for the multi-winding coil approach, given in 

Eq. (22). Since there are no existing analytical terms referring to the coils with the 

magnetic core in spherical coordinates, the obtained results were compared with 

the results of an air-core coil in spherical coordinates in the literature. The results 

were found to be consistent with the literature [22]. In order to view the effect of 

the magnetic sphere, different µ values and magnetic field distribution in different 

directions were examined. As a result of the analyses, it was observed that as the µ 

value increases, B accumulates towards the surface of the sphere (Figure 4).  

The coil structure with geometric properties is given in Table 1, the magnitudes of 

which B and A were obtained by using the formulas given in Eq. (22), and the 

FEA model was designed under the assumption of axial symmetry. When the 

results were examined, it was seen that the results of the analytical model and the 

FEA model were consistent (Figure 5 and Figure 6). 

The experimental setup given in Figure 11 was created as the analytical and the 

FEA model. Lii for both coils in the experiment (Table 5) and Mij at different γ 

angles were computed by analytical and FEA models. It was observed that the 

numerical results were consistent with the experimental results (Figure 13).  

When coils are intertwined, a small collapse is detected in the analytical solution. 

This collapse is caused by some of the windings that are in the reverse direction 

during the intertwining of the coil windings. However, the results gathered by 

analytical calculations are quite compatible with the experimental results. It takes 

15 minutes on an average computer to create a three-dimensional FEA model and 

calculate the mutual inductance coefficient at an angle of 15°. The same results 

are measured in only 15 seconds using the developed analytical method.  

The obtained analytical results and their computation times are considered, it is 

seen that analytical results are useful. The FEA results are considered, despite the 

small deviations between the analytical solution and the experimental results is 

seen that the results obtained by the analytical method are acceptable. Considering 

the high cost of the FEA programs and long computation times in three-

dimensional models, the importance of using the suggested analytical solution is 

evident as a fast and free design tool in scientific studies. 
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