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Abstract: The problem of fracture mechanics of crack nucleation in plunger pair bushing is 

considered. It is assumed that under the repeated reciprocating motion of a plunger there 

happens crack nucleation and a failure of materials of pair elements. Crack nucleuses are 

simulated by a bridged prefracture zone that is considered as areas of weakened 

interparticle bonds of the material. It is assumed that the inner boundary of the bushing is 

close to the annular one and has rough surfaces. 

Keywords: contact pair; nucleation of a crack; bonds between surfaces; prefracture zone; 

cohesive forces; rough surfaces 

1 Introduction 

The bushing-plunger friction pair operates in conditions of a complex stress state. 

Experience in using a plunger pair shows that the initiation of cracks and the 

fracture of the materials of the components of the friction pair occur during 

repeated reciprocating motion. To control the friction and wear processes in the 

friction pair, the investigation of material fracture and the friction caused by 

contact interaction and accompanied by the joint action of contact pressure and 

friction force are necessary. It is therefore necessary in the planning stage of the 

construction of sliding pairs to take into account the possibility of the occurrence 

of cracks and to carry out a limit analysis of the components of the contact pair. It 

should be taken into account that the bushing internal contour and the plunger 

external contour are nearly circular. As is known, real treated surfaces are never 

absolutely smooth but always have micro- or macroscopic irregularities (of a 

technological character) forming the rough surface. Despite the extremely small 

sizes of such irregularities, they affect the different service properties of tribo-

conjugation [1, 2]. 
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2 Formulation of the Problem 

The contact deformation of cylindrical bodies of close radii under inner 

compression is considered. It is assumed that the surfaces of the bodies in the 

contact area are rough. 

We assume that the outer cylinder (bushing) is an unrestricted plate with a hole 

close to circular, into which is inserted elastic cylinder (shaft). A concentrated 

force P is pressing into the hole‟s boundary and concentrated pair whose moment 

is determined from the cylinder‟s limit equilibrium condition under the action of 

Coulomb friction forces is applied to the center of the shaft (Fig. 1). 

 

Figure 1 

Computational diagram of a problem of the contact fracture mechanics 

To determine the contact pressure, it is necessary to consider [3, 4] the contact 

problem of the pressing of a plunger into the surface of the bushing involving 

wear. 

Let some unknown part shaft with mechanical characteristics 
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and 
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  be 

retained against the internal surface of the bushing with mechanical characteristics 

G  (shear modulus) and   (Poisson ratio). The condition relating the 

displacements of the bushing and the plunger is written in the form [3, 4]. 
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                                                                                (1) 

Here )(  is sag of the point on the surface of the bushing and the plunger, which 

is determined by the form of the inner surface of the bushing and the plunger 

surface, and, also by the magnitude of the pressing force P. 
12
  is the 

magnitude of the contact angle area. 

In the contact area, in addition to the contact pressure, there is a tangential stress 




r
 which is related to the contact pressure ),( tp   by the Coulomb law 

),(),( tfpt
r




                                                                                                   (2) 

where f  is the coefficient of friction of the “bushing-plunger” pair. 

We refer the bushing of the contact pair to the polar system of coordinates r ; for 

that we choose an origin of coordinates at the center of circle L of radius R. 

We will assume that the inner contour of the bushing and the external contour of 

the plunger are close to annular one. 

Represent the boundary L  of inner contour of the bushing in the form 

)(r ,    )()(  HR   

where RR
max

  is a small parameter; 
max

R  is the greatest height of the bulge 

(cavity) of the unevenness of the friction surface. 

The coefficients of the Fourier series for the function )(H : 





n

k

kk
kbkaH

0

00 )sincos()(   

are found by means of a profilogram of the treated surface of the bushing which 

describes each inner profile of the bushing. In a similar way, the plunger contour 

may be represented as 

)()(
11
 HR  ,        




n

k

kk
kbkaH

0

11

1
)sincos()(   

It is assumed that the bushing and plunger wear is of an abrasive character. For 

displacements of the points of surface of the bushing we have 

wre
vvvv

1111
                                                                                                     (3) 

where ev1  are elastic displacements of bushing‟s contact surface; wr vv 11   , are 

displacements caused by the removal of the micro-bulges and by the bushing 

surface wear, respectively. 

Similarly, for displacements of plunger‟s contact surface we have 

wre
vvvv

2222
                                                                                                    (4) 



E. Zolgharnein et al. Nucleation of a Crack under inner Compression of Cylindrical Bodies 

 – 172 – 

The rate of change of the displacements of the surface in the course of the bushing 

and the plunger wear will be [4] 

),()( tpK
dt

dv
jju

         (j=1,2)                                                                               (5) 

where )( jK  is the wear coefficient of the bushing and the plunger material (j=1,2), 

respectively. 

Prefracture zones will arise in proportion to the loading of the bushing during the 

operation of the friction pair with force load, and these zones are modelled as 

domains in which the interparticle bonds in the material have been weakened. The 

interaction of the surfaces of these domains is modelled by the introduction of a 

prefracture zone of the bonds, which have a specified deformation pattern. The 

physical nature of these and the dimensions of the prefracture zone depend on the 

form the material. Since the above-mentioned zones (layers) are small compared 

with the remaining part of the bushing, they can be conceptually eliminated by 

replacing them with cuts, the surfaces of which interact with one another 

according to a certain law that the corresponds to the action of the material which 

has been removed. Taking account of these effects in fracture mechanics is an 

important but exceedingly difficult problem. In the case being investigated, the 

occurrence of a crack nucleus involves the transition of a prefracture zone into 

domain where there are ruptured bonds between the surfaces of the material. 

Investigations [5-7] of occurrence domains with a disrupted structured of the 

material show that, during the initial stage, the prefracture zones have the form of 

a narrow elongated layer, and then, when the load is increased, a secondary system 

of zones suddenly appears, and these zones contain material with partially 

ruptured bonds. 

We will assume that the prefracture zone is oriented in the direction of maximal 

tensile stresses arising in the bushing. 

Let us consider the prefracture zone of length 2l allocated on the 

segment 0   ,
11
 ylx . At the center of the prefracture zone, we located an origin 

of local system of coordinates 
111

yOx whose axis 
1

x coincides with the line of the 

zone and makes an angle with the axis x )0(  . The surfaces of the prefracture 

zone interact in such a way that this interaction (the bonds between the surfaces) 

restrains the formation of a crack. 

For a mathematical description of the interaction of the surfaces prefracture zones, 

it is assumed that between them for which the law of deformation is known. Under 

the action of external loads on the bushing, normal )(
11

xq
y

 and tangential )(
111

xq
yx  

tractions will arise in the bonds joining the surfaces prefracture zones. 
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Consequently, the normal and tangential stresses numerically equal )(
11

xq
y

 and 

)(
111

xq
yx

 respectively, will be applied to the surfaces prefracture zones. The 

quantities of these stresses are not known beforehand and are to be determined 

when solving the boundary value problem of fracture mechanics. 

For determining the displacements 
e

v
1  

and 
r

v
1  

it is necessary to solve the 

following problem of elasticity theory for a bushing 

)( p
n

 ;   )( fp
nt

   for  r   in the contact area                                 (6) 

0
n

 ;   0
nt
   for r

   
out of the contact area 

on surfaces prefracture zone 

)(
111

xq
yy

 ;   )(
11111

xq
yxyx

   for lx 
1

,                                                           (7) 

n, t are natural coordinates; 
n

 , 
t

  and 
nt

  are stress tensor components. 

In a similar way, we state the problem of elasticity theory for determining 

displacements 
e

v
2

 and 
r

v
2

 of the contact surface of the plunger 

)( p
n

 ;   )( fp
nt

   for r     in the contact area                                (8)  

0
n

 ;   0
nt
   for r     out of the contact area 

The magnitudes of 
1
 and 

2
 , that is, of the ends of the segment over which the 

plunger and the bushing are in contact, are unknown. In order to determine them, 

we will use a condition which expresses the continuous fall of the pressure 

)(p to zero when then point   falls outside the segment where the surface touch 

0)(
1
p ,           0)(

2
p  

The equations and conditions (1)-(8) have to be supplemented with a relation 

between the expansion of the prefracture zone and bond tractions. Without loss of 

generality, we will represent this relation in the form 

 )()(),()()(
1111 111

xiqxqxCuuivv
yxy

   ,       22

1 111 yxy
qq             (9) 

Here the function ),(
11

xC  may be considered as an effective compliance of the 

bonds, which depends on their tension; 
1

  is the modulus of the vector of the 

bond tractions; )(  uu is the tangential, )(   vv  is the normal component of 

the expansion of the prefracture zone. 

In order to determine the value of the external load (the contact pressure) at which 

a crack is initiated, it is necessary to supplement the formulation of the problem 

with a condition (criterion) for the appearance of a crack (the rupture of the 
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interparticle bonds in the material). As such a condition, we will adopt the 

criterion for the critical expansion of the prefracture zone 

cr
uuivv   )()(  

where 
cr

  is a characteristic of the fracture toughness of the bushing material. 

The additional condition enables us to determine the parameters of the contact pair 

for which a crack appears in the bushing. 

3 The Method of the Boundary-Value Problem 

Solution 

Using the perturbation method, we find the boundary conditions at each 

approximation: 

for zero approximation of the problem 

)()0()0(  p
r

 ;   )()0()0( 


fp
n

    for r=R   in the contact area                        (10) 

0)0( 
r

 ;   0)0( 



n

  for r=R  out of the contact area 

on surfaces prefracture zone 

)(
1

)0()0(

11
xq

yy
 ;   )(

1

)0()0(

1111
xq

yxyx
     for lx 

1
,                                                     (11) 

for the first approximation of the problem 

)()1()1(  pN
r

 ;   )()1()1( 


fpT
n

   for r=R  in the contact area                   (12) 

N
r
)1( ;   T

n
)1(


   for r=R  out of the contact area 

on surfaces prefracture zone 

)(
1

)1()1(

11
xq

yy
 ;   )(

1

)1()1(

1111
xq

yxyx
     for  lx 

1
,                                                     (13) 

Here        








d

dH

Rr
HN

r

r
1

2)( )0(

)0(





 ;   for r=R 

r
H

d

dH

R
T r

r





)0(

)0()0( )(
1

)(








 

Similarly we can write the boundary conditions at each approximation for the 

plunger. Additional relation (9) accepts the following form: 

at the zero approximation 
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  ))0,()0,(())0,()0,((
1

)0(

1

)0(

1

)0(

1

)0( xuxuixvxv                                            (14) 

 
 )()(),(

1

)0(

1

)0()0(

11 111
xiqxqxC

yxy
   

at the first approximation 

  ))0,()0,(())0,()0,((
1

)1(

1

)1(

1

)1(

1

)1( xuxuixvxv                                            (15) 

 
 )()(),(

1

)1(

1

)1()1(

11 111
xiqxqxC

yxy
   

By means of the Kolosov-Muskheleshvili formulas [8], we write the boundary 

conditions of the problem at zero approximation (10)-(11) for complex potentials 

)()0( z and )()0( z . On annular boundaries of the bushing they will be of the 

form 

  )()()()()( )0()0()0(2)0()0(  Xzzzezz i 


                                          (16) 

iRez  ;    


 


areacontact   out the                     0

areacontact   on the         )()1(
)(

)0(

)0(



pif

X  

Boundary conditions on the surfaces prefracture zone will be written as: 

)0()0()0()0()0()0(

111
)()()()(

yxy
iqqtttzz 


                                               (17) 

where t is affix of points of the surfaces prefracture zone. 

We look for the potentials )()0( z , )()0( z ,  )()0(

1
z , )()0(

1
z , )()0(

2
z , )()0(

2
z  

and in the form 





2

0

)0()0( )()(
k

k
zz ,          




2

0

)0()0( )()(
k

k
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
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
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1
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
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




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
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
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


l

l

i
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
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Here )(0 tg  is the required function, which characterizes the expansion of the 

prefracture zone. 

For defining the potentials  )()0(

0
z

 
and )()0(

0
z  we use the N. I. Muskheleshvili 

method [8] 

 


L
z

dX

z
z







)(

2

1
)(

)0(
)0(

0 ,      ie                                                                    (21) 

)(
1

)(
1

)(
1

)( )0(

0

)0(

0
2

)0(

02

)0(

0
z

z
z

z
z

z
z


  

Satisfying the boundary condition on the surfaces prefracture zone by the 

functions (18)-(20), we find singular integral equation with respect to the function 

)(
1

0 xg : 

   )( )(),()(),(
1

0)0()0(

1

0

11

0

1 111
xfiqqdtxgxtSxgxtR

yxy

l

l




      lx 
1               

(22) 

 )()()()()(
1

)0(

01

)0(

011

)0(

01

)0(

01

)0( xxxxxxf 


 

To the singular integral equation for the inner prefracture zone at zero 

approximation, we should add equality 

0)()0( 


l

l

dttg                                                                                                       (23) 

Using the procedure for converting to an algebraic form [10, 11], the singular 

integral equation (22) with condition (23) reduced to the system of M complex 

algebraic equations for determining M unknowns )()()( 00)0(

mmm
tiutvtg   

(m=1,2,…,M) 

 


M

m

rmmrmm
lxltStglxltRtgl

M 1

)0()0( ),()(),()(
1

                                                   (24)

  

)()()( )0()0()0(

111 rryxry
xfxiqxq   

0)(
1

)0( 


M

m

m
tg ,         r=1,2,…,M-1 

where   
M

m
t

m
2

12
cos


 ;  

M

r
x

r


cos . 

If in (24) we go over to complexly conjugated values, we get M algebraic 

equations more. The right hand side of (24) contains unknown values of the forces 

)()0(

1 ry
xq  and )()0(

11 ryx
xq in bonds. 
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The additional relation (14) at zero approximation is the condition determining 

forces in the bonds arising on the surfaces prefracture zone 

 )()()(,(
)(

2
)(

1

)0(

1

)0()0(

11

1

1

)0(

111
xiqxqxC

dx

d

kii

G
xg

yxy

b




                                           (25) 

where 43
b

k  for plane strain, )1()3(  
b

k  for plane stress state. 

For constructing the missing algebraic equations for finding the approximate 

values of the forces )()0(

1 ry
xq  and )()0(

11 ryx
xq  at the nodal points, we require the 

conditions (25) to be fulfilled at the nodal points. For that, we use the finite 

differences method. 

We need two complex equations determining the dimensions of the prefracture 

zone for closeness of the obtained system. Writing the stress finiteness conditions, 

we find two missing equations more in the following form: 

0
4

12
cot)()1(

1

)0( 





M

m

m

m

M

m
tg                                                                          (26) 

0
4

12
tan)()1(

1

)0( 







M

m

m

mM

M

m
tg   

By means of complex potentials (18)-(20) and the Kolosov-Muskheleshvili 

formulae [8] and integration of the kinetic equation (5) wear of bushing‟s material 

at zero approximation, we find the displacements 
)0(

1
v  of the bushing‟s contact 

surface. In a similar way, we find the solution of the elasticity theory problem for 

the shaft in the first approximation. Using the solution and kinetic equation of 

shaft‟s material wear at zero approximation, we find the displacements )0(

2
v  of the 

shaft‟s contact surface. 

We substitute the found quantities 
)0(

1
v  and 

)0(

2
v into the basic contact equation (1) 

at zero approximation 

...;)()(),( 0

1

0

0

)0(   tpptp                                                                             (27) 







0

000

0
)sincos()(

k

kk
kkp  , 







0

110

1
)sincos()(

k

kk
kkp   

For the algebraization of the basic contact equation, the unknown functions of the 

contact pressure at zero approximation are found in the form of expansions. 

Substituting the relation in the basic contact equation at zero approximation, we 

get the functional equations for the sequential determination of )(0

0
p , )(0

1
p , 

etc. For constructing the algebraic system for finding 
k

 , 
k

 , we equate the 
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coefficients for the same trigonometric functions in the left and right hand sides of 

the functional of the contact problem. We get an infinite algebraic system with 

respect to 0

k
  (k=0,1,2,…), 0

k
  (k=1,2,…) and 1

k
 , 1

k
 , etc. 

On account of the unknown quantities 
1
 , 

2
  and 

1
l , the joint system of equations 

is nonlinear even in the case of linear elastic bonds. To determine the quantities 

1
  and 

2
  ( ...;1

1

0

11
  ...1

2

0

22
  ), we have the condition: 

for the zero approximation              0)( 0

1

)0( p ;           0)( 0

2

)0( p ; 

for the first approximation               0)( 1

1

)1( p ;           0)( 1

2

)1( p . 

The right hand sides of infinite algebraic systems with respect to 
k

 , 
k

  contain 

integrals of unknown function )(
1

)0( xq . Thus, the infinite algebraic systems with 

respect to 
k

 , 
k

  and finite systems with respect to )(
1

)0( xq , )()0(

1 ry
xq , )()0(

11 ryx
xq  

and l are connected between themselves and they must be solved jointly. The 

combined system equations even for linear-elastic bonds become nonlinear 

because of unknown quantities 
1
 ,

2
 , l. For its solution at zero approximation, the 

reduction and successive approximations methods were used [10]. 

In the case of the nonlinear law of deformation of bonds for determining forces in 

bonds, we also use the iteration algorithm similar to the method of elastic 

solutions [11]. Nonlinear part of the bonds deformation curve is represented in the 

form of bilinear dependence, whose outgoing section corresponds to the elastic 

deformation of bonds (


V<)V(<0
1

x ) with maximal tension of bonds. For 


V<)V(

1
x , the deformation law was described by a nonlinear dependence 

determined by two points ),(V 


 and ),(
crcr

 ; moreover, for 



cr

 we have 

increasing linear dependence (linear hardening corresponds to the elastoplastic 

deformation of the bonds). 

After defining the quantities of the desired zero approximation, we can construct 

the solution of the problem at the first approximation N and T determined on the 

base of obtained solution for r=R. The boundary conditions (12), (13) may be 

written in the form of a boundary value problem for finding complex potentials 

)()1( z  and )()1( z that we seek in the form of (18), with obvious changes. The 

further course of the solution is at the zero approximation. The obtained complex 

integral equation with respect to )()1( tg , )()1( tg  under additional condition of type 

(23) by means of the algebraization system is reduced to the system of M algebraic 

equations for determining MN 
0

 unknowns )()1( tg  (m=1,2,..M). 

The desired expansion coefficients of the contact pressure )()1( p and the 

unknown values of forces in bonds )(
1

)1(

1
xq

y
 and )(

1

)1(

11
xq

yx
 are contained in the right 

hand side of this system. 
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The construction of the missing equations for determining the unknown forces at 

the nodal points and prefracture zone sizes are realized as in the zero 

approximation. The problem of the theory of elasticity for a shaft at the first 

approximation is solved in some way. The algebraization of solving the equation 

of the contact problem at the first approximation is carried out similar to the zero 

approximation. For that, the desired functions of the contact pressure are 

represented in the form: 

...;)()().( 1

1

1

0

)1(   tpptp                                 
 
                                            (28) 

;)sincos()(
0

1

0,

1

0,

1

0.0

1

0 





k

kk
kkp   

;)sincos()(
0

1

1,

1

1,

1

1.0

1

1 





k

kk
kkp   

As the result we get infinite linear algebraic systems with respect to 1

0,0
 , 1

0,k
 , 

1

0,k
  and 

1

1,0
 , 1

1,k
 , 1

1,k
 (k=1,2,…), etc. 

4 Analysis of the Simulation Results 

The system of equations becomes nonlinear because of the unknown quantities 
1

1
  

and 
1

2
 . The constructed combined system of equations is closed and under the 

given functions )(H  and )(
1
H  allows us to find the contact pressure, forces in 

the bonds, the prefracture zone sizes, the stress-strain state, and the bushing and 

contact pair wear by numerical calculations. The functions )(H  and )(
1
H

 
, 

describing the roughness of the internal surface of the bushing and the plunger, 

were considered as the determined totality of unevenness of contours profile and 

also stationary random function with zero mean value and known variance. 

As a rule, the greatest values of contact pressure depend on the angle of contact 

and the friction coefficient. The presence of friction forces in the contact zone 

leads to displacements of the graph contact pressure distribution to the contrary 

action of the moment. 

The numerical calculations were carried out for the bushing of a U8-6MA2 

double-stoke slush pump for a velocity of the plunger of 0,2 m/sec. As constants, 

we used the following values of the parameters: mmR 572  , mmR 7.562  , 

f=0.2, MPaE 5108.1  , 25.0 , mV 610


 , MPa75


 , 2




cr
, 

,105.2 6 m
cr

  8)1( 102 K , 9)2( 102 K , MPamC
b

7102   (
b

C is the 

effective compliance of the bonds). 
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Using the solution of the problem to calculate displacements on surfaces 

prefracture zone: 

)0,()0,()(
2

1
1111

xiuxvdxxg
G

k
l

l

b 


 


 

Assuming 
01

xx   applying change of variable, changing the integral by the sum, 

we find displacement vector on the surfaces prefracture zone for 
01

xx   

2222

0
2

1
BA

M

l

G

k
vuV b 





                                                                    (29) 

 



M

m

mm
tvtvA

1

10 )()(  ,      



1

1

10 )()(

M

m

mm
tutuB   

Here M1 is the number of nodal points contained in the interval ),(
0

xl . 

In the place of crack nucleation condition, we accept the criterion of critical 

opening of surfaces prefracture zone. Considering relation (9) we can write the 

limit condition in the form 

cr
xxxC  )())(,(

000
                                                                                       (30) 

The joint solution of the combined algerbraic system and conditions (30) makes it 

possible to determine the ultimate size of the external load (contact pressure), the 

size of surfaces prefracture zone for the limiting equilibrium state under which a 

crack arises under the given characteristics of the crack resistance of the material. 

The graphs of the length of the prefracture zone Rl  for the bushing borehole 

pump against the dimensionless values of the contact pressure 



0

p  are shown 

in Fig. 2 (Curve 1 refers to the smooth surface, curve 2 refers to the rough 

surface). 

The distributions of the normal force 
01

pq
y

in the bonds between the surfaces 

prefracture zone as a function of the dimensionless coordinate lx1  are shown in 

Fig. 3. Curve 1 corresponds to the linear bond and curve 2 to the bilinear bond. 

The dependence of the critical load 



cr

p  on the dimensionless length of the 

prefracture zone is shown in Fig. 4. 
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Figure 2 

Dependence of length of the prefracture zone Rl  for the bushing borehole pump on dimensionless 

contact pressure 0p
 

 

Figure 3 

The distributions of the normal force 01
pq y in the bonds between the surfaces prefracture zone as 

function of the dimensionless coordinate lx1  
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Figure 4 

The dependence of the critical load crp  on the dimensionless length of the prefracture zone 

Conclusions 

An analysis of the critical equilibrium state of the bushing contact pair at which 

the crack appears reduces to a parametric study of the resolving algebraic system 

(24), (25), (26), etc. and the criterion of crack emergence (30) with different laws 

of bond deformation, physical and elastic constants of material, and geometric 

characteristics of the latter. The forces in the bonds and the opening of the 

prefracture zone are found directly by solving the resultant algebraic systems in 

each approximation. 

An effective algorithm for solving contact fracture mechanics problems on crack 

nucleation in a bushing friction pair is proposed. This algorithm allows the 

solution to be constructed in a single manner in each approximation by the method 

of perturbations. 

The model of the prefracture zone with bonds between its faces makes it possible 

to do the following: to study the basic features of the distribution of forces in the 

bonds with different deformation laws; to analyze the ultimate equilibrium state of 

the prefracture zone with allowance for the determination condition of fracture; to 

estimate the critical external load and crack resistance of the material; and to 

determine the conditions of equilibrium and growth of the prefracture zone size, as 

well as conditions of crack nucleation based on the analysis of the ultimate 

crp  
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equilibrium state with allowance for mechanical parameters of the bonds. This 

model allows us to account for not only each specific realization of the roughness 

profile (deterministic approach), but also to carry out the statistic description of 

the roughness of bushing and plunger surfaces by realization of stationary random 

function. The results of the present work allow us to choose the class of roughness 

of friction pairs, providing the loading ability of conjugation, optimal in strength 

and stiffness. 
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