
Acta Polytechnica Hungarica Vol. 11, No. 6, 2014

 – 207 –

A Flexible System for Request Processing

in Government Institutions

Miroslav Zarić, Milan Segedinac, Goran Sladić, Zora Konjović

University of Novi Sad, Faculty of Technical Sciences,

Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia

E-mail: miroslavzaric@uns.ac.rs, milansegedinac@uns.ac.rs, sladicg@uns.ac.rs,

ftn_zora@uns.ac.rs

Abstract: This paper presents a solution for an electronic document handling system for

government institutions. The proposed solution introduces a new system aimed at handling

various administrative requests with minimal disruption to standard end user habits as well

as minimal requirements in terms of end user training. During the development and testing

phase, chosen software architecture has proved itself as robust and adaptable to requested

changes. As the end user submits a request from a familiar office suite environment, usual

problems, such as refusal to engage with new software and complaints about a steep

learning curve are avoided. The approval of requests is executed through the standard web

application. The system relies on well-defined user roles and an established workflow. The

proposed solution can easily be adopted for handling various types of requests, as long as

their processing fits into the deployed workflow. This system is designed with specific

intention to be a low-barrier entry electronic document management system for existing

administrative workers. Use of a standard office application suite for document submission

allows existing users easy transition. This eliminates the need for user training and

consequently reduces the disruption to the normal workflow.

Keywords: document management; workflow management; e-government; active

documents

1 Introduction

E-government aims at enhancing the efficiency of governmental administrative

processes, improving the quality of their services and reducing operational costs

through the application of ICT (Information and Communication Technology)

technologies. In this paper we present a system for handling administrative

requests in a digital form (e-requests).

One of the trends in the development of e-government systems is to put emphasis

on electronic document management (EDM) systems. EDM systems deal with the

management of documents [1]. The document may be a part of a particular

M. Zarić et al. A Flexible System for Requests Processing in Government Institutions

 – 208 –

business process, in the sense that it requires access to the document by individual

staff undertaking separate activities according to a particular sequence guided by

some procedural rules [2]. Workflow Management Coalition defines workflow as

the computerized facilitation or automation of a business process, in whole or in

part [2]. In computer science literature, business process and workflow terms are

often used interchangeably; in this paper we regard them as synonyms.

Workflow management system (WfMS) is a system that completely defines,

manages and executes workflows through the software in which the order of

execution is driven by a computer representation of the workflow logic [2]. One of

the main advantages of WfMSs is moving the focus from the automation of single

process activity, to the overall management and improvement of the business

processes. EDM systems are usually implemented using the document-oriented

WfMS. Due to their advantages, government agencies tend to implement their

services on document-oriented workflow platforms. The problem of document

processing has long been recognized as a critical aspect in the enterprise

productivity [3, 4, 5]. In decentralized working environments, where many people

affect the contents of documents, efficient collaboration on document editing is a

key feature, and a collaborative environment must take care of collisions that can

arise from simultaneous access to the documents. This problem has been the focus

of many research papers [6, 7, 8, 9, 10, 11, 12].

We propose an integrated system with the aforementioned characteristics through

a combination of different, readily available, technologies. A standard word

processing office application is used for the creation and direct submission of

requests to the processing web application. Therefore, users continue to use the

same application they have used for creating the printed request forms. The web

application serves as a central module and as a standard access point for users

involved in request processing and approval. A workflow engine is embedded in

the web application. Access to the system is controlled by an authentication and

authorization modules. Internal document format is XML-based, allowing for

future expansions. We have observed custom business processes in different

government institutions, and a case study described in this paper is developed for

the local provincial government.

The rest of the paper is structured as follows. Section 2 reviews the related work.

Section 3 presents basic motivations and requirements. Process description for

chosen case-study is presented in Section 4. The application architecture overview

is given in Section 5. At the end of the paper, a conclusion is given with some

outlines for further development.

Acta Polytechnica Hungarica Vol. 11, No. 6, 2014

 – 209 –

2 Related Work

This section covers two topics: research on document-based workflow systems

and research on the application of office documents enriched with software

components - active documents.

In [13], authors propose a methodology for developing hypermedia information

systems on the basis of document-based workflow. The proposed methodology

focuses on corporate systems that require the capability of handling complex

business functions. It adopts a document-based perspective consistently through

all phases. The work reported in [14, 15] addresses the problem of creating an

information infrastructure and services for distributed and virtual organizations,

and, particularly, the integration of two key enabling technologies, namely

workflow and document management. Paper [5] proposes an XML document

centric workflow management system that exploits the advantages of the XML

documents, while having the full functionality of workflow management system to

execute other activities. Paper [16] proposes a framework for document-driven

workflow systems that requires no explicit control flow and the execution of the

process is driven by input documents. The solution presented in [17] extends web-

service based workflow engines with human interaction via email. A document-

based dynamic workflow system, that is particularly suitable for agile business

processes in which required tasks and their sequence flow may need to be

determined dynamically, is proposed in [18]. Experiences in using Java Business

Process Management (jBPM) for document flow are given in [19].

Any document workflow system will face the challenge of collaborative editing of

document content. As stated in [12]: "Collaborative editing enables a group of

people to edit documents collaboratively over a computer network." The purpose

of collaboration is to achieve a common goal. Most group editing tools are using

the copy/modify/merge paradigm, supported by three methods executed on a

shared repository storing multi-versioned objects: checkout, commit and update.

In collaborative editing two major principles of reconciling different versions of a

document have become predominant: state-based merging approaches often used

in versioning systems such as CVS [20], and Subversion [21], and operation based

approach [22]. In recent years, since XML has become a de-facto standard format

for representing structured data, special attention is given to collaborative editing

of XML documents. Usage of XML documents presents a challenge and an

opportunity, since most conventional operation based approaches (algorithms)

such as dOPT [6], GOT [23], GOTO [24], SOCT2 [25] and similar [26, 27], view

documents as linear structure. An approach to collaboration over hierarchical

documents, treeOPT algorithm as well as asyncTreeOPT (for asynchronous

editing) is described in [12]. In [28] collaborative editing of XML documents (in

peer-to-peer environments) has been further discussed.

Term active document designates a document that, besides the data and structure,

contains some software components (e.g., macros or scripts) [29]. Since it

M. Zarić et al. A Flexible System for Requests Processing in Government Institutions

 – 210 –

combines data with processing components, an active document can embed

processes such as data retrieval, data acquisition, transactions, workflows or

documents archiving [30]. An overview of several case studies in which active

documents are used follows.

In the United States Patent and Trademark Office (USTO) report [31], the usage

of an active Word document named Electronic Filing System – Application Body

eXtensible Markup Language, EFS-ABX, was proposed for the creation of patent

application specification in XML format. In the report the following benefits of

using active Word document were identified: 1) ease of use, 2) simplified image

management, and 3) simplified client side workflow. In the report [32], National

Institute for Health and Clinical Excellence (NICE) has proposed active Microsoft

(MS) Word 2007 documents for the creation of guidance documents in XML

format. The following advantages of active MS Word 2007 documents have been

identified: 1) ease of the manipulation with XML files, 2) many people have the

appropriate Microsoft Office skills, 3) there is a degree of backward compatibility

to MS Word 2003. Paper [33] describes an active Word document that creates an

environment for editing the material in the publishing industry. The paper puts

emphasis on the advantages of using XML. The research presented in the paper

[34] is an example of applying active Word documents in medical practices. The

paper states that the most important benefit of using Word for record keeping in

medical practice is the fact that most of the doctors are already familiar with

Word, so there is no need for additional training.

3 Basic Requirements and Motivation

Our case-study system is developed to improve internal e-government services for

the provincial government of the Autonomous Province of Vojvodina, in the

Republic of Serbia. In such an institution, there is a substantial number of

documents in circulation, and their prompt handling and tracking becomes a

challenging task. Furthermore, permanent storage of large quantities of paper

documents, often in multiple copies, is a growing problem. These documents are

commonly created using a word processing editor (commonly some office suite,

usually MS Office), printed and then handed over to an employee in charge of

handling specific requests. This is a starting point of a business process in which

documents proceed along the chain of employees, each of them making some kind

of a decision about the document and/or modification of the content. Handling

requests in such a manner has not changed much for a substantial amount of time.

Although this type of request processing system is common, easy to understand,

and well accepted, in a digital era and e-government environment it has its

shortcomings: the overall process is slow, printing a large amount of documents

just for internal use is a huge waste of resources, and, as mentioned before, the

storage space requirement becomes unacceptable. However, even though the

Acta Polytechnica Hungarica Vol. 11, No. 6, 2014

 – 211 –

documents are already electronic at its origin, paper documents are, in some cases,

still required by applicable laws or internal regulations, and they cannot be, in the

near future, completely avoided and removed from the business process.

In order to alleviate some of the problems, the provincial administration was

seeking an appropriate solution for electronic handling of internal requests. Such a

system has to provide the same capabilities as the paper-based system, but should

accelerate the whole process, automatically notify relevant participants, and make

it easier for them to perform their duties. Although there are well established

solutions for electronic document management, and some of them are already

deployed in the provincial government, there were some special requirements that

lead to the development of a specialized system. The current business model for

request handling, as well as their special demands and requirements were obtained

through a series of interviews with employees and managers with the following

findings:

 MS Office is already in use as the standard office suite, and employees

have experience with using it;

 A set of standardized request forms exists (as Word documents);

 There is an established workflow for processing internal requests;

 Regular users should experience minimal change during transition to the

new system;

 The system should be able to adapt to any possible future changes in the

workflow;

 The system should alert the relevant participants if a document is waiting

for their attention;

 The system should allow for easy addition of new form templates;

 The system should be accessible from the local intranet.

Based on these premises and requirements, a number of different issues had to be

resolved, such as document representation, appropriate document storage,

appropriate way of representing the business process, and the appropriate

notification of the users. After considering different options, we have come to the

following conclusions:

 XML, with its inherent support for structured data, has been chosen as the

format for document representation - such a choice is further supported by

availability of the software for XML manipulation; In accordance with this,

a native XML database will be used as the document storage module;

 It would be beneficial for the system to use MS Word to fill-in and submit

electronic requests. Thus, end users would continue to use a familiar

environment for filing requests. To have a modifiable process workflow, a

workflow (process) engine should be used;

 Since the application core should be accessible over the intranet - it is

created as a web application, and

 Apart from MS Word, other parts of this integrated system should use

open-source and free software to minimize the cost of service.

M. Zarić et al. A Flexible System for Requests Processing in Government Institutions

 – 212 –

A document management system, namely Alfresco, is already implemented in the

provincial government institutions. However, this system is preferably used for

specific purposes, usually by higher level administrative employees. On the other

hand, the request processing system is intended for widespread use, as almost any

administrative employee is allowed to generate a request. Alfresco is a general

purpose document management system, and it has a lot of advanced

functionalities, but it also takes some training for all the users to get used to it. A

large base of users require additional administration in the system, with carefully

crafted user groups and permissions. Since most of these functionalities are

advanced, and rarely needed by ordinary users only interested in submitting the

request, simplicity was the most important issue.

Although the proposed system inherits most of the features commonly present in

any document management system, its main advantage is its overall simplicity.

For ordinary users, creating a new request is reduced to filling out a Word

document template.

All requests are transformed to a single document type – XML, simplifying later

operations on the document content. Any later interaction with the system is done

through a web interface. As an additional advantage, the web pages used for

presenting the content to a user, are created on-the-fly by converting the request

itself (in XML representation) into HTML format. Therefore, only the skeleton

HTML is manually coded, while any request conforming to the defined XML

schema will be properly transformed for viewing and/or editing. These two

features enable easy integration of new request types to the system.

4 Process Description

Figure 1 displays the process graph in standard Business Process Modeling

Notation (BPMN) notation. This graph represents a blueprint for process

execution and is used to control the program execution (instead of hard coding the

business logic into the application). The main concepts are nodes, transitions and

tokens. Tokens are used to track the process execution. There are different types

of nodes, and a task node is used to describe a point in the process where human

intervention is required. The process execution progresses by moving the main

(root) token from the start node to the end node along the possible paths defined

by the graph.

One process instance (one execution of the process graph) is started when an end

user submits an eRequest through the Word active document template. Users

involved in the process can play different roles: Originator, Supervisors, Director

of Administration, Authorized Deputy Directors, Responsible Chief Officers, and

Executors.

Acta Polytechnica Hungarica Vol. 11, No. 6, 2014

 – 213 –

Figure 1

Process graph

The Originator prepares the request in MS Word by filling out a special template

document, prepared as an active document that contains a macro enabling it to

directly communicate with the server-side application. When the document is

ready, the end user will submit the request directly from within the document by

pressing the “Send” button embedded in the template. If the system accepts the

request as legitimate (the user is registered in the system and entitled to submit the

request), the task for its supervising officer is created (task Supervisor's Approval

in the graph). During the task assignment phase, an automatic email message

notifying Supervisor is generated (this is also automatically done for all other

tasks). Only the supervisor relevant to the current user (in the same organizational

unit) will receive the task. In any task, an actor can accept, decline or modify and

accept the request. If Supervisor declines request, it is forwarded to the eRequest

Rejected Mail Notification node, and appropriate notification is sent to the request

Originator.

If the Supervisor approved the request, it is forwarded for further approval to the

Approval – Director of Administration task. The Director of Administration

reviews the task, and as before, if it is denied, the process enters the eRequest

RejectedMail Notification node. If the request is to be approved, he/she has to

M. Zarić et al. A Flexible System for Requests Processing in Government Institutions

 – 214 –

choose one or more subordinate users that the request will be passed on. If

Director of Administration assigns request to more than one of her/his Deputies,

an implicit “dynamic forking” (when more than one approval at the same level of

hierarchy is needed, but the exact number of actors is determined only at runtime)

is performed, and execution path (marked with larger dashed line) is multiplied

and child tokens created. The main (root) token of the process will stay in fork

node until all generated child tokens are collected at the join node. The join node

of this fork is presented as the last parallel gateway join node before the email

eRequest Approved Mail Notification node.

Similar decision-making and forking is performed at the Approval – Authorized

Deputy Director task node, when the request is assigned to multiple Responsible

Chief Officers. The rest of the process execution is straightforward: the

Responsible Chief Officer reviews the request, decides if it's acceptable, can

approve it and pass it to his/her subordinates for execution, or can mark this part

of the request handling process to be executed by himself. Finally, tasks assigned

to Executors can only be executed. In this phase, since all necessary approvals

have been obtained, the request cannot be denied final execution.

The process will make the transition to the final eRequest Approved Mail

Notification node only when all tasks are completed. If the request has been

rejected at any phase all pending tasks will be canceled upon entry to the eRequest

Rejected Mail Notification node. After sending a mail notification to Originator

(either with final approval and success notice, or with rejection notice) the process

will enter to its final End state and will be archived.

Additional requests were introduced when the system went into production – the

task assignment model has to be extended to support not only actors and groups,

but to allow for: a) replacement for a specific user, b) reassignment of already

assigned group tasks.

Replacement for specific user was needed to accommodate situations where an

actor may be occupied for prolonged periods of time, and they have an

opportunity to re-delegate their tasks to a registered replacement, but keep

ownership of the tasks. In comparison to standard group tasks, the task stays

assigned to the originally intended actor, but upon completion, the record is made

that the task was performed by a replacement on their behalf. This implementation

required user administration and user handling model to be extended.

The second request came into focus when it became obvious that some tasks,

required to fulfill the request, can take substantial time to accomplish, and that it is

possible, although rare, that one person has indeed started the task execution, but

is currently unable to complete it. In the standard assignment model, tasks that

were visible to the group are changed to personal tasks, when the final assignment

to one actor (from the group) is performed. Other members of the group can no

longer access that task, unless the assigned actor (or an administrator) returns the

task to the group. Although this solution is acceptable, since the assigned actor

Acta Polytechnica Hungarica Vol. 11, No. 6, 2014

 – 215 –

sometimes is not in position to do it her(/him)self, so in order to speed up the

overall process execution, as well as to lower the burden on system administrators,

the system is extended to allow other members of the group to see such tasks. The

task is displayed alongside information to whom it is currently assigned, and when

its execution was started. Other members of the group are allowed to “capture” the

task and thus perform reassignment.

5 Software Architecture

In this section we’ll present the global architecture of the implemented system,

document structure (active documents), and software architecture of the server-

side application.

5.1 Global Architecture

The global architecture of the system is presented in Figure 2. Required

authentication is performed by user’s operating system, wherein authentication

information is stored on the LDAP (Lightweight Directory Access Protocol)

server. The employee submits their request to the e-request application by using

active documents and MS Word. An embedded macro transforms the request to

XML document. Upon receiving the document, an e-request application creates an

instance of the process described in the previous section and starts its execution.

Users involved in request processing access the application through the web

interface, and the application server consulting LDAP server performs

authentication.

The server-side of the system is implemented using the Java open source

technologies. The e-request application code relies on the different open source

libraries such as JBoss jBPM workflow engine and the Xalan XSLT processor.

The access control is performed by the COBAC (context-sensitive access control

model for business processes) [35, 36] implementation. The received requests are

stored in the eXist native XML database, while access control policies and

workflow data are kept in the MySQL database. We used Apache Tomcat as the

application server.

The system is implemented in the environment of a local area network. Access

from the outside world is guarded by applied network policies. Additionally, some

measures are implemented on the server side in order to protect the system from

involuntary errors or malicious attacks. Wireless network access to the local

network, due to the sensitivity of governmental institutions, is restricted to

registered computers and users.

M. Zarić et al. A Flexible System for Requests Processing in Government Institutions

 – 216 –

––––

Figure 2

Global architecture

As macro-enabled Word documents (discussed in following section) are used to

create requests, upon receiving the request on the server side, the XML is checked

for conformance with the defined XML schema. In addition, the incoming XML

string is checked for XSS-like (Cross Site Scripting) attacks. This step is

necessary since XML is later transformed to HTML, and any embedded

JavaScript could potentially be a threat. The SQL Injection attacks are not possible

since request data is stored exclusively in the native XML database, and only

process data, generated internally, is stored in the MySQL database.

Although potential for CSRF (Cross Site Request Forgery) in the restricted local

network is relatively low, a proper protection is implemented on the server side.

This type of attack is checked for when the request editing and/or approval phase

is executed and HTTP requests are being processed.

Databases (both native XML and MySQL) are on separate servers, and access is

allowed only from application server, with appropriate user credentials. Access

from other networks and other computers in the local network is forbidden by

applied network and server policy rules.

If outside access to the system is to be allowed in the future, it will be performed

through a server in a DMZ, over an HTTPS connection. This server will be

routing traffic to the application server in the local network.

Acta Polytechnica Hungarica Vol. 11, No. 6, 2014

 – 217 –

5.2 Active Documents

The active documents are implemented as MS Word 2007 documents, with

processing component implemented as VBA macros. Analysis of the preexisting

request forms documents showed that their primary contents are: free text input

fields, checkboxes, tables, and images. The active documents were designed to

automate the document conversion to XML (in further text XML requests),

according to the proposed XML Schema, and send it to the server. The overall

schema is shown in Figure 3.

Figure 3

The overall XML Schema

Each XML request consists of two sections: heading and content. Heading

contains the request submission date (submissionDate), the employee’s data

(submitter, organizationUnit), and document type (requestType). Other

information (typed by the user into active document) is mapped to the subelements

of the content element. When designing active documents to serve as eRequests

templates, a possible solution was to use Rich Text Content Controls for free text

input fields, and to map them to the XML Schema. However, such an approach

tends to be inappropriate because of a vast number of forms, and the frequent need

to modify them. Instead, we have simplified the documents by using two-column

tables in active documents to represent text input fields. The first column contains

M. Zarić et al. A Flexible System for Requests Processing in Government Institutions

 – 218 –

field names, while the second one contains field values (Figure 4). Such an

approach allowed us to observe each table row as an ordered pair (field_name,

field_value). Adding a new text input field to an existing form is then reduced to

inserting a new row into the table. The left column is then locked to avoid

accidental editing. Such an approach does not require macros to be altered for

each new field.

Figure 4

Request form containing text input fields

Some forms, in addition to the text input fields, contain checkboxes. Here, a

column is added to the table (Figure 5). In such a table, each row is observed as an

ordered triple (checkbox, field_name, field_value).

Figure 5

Request form containing checkboxes

Some request forms contains tabular data (Figure 6). Data from tabular forms are

mapped to tabularFields XML element, containing rows elements. The first row

contains XML elements representing table columns definitions, while other table

rows cells are mapped to the variableField elements in XML.

Figure 6

Request form containing tabular input fields

Acta Polytechnica Hungarica Vol. 11, No. 6, 2014

 – 219 –

With this approach to document processing, transformation of the request

document content to XML document is achieved simply by iterating through the

table rows. Additionally, some request forms can contain image elements (such as

the request for printing an ID card). Therefore, it was important to support

transport of image data from within the Word file to the server. To support this,

Picture Content Control needs be used in the Word document, but also appropriate

transformation of image binary data was needed to facilitate transport over HTTP.

MS Word (2007 and higher) supports adding an optional CustomXMLParts.

Properly bound to Picture Content Control element, it provides a Base64

representation of image binary data, which is suitable for insertion in the XML

request. Upon the XML document creation, the macro sends it to the server.

5.3 Server-side Architecture

As mentioned before, Java has been used to develop server-side application.

Figure 7 displays classes of the module receiving the requests sent from Word

application. The central class of this module is AcceptRequestAction which

accepts the sent XML documents. Different operations on XML documents are

modeled with the XMLUtil class. The LDAPService class is used to access the

employee’s information (User class), while COBACService is used to perform

access control as described in [35]. The XMLDBRepository class implements

access to the native XML database. AcceptRequestAction uses the classes from the

jBPM API to create and start a process instance, and to populate process instance

with appropriate variables. The class UserProcesses conveys information about

the processes that the user has created.

Figure 7

Classes for accepting request

M. Zarić et al. A Flexible System for Requests Processing in Government Institutions

 – 220 –

Figure 8 displays classes involved in task processing, and classes involved in non-

task related actions, such as searching and reviewing of requests. Since all tasks

are accessed and handled through the web interface, the base class of the hierarchy

– TaskAction - is extended from HttpServlet class. The class TaskAction contains

some basic task-related functionality, and uses classes from the jBPM API to

access information about the process instance. TaskListAction, using the jBPM

API, generates the list of tasks for the current user. The TaskViewAction class

allows the current user to access the assigned task, view the content of requests,

and to make decision about it. The Loaded XML document (eRequest) is passed

through an appropriate XSLT to generate the final web page. The TaskEditAction

class, though similar to TaskViewAction, prepares additional variables and passes

the XML document through different XSLT to generate fully editable content.

TaskProcessAction is used to evaluate user’s response to the presented task. It

adds additional content to the request’s XML document - the name of actor that

performed the task, and his/her decision. The ListMyRequestAction class allows

the current user to view a list of active requests he/she has submitted. This is

important because content of the document is changing as document progress

through workflow, and additional information about approvals and

notifications/explanations are added. Additionally, the user can withdraw a

request, canceling all pending process tasks, and finalizing jBPM process instance.

Figure 8

Classes for processing request

Actions that are not directly related to task execution are modeled through the

abstract class DocumentAction, and its descendant classes ViewDocumentAction

and SearchAction, used for document preview and for document search,

respectively. A user can search document on different criteria: request type,

Acta Polytechnica Hungarica Vol. 11, No. 6, 2014

 – 221 –

request status, and document originator. The Request type list is automatically

generated by extracting header information from documents in repository –

eliminating the need for maintenance of web application when new type of request

is added to the system. The Request status list contains fixed options: active,

finished – accepted, finished – rejected and withdrawn.

An additional class ListTemplatesAction produces a web page containing a list of

macro-enabled Word documents representing eRequest template forms. The

documents are stored in a dedicated folder on the server. This class scans directory

and generates a list of download links on a web page.

5.3 XML Document Transformations

XML document transformation can be observed from two different standpoints:

the change of XML documents content as a result of performed action, and the

transformation of document content into a presentation form. The first one is a

direct result of an action performed in the workflow system and the XML

document content is edited. Critical operations on the XML document are node

insertion, node deletion, and change of content and attribute value [28]. In our

system, document editing is encapsulated in a process task-execution

environment. While performing a task, users can confirm, reject or edit and

confirm an eRequest. In either case a new node containing approval or rejection,

with explanation and user id, will be inserted as child node of the approval node.

In the case of editing, only certain users are allowed to change certain parts of the

document in any given moment. As a result of this, most of the time, only one user

will be allowed to perform her/his task over a certain part of the document. If this

is the case, no conflicting (concurrent) editing will happen, and the document will

be simply stored to the document repository. However, as mentioned earlier, there

is a possibility of parallel tasks execution. In this case, an automatic document

merger, based on document timestamp and element position in document, is

performed.

Presentation layer of the web application is built by using Java Server Pages - jsp

based dynamic pages and XSL transformations for displaying request details.

Additionally, XSLT is used whenever original XML document needs to be

transformed to presentation format i.e. XHTML. Hence, task processing and

request document preview/modification is handled on pages generated through

XSLT. Since request data is originally in XML format, this approach gives us

flexibility, as only XSLT needs to be adapted if the XML format is changed in the

future. Approach through XSL transformation files proved as a viable solution

during development and testing phase when some changes to the originally

envisioned structure of XML were requested. There are three different XSLT files

used for transforming request data to three different states:

 Simple preview with no additional controls,

M. Zarić et al. A Flexible System for Requests Processing in Government Institutions

 – 222 –

 Preview with controls for accepting/rejecting requests, and finally

 Transformation for editing of full content of request.

Created XSLT files convert XML documents to XHTML representations that are

seamlessly integrated in overall application design. Additionally, image data is

displayed in resulting XHTML by converting Base64 encoded data to image

representation. Some request types contain images, allowed format is jpeg, and

images are usually small so direct transformation was a feasible solution. Figure 9

displays the transformation results for editing mode. Special styles were

developed to properly format the document for printing.

Figure 9

XSLT result for editing mode

Acta Polytechnica Hungarica Vol. 11, No. 6, 2014

 – 223 –

Conclusion

In this paper we have presented an approach for the handling of administrative

requests as electronic documents (eRequests). Although different DMS systems

are available, and one (Alfresco) is installed in the provincial government, special

requirements guided the decision to develop a new system. One of the key benefits

of the implemented system is low-entry barrier for end users, achieved by using

their usual workplace software environment as a tool for creation and submission

of electronic requests, avoiding common uploads to different platforms and the

need to train the users to work in a new environment. We have preserved their

existing document templates, and enhance them to active documents.

Unlike common web forms that usually need to be completely filled out in one

session, or intermediate state stored on the server, our approach allows users to

work on the document, store it, continue later, and submit it when completed.

Stored document with filled-in data can be later used as a starting point for a new

eRequest, without the need for special template archiving mechanism. Also this

approach allows administrators to easily create a new eRequest form – usually by

editing an existing one and uploading it to the designated directory on the server.

Some parts of the document (such as the title block) are automatically used to

register a new type of request without the need to maintain special registry on the

server.

To control the document processing, a workflow engine has been used. This

approach gives the system a flexibility regarding possible changes in the

established workflow. XML is used throughout the system to represent eRequest

documents, allowing for easy manipulation and transformation.

These approaches have proven to be valuable even during the development and

testing phases, when changes to the workflow were requested, as well as changes

to the existing eRequest templates and creation of new eRequest forms. Initially,

ten existing word templates were converted to eRequest active documents, and

during this period, some were changed or removed from the system, while only

one session was needed to train administrators to create new templates on their

own, so they later produced ten new templates autonomously. This number will be

growing as more paper requests are required to be processed through this system.

Transition to electronic documents significantly reduced resource consumption in

request processing (prior to introduction of this system, usual number of paper

copies was 4 to 5 - this is now reduced to 1, which is archived). Annually, this

amounts to a reduction of a few thousand paper sheets that no longer need to be

printed and archived, and with more requests handled through the system, the

difference will be even larger. Request processing time is also significantly

reduced, since embedded workflow engine generates the appropriate notifications

and progresses to the next task immediately upon completion of the previous one.

Further development will include adjustment of the user interface for mobile

device access. This also implies that a new security layer needs to be introduced to

M. Zarić et al. A Flexible System for Requests Processing in Government Institutions

 – 224 –

enhance security of the application when accessed over public wireless networks.

Additionally, access control will be strengthened by introducing document and

document-fragment-level access rights. For this purpose we plan to use eXtensible

XML Access Control Framework [36, 37, 38]. Furthermore, ontologies will be

added to increase e-requests semantics and appropriate XML elements

representing this knowledge will be introduced into XML document

representation.

References

[1] International Organization for Standardization (ISO). (2001): ISO IEC

82045-1: Document Management – Part 1: Principles and Methods, ISO,

Geneva, Switzerland

[2] Hollingsworth, David: The Workflow Reference Model, Workflow

Management Coalition, Cohasset, MA, USA (1995)

[3] Baresi, L., F. Casati, S. Castano, M. G. Fugini, I. Mirbel, and B. Pernici:

WIDE Workflow Development Methodology: Proceedings of the

International Joint Conference on Work activities Coordination and

Collaboration, San Francisco, California, USA, February 22-25, 1999, New

York, NY, USA: ACM Press (1999) pp. 19-28

[4] Casati, Fabio, Maria Grazia Fugini, Isabelle Mirbel, and Barbara Pernici:

WIRES: A Methodology for Developing Workflow Applications.

Requirements Engineering, Vol. 7, No. 2 (2002) pp. 73-106

[5] Krishnan, Rupa, Lalitha Munaga, and Kamalakar Karlapalem: XDoC-

WFMS: A Framework for Document Centric Workflow Management

System. In H. Arisawa, Y. Kambayashi, V. Kumar, H. Mayr, and I. Hunt

(eds): Lecture Notes in Computer Science 2465, Berlin: Springer (2002) pp.

348-362

[6] Ellis, C. A. and S. J. Gibbs: Concurrency Control in Groupware Systems.

SIGMOD Record, Vol. 18, No. 2 (1989) pp. 399-407

[7] Suleiman, Maher, Michele Cart, and Jean Ferrie: Concurrent Operations in

a Distributed and Mobile Collaborative Environment, Proceedings of the

International Conference on Data Engineering (ICDE’98) Orlando, FL,

USA, February 23-27, 1998, Los Alamitos, CA, USA: IEEE Computer

Society (1998) pp. 36-45

[8] Cobena, Gregory, Serge Abiteboul and Amelie Marian: Detecting Changes

in XML Documents, Proceedings of the 18
th

 International Conference on

Data Engineering (ICDE’02), February 26-March 1, 2002, San Jose,

California, USA: IEEE Computer Society (2002) pp. 41-52

Acta Polytechnica Hungarica Vol. 11, No. 6, 2014

 – 225 –

[9] Ionescu, Mihail and Ivan Marsic: Tree-based Concurrency Control in

Distributed Groupware. Computer Supported Cooperative Work, Vol. 12,

No. 3 (2003) pp. 329-350

[10] Sun, David, Steven Xia, Chengzheng Sun, and David Chen: Operational

Transformation for Collaborative Word Processing: Proceedings of the

2004 ACM conference on Computer supported cooperative Work

(CSCW’04) Chicago, Illinois, USA, November 6-10, 2004, New York, NY,

USA: ACM Press (2004) pp. 437-446

[11] Ignat, Claudia-Lavinia and Moira C. Norrie: Flexible Collaboration over

XML Documents. In Y. Luo (ed): Lecture Notes in Computer Science,

4101, Cooperative Design, Visualization, and Engineering, Berlin: Springer

(2006) pp. 267-274

[12] Ignat, Claudia-Lavinia and Moira C. Norrie: Multi-level Editing of

Hierarchical Documents, Computer Supported Cooperative Work Vol. 17,

No. 5, 6 (2008) pp. 423-468

[13] Lee, Heeseok, and Woojong Suh: A Workflow-based Methodology for

Developing Hypermedia Information Systems. Journal of Organizational

Computing and Electronic Commerce, Vol. 11, No. 2 (2001) pp. 77-106

[14] Aversano, Lerina, Gerardo Canfora, Andrea De Lucia, and Pierpaolo

Gallucci: Integrating Document and Workflow Management Systems:

Proceedings of the IEEE Symposia on Human-Centric Computing

Languages and Environments, Stresa, Italy, September 5-7, 2001, Los

Alamitos, CA, USA: IEEE Computer Society (2001) pp. 328-329

[15] Aversano, Lerina, Gerardo Canfora, Andrea De Lucia, and Pierpaolo

Gallucci: Integrating Document and Workflow Management Tools using

XML and Web Technologies: a Case Study: Proceedings of the Sixth

European Conference on Software Maintenance and Reengineering,

Budapest, Hungary, March 11-13, 2002, Los Alamitos, CA, USA: IEEE

Computer Society (2002) pp. 24-33

[16] Wang, Jianrui, and Akhil Kumar: A Framework for Document-driven

Workflow Systems. In W. van der Aalst, B. Benatallah, F. Casati, and F.

Curbera (eds): Business Process Management - Lecture Notes in Computer

Science 3649, Berlin: Springer (2005) pp. 285-301

[17] Velez, Ivan P., and Bienvenido Velez: Lynx: An Open Architecture for

Catalyzing the Deployment of Interactive Digital Government Workflow-

Based Systems: Proceedings of the International Conference on Digital

Government Research, San Diego, California, USA, May 21-24, 2006, New

York, NY, USA: ACM Press (2006) pp. 309-318

[18] Mohammad Rahaman, Yves Ashiqur Roudier, and Andreas Schaad (2009)

Document-Based Dynamic Workflows: Towards Flexible and Statefull

M. Zarić et al. A Flexible System for Requests Processing in Government Institutions

 – 226 –

Services: Proceedings of the World Conference on Services - II, Bangalore,

India, September 21-25, 2009, Los Alamitos, CA, USA: IEEE Computer

Society, pp. 87-94

[19] Bing, Han, and Xia Dan-Mei: Research and Design of Document Flow

Model Based on JBPM Workflow Engine: Proceedings of the International

Forum on Computer Science-Technology and Applications, Chongqing,

China, December 25-27, 2009, Los Alamitos, CA, USA: IEEE Computer

Society (2009) pp. 336-339

[20] Berliner, Brian: CVS II: Parallelizing Software Development. Proceedings

of the Winter 1990 USENIX Conference, Washington, District of

Columbia, USA, January 1990, Usenix Association (1990) pp. 341-352

[21] Collins-Sussman, Ben, Brian W. Fitzpatrick, and C. Michael Pilato:

Version Control with Subversion. Cambridge, Massachusetts, USA:

O’Reilly (2004)

[22] Lippe, Ernst and Norbert van Oosterom. Operation-Based Merging.

Proceedings of the fifth ACM SIGSOFT symposium on Software

development environments, Tyson’s Corner, Virginia, USA, December 9-

11, 1992, New York, NY, USA: ACM Press (1992) pp. 78-87

[23] Sun, Chengzheng, Xiaohua Jia, and Yanchun Zhang, Yun Yang, and David

Chen: Achieving Convergence, Causality Preservation, and Intention

Preservation in Real-Time Cooperative Editing Systems. ACM

Transactions on Computer–Human Interaction, Vol. 5, No. 1 (1998) pp. 63-

108

[24] Sun, Chengzheng and Clarence Ellis: Operational Transformation in Real-

Time Group Editors: Issues, Algorithms, and Achievements: Proceedings

of ACM CSCW’98 Conference on Computer-supported Cooperative Work

(CSCW’98) Seattle, WA, USA, November 14-18, 1998, New York, NY,

USA: ACM Press (1998) pp. 59-68

[25] Suleiman, Maher, Michele Cart, and Jean Ferrie: Serialization of

Concurrent Operations in a Distributed Collaborative Environment:

Proceedings of the international ACM SIGGROUP conference on

Supporting group work (GROUP ’97) Phoenix, Arizona, USA, November

16-19, 1997, New York, NY, USA: ACM Press (1997) pp. 435-445

[26] Li, Du and Rui Li: Preserving Operation Effects Relation in Group Editors.

Proceedings of the 2004 ACM Conference on Computer Supported

Cooperative Work (CSCW ’04), Chicago, Illinois, USA, November 6 to

November 10 2004. New York, NY, USA: ACM Press (2004) pp. 457-466

[27] Li, Rui and Du Li: Commutativity-based Concurrency Control in

Groupware. Proceedings of the IEEE Conference on Collaborative

Computing: Networking, Applications and Worksharing

Acta Polytechnica Hungarica Vol. 11, No. 6, 2014

 – 227 –

(CollaborateCom’05), San Jose, California, USA, December 19-22, 2005,

Los Alamitos, CA, USA: IEEE Computer Society (2005) pp. 1-10

[28] Ignat, Claudia-Lavinia and Gerald Oster: Peer-to-peer Collaboration over

XML Documents. In Y. Luo (ed): Lecture Notes in Computer Science,

5220, Cooperative Design, Visualization, and Engineering, Berlin: Springer

(2008) pp. 66-73

[29] Assmann, Uwe. Architectural Styles for Active Documents. Science of

Computer Programming, Vol. 56 (2005) pp. 79-98

[30] Duhl, Joshua, and Susan Feldman: Industry Developments and Models,

Active Documents: Changing How the Enterprise Works, IDC,

Framingham, MA, USA (2003)

[31] United States Patent and Trademark Office (USTO) (2004) Office of the

Chief Information Officer, Operational Information Technology Plan, FY

2005 – FY2006, USTO, Department of Commerce, Washington, DC, USA

[32] Leng, Gillian, Nicola Bent, and Ian Saunders: Electronic Guidance Access

Project (EGAP) (Interim report V1.0) National Institute for Health and

Clinical Excellence, London, UK (2008)

[33] Teohari, Mihai, and Copcea Larisa: XML Authoring Tool: Proceedings of

the 4
th

 Conference on European Computing, Bucharest, Romania, April 20-

22, 2010, New York, NY, USA: ACM Press (2010) pp. 143-147

[34] Yang, Haijun: Design and Implementation of Electronic Medical Record

Template Based on XML Schema: Proceedings of the Second WRI World

Congress on Software Engineering, Wuhan, Hubei, China, December 19-

20, 2010, Los Alamitos, CA, USA: IEEE Computer Society (2010) pp.

225-118

[35] Gostojić, Stevan, Goran Sladić, Branko Milosavljević, and Zora Konjović:

Context-Sensitive Access Control Model for Government Services, Journal

of Organizational Computing and Electronic Commerce, Vol. 22, No. 2,

(2012) pp. 184-213

[36] Sladić, Goran, Branko Milosavljević, Zora Konjović, and Milan Vidaković:

Access Control Framework for XML Document Collections. Computer

Science and Information System (ComSIS) Vol. 8, No. 3 (2011) pp. 591-

609

[37] Sladić, Goran, Branko Milosavljević, Dušan Surla, and Zora Konjović:

Flexible Access Control Framework for MARC Records. The Electronic

Library, Vol. 30, No. 5 (2012) pp. 623-652

[38] Sladić, Goran, Branko Milosavljević, and Zora Konjović: Context-Sensitive

Access Control Model for Business Processes: Computer Science and

Information System (ComSIS) Vol. 10, No. 3 (2013) pp. 939-972

