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Abstract: The paper is focused especially on presenting possibilities of applying off-line 
trained artificial neural networks at creating the system inverse models that are used at 
designing control algorithm for non-linear dynamic system. The ability of cascade 
feedforward neural networks to model arbitrary non-linear functions and their inverses is 
exploited. This paper presents a quasi-inverse neural model, which works as a speed 
controller of an induction motor. The neural speed controller consists of two cascade 
feedforward neural networks subsystems. The first subsystem provides desired stator 
current components for control algorithm and the second subsystem provides 
corresponding voltage components for PWM converter. The availability of the proposed 
controller is verified through the MATLAB simulation. The effectiveness of the controller is 
demonstrated for different operating conditions of the drive system. 
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1 Introduction 

In recent years artificial neural networks (ANNs) have gained a wide attention in 
control applications. It is the ability of the artificial neural networks to model non-
linear systems that can be the most readily exploited in the synthesis of non-linear 
controllers. Artificial neural networks have been used to formulate a variety of 
control strategies [4], [5]. 

There are two basic design approaches: 

• Direct inverse control – it uses a neural inverse model of the process as 
a controller. 

• Indirect design – the controller uses a neural network to predict the 
process output. 
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Different structures of neural controllers for control of non-linear plants, 
especially induction motor drives have been presented [1]-[3], [7]-[9]. 

In this work we are concerned with design neural controller for induction motor 
control on principle of system inverse model. Part one of the paper is focused on 
explaining the method, while the following one demonstrates the design of the 
neural networks for purposes of control and the use in simulation studies for a 
squirrel-cage induction motor. 

2 The Inverse Model of a Dynamic System 

Although the system inverse model plays an important part in the theory of 
control, the attainment of its analytical form is pretty strenuous. Anticipating that a 
dynamic system can be described by the differential equation 

( ) ( ) ( ) ( ) ( )[ ]1mku,,ku,1nky,,kyf1ky +−+−=+ KK  (1) 

where the system output y(k+1) depends on the preceding n-output and m-input 
values, the system inverse model can be generally presented in the following form 

( ) ( )[ ( ) ( ) ( ) ( )]1mku,ku,1nky,,ky,1kr1fku +−+−+−= K  (2) 

Here y(k+1) is an unknown value, and hence can be substituted by the output 
quantity desired value r(k+1). The simplest way to arrive at a system inverse 
neural model is it to train the neural network to approximate the system inverse 
model. 

In real life, the most frequently used are two concepts of inverse neural model 
architecture: the ‘general training’ architecture (Fig. 1), and the ‘specialized 
training’ architecture (Fig. 2), respectively. 

If in the general training architecture, signal u is applied to the system input, signal 
y is obtained at the system output. The different between the incoming signal u 
and the neural model output uN is the error eN which can be utilized for network 
learning. 

 
Figure 1 

The ‘general training’ architecture 
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Figure 2 

The ‘specialized training’ architecture 

Contrary to the previous approach, it is error ec that is in the ‘specialized training’ 
architecture utilized for neural network training. Error ec is here obtained as the 
difference between the desired input signal r and the signal y that represents the 
actual system output. 

The former of the two methods brings several substantial disadvantages: 

The selection of varying output signal y values, specified for training of the 
network, cannot guarantee that the trained system output will fall exactly into 
those regions that are important for its successful utilization in controlling. 

If the controlled system happens to be multidimensional, the attained model that is 
represented by the inverse neural model may be incapable of imitating a real 
system. 

The above outlined drawbacks can be circumvented by the letter method – the 
‘specialized training’ architecture-that yields some advantages when compared 
with the former one: 

The method (Fig. 2) is intended directly for controlling, whereas the training 
signal is formed in dependence on the difference between the system desired and 
real outputs. 

In the case of multidimensional dynamic system, the real inverse model can 
closely simulate a real system. 

Multi-layer neural networks can be utilized when creating a system inverse neural 
model. The use of the MLP type static neural networks presents the simplest 
solution, however the representation of the system dynamic remains problematic 
with this neural model. The application of a MLP type neural network with time 
delaying of the input layer signals can present the solution for introducing the 
process dynamics into MLP type static neural network. The solution falls among 
the simplest ones, and the advantage of utilizing this network type rests with the 
opportunity of its training by traditional backpropagation algorithm for multi-layer 
networks. 
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3 Design of the Neural Controller 

The main requirement we have specified is maintaining the desired speed of the 
induction motor. Considered for the neural controller output were the voltage 
components that would present an action intervention for PWM modulation, 
which would eventually produce the stator voltage desired values from the mains 
voltage (rectified via using an uncontrolled rectifier). 

 
Figure 3 

The scheme of the neural controller 

Since the neural controller output in such a structure is not directly equal to 
voltage fed into the motor we have abandoned the idea to establish an accurate 
inverse model; considered for input quantity of the quasi-inverse neural model 
were rather the desired and at a time also real (measured) motor speed (Fig. 3). 
The design of the neural controller is based rightly on known values of these 
speeds. 

A typical technique for control synthesis purposes is based on using a description 
of the induction motor in rotating reference frames (x, y). The use of such rotating 
reference frames has the benefit of simplifying the model of the motor from the 
point of view of controller design. 

In this section design of the neural controller will be presented. The speed 
controller consists of two neural networks subsystems with backpropagation 
learning algorithm. The first subsystem (Fig. 4) of the controller serves for desired 
current components reconstruction and the second subsystem serves for 
corresponding voltage components reconstruction for PWM converter. These 
voltage components present action intervention for PWM modulation that would 
make up the desired stator voltage values from the mains voltage (rectified using 
an uncontrolled rectifier). The overall control structure is shown in Fig. 3. 
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Figure 4 

Concept of the neural controller 

3.1 Identification of Stator Currents 

The first subsystem ANN1 consists of two neural networks ANN1.1 and ANN1.2, 
according to equations (3). The networks are trained to approximate the time-
varying function of f 1 and f2 to give estimated one-step-ahead predicted stator 
current components: 
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( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ −=

⎥⎦
⎤

⎢⎣
⎡ −=

w,1k*,k*2fk*
syi

w,1k*,k*1fk*
sxi

ωω

ωω
 (3) 

The inputs of the first neural subsystem ANN1 are values of desired angular 
speed, in k-th and (k-1)th step. The three layers feedforward neural network 
(FFNN) with one hidden layer has been elected, in first step, to approximate the 
non-linear function f. 

Further working showed that cascade feedforward neural networks (CFNN), 
which outputs a1(k)  from 1st and  a2(k) from 2nd  layer of a CFNN are given by: 

( ) ( )
( ) ( )( )2biaskwk1ajwIpurelink2a

1biasiwIsigtank1a

++=

+=
 (4) 

where I is input vector and w represents weights of the network, with one hidden 
layer reached the better approximation properties then FFNNs. 

The structure of the cascade network ANN1.1 is shown in Fig. 5. The structure of 
ANN1.2 is identical. 

The hidden layer of the cascade network contains twenty neurons with tansig 
nonlinear activation function. The neurons of the subsystem ANN1 outputs have 
linear activation function. 
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Figure 5 

The structure of the ANN1.1 

3.2 Rotor Speed Control 

Measured actual stator current (3) corrects desired value of stator current: 

( ) ( ) ( )kikiki s
*
ss −=Δ  (5) 

Resulting signal of the correction: 

( ) ( ) ( )ksik*
siksci Δ+=  (6) 

in k-th and (k-1)th steps and the desired speed value present inputs to the second 
ANN2, which generates appropriate voltage values for PWM converter: 

( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ −=+ w,*,1ksci,kscig1ksu ω  (7) 

The cascade feedforward neural network is used for g approximation, too. The 
relation (7) determines the number of inputs of ANN2. Twenty hidden neurons in 
one hidden layer of the neural subsystem employ the hyperbolic tangent function. 
The structure of the ANN2 is shown in Fig. 6. 

The ANN’s may be trained on-line or off-line. In the case of the off-line training, 
one requires the input-output characteristics of the system. Training patterns for 
speed controller were obtained by numerical simulations of the induction motor 
model with help of MATLAB-Simulink. In simulations the nominal data of a 3kW 
induction motor were used. All the networks are trained off-line in order to 
minimise the control performance. The backpropagation training algorithm with 
Levenberg-Marquardt´s modification was used for the training modes. 
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Figure 6 

The structure of the ANN2 

4 Simulation Results 

Presented in this section will be the results obtained in MATLAB environment for 
given connection of the control diagram shown in Fig. 3, where the designed 
neural controller was implemented. The testing of the neural controller was 
performed on the induction motor with the following parameters: 

U = 220 V/50 Hz, IN = 6.9A, PN = 3 kW, nN = 1420 RPM, 

 R1 = 1.81 Ω, R2 = 1.91 Ω, L1σ = L2σ = 0.00885 H, 

Lh = 0.184H, pp = 2, TN   = 20.17 Nm, JN = 0.1 kgm2. 

The neural speed controller was trained in the wide range of speed and load torque 
changes. Then the trained controller was tested for speed reference signal different 
than used in the training procedures. These testing signals together with results of 
simulations are presented in Figs. 7 and 8. Fig. 7 shows speed response waveforms 
in a case of speed variation. The command speed is 120, -30, 20 and 50 rad/sec, 
respectively. Fig. 8 shows speed response waveforms in a case of load variation. 
The command speed is 100 rad/sec, that is increased from zero speed and the 
100% rated load is applied at 1sec and 150% rated torque is applied at 2 sec. 
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Figure 7 

Drive system response under a variable speed reference and actual motor speed 

 
Figure 8 

Speed response under load changes 

Conclusion 

In this paper, an off-line neural network controller for induction motor drives was 
presented. The design of neural controller is based on sensor information 
pertaining to angular speed and stator current of the induction motor. The neural 
controller consists of two cascade feedforward neural networks subsystems. 

First subsystem of the neural controller serves for desired current components 
reconstruction and the second subsystem serves for corresponding voltage 
components reconstruction for PWM converter. 
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Cascade feedforward neural networks are used for all functions approximations. 
Used with these networks was learning by use of Levenberg-Marquardt algorithm. 
Training samples for the speed controller were attained via simulation of an 
induction motor model in MATLAB-Simulink environment. Simulation results 
using MATLAB verify the effectiveness of proposed controller. 
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List of Symbols and Abbreviations 

PN - nominal power 

TN - nominal load torque 
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JN - moment of inertia 

pp - pairs of poles 

ω - angular speed 

nN - motor speed 
* - desired value 

R1, R2 - stator and rotor resistances 

L1, L2 - stator and rotor inductance 

Lh - mutual inductance 

[i1x i1y] - x , y components of stator current 

[ux uy] -  x , y components of stator voltage 

I – input vector 

w – synaptic weight 

ANN - artificial neural networks 

FFNN - feedforward neural network 

CFNN - cascade feedforward neural network 


