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Abstract: Controlling, influencing and managing the fuel/energy consumption and refill 
frequency of hybrid vehicles will be essential in the coming decades of increasing vehicle 
autonomy and not have depleted or low battery vehicles, along the roadways.  
The presented research aims to establish a fuel consumption model with the vehicles' fuel 
consumption influencing factors, to simulate and evaluate the consumption and refill rate. 
The aim is to collect the effect of fuel consumption in a comprehensive literature overview. 
We defined the most relevant work for modelling and simulation. Results were validated in 
proving ground tests at a high-speed handling track. Several tests were done to validate 
different parameters' effects on fuel consumption and refine the models. As a result, we 
built a model that enables the correct prediction of reality in a model environment. It is 
valuable while autonomous vehicle testing is increasingly becoming simulations. Based on 
our results, autonomous vehicles can be developed with real environmental effects and fuel 
consumption behavior. 

Keywords: autonomous vehicles; plug-in-hybrid vehicles; fuel consumption; simulation 
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1 Introduction 

Increasing the autonomy of cars and electrification are the two main automotive 
industry trends in the second decade of this century. There are scenarios in that 
they go hand-by-hand in other options, and one of them may spread faster [1]. 
Vehicles of the future will need energy – fuel, electricity or even an unknown 
source – and their independence will increase [2] [3]. Their effect on the 
environment [4] [5] and keeping their operation cost optimal is a focal area [6] [7]. 
In the vehicle industry, the manufacturers need to compliance standards and social 
pressure about fuel and exhaust emissions [8] [9]. Vahidi and Sciarretta [10] dealt 
with connected and Automated Vehicles (CAVs) energy-saving potentials based 
on motion, optimal control theory and eco-driving. Other vehicles' connectivity 
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allows better anticipation of upcoming events (for instance: hills, curves, low 
traffic, state of traffic signals and measurement of neighboring vehicles).  
The paper created the first major analysis of connected and automated vehicles.  
It concluded that access to information (via advanced sensors and V2X 
communication [11] [12]) increased power, and precision positioning and control 
enable connected and automated vehicles to plan and execute eco-driving 
maneuvers much better than a human driver. Related literature to this paper 
specified energy-saving potentials. For instance, V2I causes 10% of energy 
savings, while connected and automated vehicles 20% (in platooning, where the 
vehicles communicate with each other, have 7-10% drag reduction).  
An interesting result, is that driving scenarios only have 3% of energy savings. 
These results and functions have a maximum advantage that does not need 
additional hardware costs, so it is not a significant effort from the manufacturer's 
side to develop these autonomous functions. Similar statements are presented in 
the paper of Barabas et al. [13]. He and Wu [14] presented mixed platoons with a 
mixed fleet of gasoline and electric vehicles. These vehicles have different 
characteristics as electric vehicles have high efficiency and energy recuperation. 
Their model uses a non-linear optimization depending on whether the platoon is 
led by an automated or a human-operated vehicle. This vehicle gets acceleration 
characteristics, which guarantees the lowest energy consumption of the platoon, 
while the following vehicles set targeted cruising speeds. The determination of the 
acceleration profile can be solved in many ways. One of these ways is with the 
continuum model. These models are usually used for hydrodynamic problems. 
However, Ronjung et al. [15] show that these models can describe the effect of 
acceleration changes with memory (that affects, for instance, fuel consumption, 
exhaust emission, velocity, or density) and give a proper solution with linear and 
non-linear stability checks too. These acceleration changes play a big role in 
traffic, causing traffic congestion or local clusters, and the model can reproduce 
these complicated traffic phenomena. This numeric solution is consistent with the 
theory. Fuel economy can be optimized in various ways. One of these ways 
introduced by Wu et al. [16] is an application designed for human drivers and 
autonomous vehicles. This FEOS (Fuel Economy Optimization System) system is 
designed for free-flow and car-following modes. It calculates the optimal 
acceleration and deceleration values by La-grange multipliers (considers even 
manual and automatic gear shifting and current gas pedal operations and 
calculates the optimal fuel usage with feedback). The system is based on previous 
optimization systems of sending the information to the autonomous vehicles, 
while the human driver gets the acceleration and deceleration information via an 
HMI (Human-Machine Interface). The system is tested and validated with a 
driving simulator experiment, where urban driving conditions gained more 
attention on saving gas than, for instance, freeway (because of the traffic 
conditions: more acceleration and deceleration is needed). Eight participants took 
the test from 24 to 34 years of age with normal vision and a valid driver's license. 
Four participants executed the test with FEOS and the other two without it, and 
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the test concluded that the fuel usage and emission were significantly lower with 
FEOS (12-26%). This advantage with an autonomous vehicle can be even better 
with improved motion planning methods [17]. Fuel economy testing is important 
nowadays, and there is no accepted mechanism. One method was designed by 
Mersky and Samaras [18], where the main goal was to create a test method for 
autonomous vehicles for fuel economy testing. This new method is different 
because it considers how individuals drive and compares to autonomous vehicles. 
This way, we can get a clear picture of the advantages of autonomous vehicles on 
fuel economy. In other models, autonomous vehicles have unrealistic optimization 
decisions or have many requirements and non-public information. This model also 
can calculate fuel consumption if the vehicle follows another vehicle. The paper 
concludes that it is challenging to reduce fuel economy without predicting, and the 
performance can improve significantly by improving the amount of time a vehicle 
can predict actions in the future. Ross et al. [19] investigate four scenarios that can 
be seen in Figure 1. These scenarios can be partial or full automation, personal 
and shared vehicles, and these scenarios are a combination of these. Based on 
2011 and 2014, an interpolation was done to 2017. These results are interesting: 
full automation is likely to result in more energy consumption mainly because it 
allows vehicles to travel faster (mainly because of travel demand). Shared 
vehicles' main energy saving potentials are because ridesharing can significantly 
reduce energy consumption. 
 

Figure 1 
Autonomous vehicle driving scenarios [14] 

According to these papers, reducing fuel consumption in vehicles is mandatory.  
In the case of full automation, if we do not reduce consumption, the pollution can 
gain too high a level, and it can affect health. That is why some regulations and 
testing standards need to be instituted to spread autonomous vehicles [20]. 

The self-driving vehicle can improve fuel consumption in different traffic 
situations, such as roundabouts, as Pokoradi et al. [21] described. Self-driving 
vehicles are much available to get information, communicate real-time data and 
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co-operate with other road users. Evidence from current research indicates that in-
vehicle systems positively impact fuel consumption and can improve fuel 
efficiency [22]. In-vehicle feedback systems are relatively new tools for driving 
more fuel and environmental consciousness to support driver behavior change. 
There are many devices on the board of the vehicles to be used to improve fuel 
efficiency, such as dashboard displays, heads-up displays etc. Barth and 
Boriboonsomsin [23] presented in their paper that speed feedback via in-vehicle 
dashboard displays can improve fuel efficiency by even 10-20%. Strömberg and 
Carlsson [24] report about a similar phenomenon in buses. Up to 6.8% in fuel 
consumption decreased when bus drivers received real-time feedback on their 
driving via in-vehicle eco-driving systems. Autonomous vehicle’s potential role in 
future mobility emission control is highlighted by Babiak et al. [25]. 

Similarly, to other characteristics, autonomous vehicles' fuel consumption 
measurement is hard to insert into the automotive industry's traditional type 
approval process, as Baranyi et al. [26] reported. The situation is much more 
complicated in the case of vehicles equipped with artificial intelligence. Aiming to 
reach a similar safety-critical failure level that is normal for human-driven 
vehicles, it would be necessary to test more than 4,000,000 km/s for an automated 
vehicle. It is not realistic, and this gap can be overburdened by using simulation 
environments combined with exceptional proving grounds [27]. 

Zöldy and Zsombók [28] research focused on determining the onboard (internal) 
and environmental (external) influencers of fuel consumption to be able to 
develop highly automated self-driving vehicles. They state that understanding and 
influencing fuel consumption is an excellent opportunity to utilize the driver 
assists systems for eco-driving in an increased way. This also provides a great 
help in assisting drivers in eco-driving training. Vehicle fuel- and energy 
consumption could depend on various reasons, and that is to be categorized as 
vehicle-driven parameters [29], road-related parameters [30], usage (driver) 
related parameters and ambient parameters. The four categories with their main 
contributors [31] and their magnitude [32] [33] are presented in Table 1. Related 
literature overview can be summarized as follows: autonomous and connected 
vehicles will have a significant role in future mobility. Testing and validation of 
automated vehicles make it necessary to test and measure the vehicle partially in 
virtual reality. Most of the aspects of self-driving vehicles are valid for energy 
consumption-related issues. As the future drivetrain technology is unclear yet, we 
focus on today's most complex solution, the plug-in hybrid technology, while it 
covers the two most potent applicants: electric vehicles and internal combustion 
engines. Focal research parameters were defined by Table 1 as follows: gear ratio, 
tire pressure, air conditioner use, vehicle speeds: 
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Table 1 
Influencers and their magnitude on fuel consumption 

Fuel consumption influencers (-%=increase fuel consumption 
Vehicle driven parameters Usage related parameters 

weight 0.5 l/100 kg total runtime up to 8 % 
gearbox -3.3 % severity of 

accelerations 
down to -10 % 

maintenance up to 5 % frequent braking -1.4 % 
engine oil up to 2 % over speeding -2.6 % 
tires (retreaded) -1.8 % driver style up to 5 % 
tires (low pressure -0.2 % short trips down to 7 % 
  engine start-up up to 12 % 
  air conditioning -3.0 % 

Road related parameters Ambient parameters 
surface type 1.0 % wet Intake air 

temperature 
cold temperature 
extra warm 
temperature 
wind 
landscape profile 

6.6 % 

material 0.5 % 

 

2 Materials and Methods 

The literature review-based research program is presented in Figure 1. After 
capturing the relevant fuel consumption onboard influencers, a test track for real 
vehicle testing was chosen and modelled. Real vehicle tests validated the model-
based simulations. 

 
Figure 2 

Block scheme of the research 

The test program has two main parts: first, the real driving fuel consumption data 
was measured and evaluated. The focus was on the onboard fuel consumption 
influencers, while an autonomous vehicle can potentially affect fuel consumption. 
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Measurement results were incorporated into the modelling and simulation part. 
The number of measurements was determined for each measurement series during 
the measurements based on the following. For a population with unknown 
distribution, the sample size can be calculated from the Chebyshev equations as 
follows: 
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For simple random selection, the formula (1) is simplified to: 

( ) α−=∆+〈〈∆− 1)( xxMxP  (2) 

Rearranging Equation (2) gives the number of samples needed to achieve the 
desired accuracy: 

2
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∆
⋅
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Where: 

n - required sample size 

t - probability parameter 

sk - corrected empirical standard deviation 

D - accuracy range 

 

Using the formula (3), the number of measurements performed can be examined 
in the appropriate standard deviation. To evaluate this, I have determined based on 
the literature how much spreading ranges are acceptable for each parameter under 
test with a propellant. The results are shown in Table 2. Here, it can be seen from 
formula (3) that the standard deviation calculated from the number of 
measurements carried out is lower than the standard deviation, sexp, which 
characterizes the measurement's statistical robustness. Based on this, the results of 
the measurements are statistically acceptable. 

Table 2 
Number of measurements to be performed and performed per measurement point 

 sexp. scalc. t d n [db] 
Power W 0.07 0.040 1.96 0.05 6 
fuel consumption l/100 km 0.05 0.040 1.96 0.05 6 
energy consumption kWh/100km 0.03 0.031 1.96 0.05 10 
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2.1 Test Vehicle 

A parallel, mild-hybrid vehicle was chosen for the Integrated Motor Assist system 
tests. It has an internal combustion engine with a volume of 1.5 liters with variable 
valve timing. Its transmission system is a 6-gear manual gearbox. A brushless DC 
motor is placed between these two, which also serves as a starter, rated at 10 kW. 
The system output is 90 kW. The battery is a Li-ion pack, with a capacity of 
0.6 kWh, consisting of 84 cells, with a voltage of 12 V individually.  
The measurement was the following: the vehicle's cruise control was set at 
110 km/h speed, and tests were carried out with Normal mode. Measured onboard 
consumers were air condition, headlights and audio system. The decrease of the 
vehicle's range on a 2 km long highway distance has been investigated. 

Table 3 
Technical specifications of the measured vehicle [28] 

 

Engine 1.5 i-VTEC 
Displacement (cm3) 1.499 
Bore (mm) 73 
Stroke (mm) 89.4 
Maximum Power (kW (LE)) /révolutions 
(1/min) 

83(114) /6,100 

Maximum Torque 
(Nm)/révolutions(1/min) 

145/4,800 

Compression ratio 10.4:1 
Maximum speed(km/h) 200 
Acceleration (0-100 km/h) 9.9 
Empty weight (kg) 1,147 

Fuel consumption (l/100km) 
city 4.4 

highway 6.1 
mixed 5.0 

2.2 Test Track Description 

Two sets of tests were performed to verify the adequacy of the simulation results. 
The first was a measurement of consumption in an urban environment, where 
consumption variations were observed under identical traffic conditions but with 
variations in weather and day length. Analysis of the data from the measurements 
showed that the 40 cycles of measurements we carried out did not provide a 
sufficiently robust answer to whether our assumptions were sufficiently well 
founded. 

As a second test environment, we chose a dedicated section of a test track on 
which we measured the effect of different consumers on fuel consumption at a 
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constant average speed. During the measurements, the pressure in the vehicle's 
tires was varied intermittently, assuming that low pressure, which could be an 
indication of neglect or carelessness, was a clear indication of the vehicle's 
condition. 

The effect of the mix of factors influencing consumption thus created was 
investigated as a function of speed and gear. In order to have a properly 
interpretable set of results, it was endeavored to compare the consumption 
measured at the same speed data in the simulations. 

Each test track measurement cycle was run for 30 minutes at average speeds of 47 
and 50 km/h. 

In all cases, fuel consumption was measured at ambient parameters by preparing 
the vehicle's fuel supply system and dispensing it from a specially calibrated fuel 
tank using a top-up procedure to achieve the highest possible accuracy. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 
Test track for simulation (real picture and GPS tracked) 

2.3 Modelling and Simulation 

There are now many possibilities for simulating real-world consumption data with 
a high accuracy. The most widely used of these is the IPG Carmaker simulation 
environment, where arbitrary test programs can be run within a high-fidelity 
environment. Depending on the level of detail of the input data as well as the 
accuracy of the vehicle data to be tested, it can provide real-time results for 
vehicles in different environmental and driving situations. 
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In our case, we were looking for a more general solution to predict the measured 
data, so we chose to test in a simulation environment supported by neural 
networks. Simulation tools using neural networks, similar to the human brain, are 
able to predict fuel consumption and, thus vehicle range by taking into account a 
number of known or less known variables. 

In choosing the right simulation network, we took into account, the complexity of 
each network and the computational capacity required, as well as the amount of 
empirical data needed to achieve sufficient accuracy. This grew from the simplest 
black-box model, which relies only on the anemometric data, to the more complex 
but significantly higher accuracy back propagation and radial basis neural 
networks, which empirically, achieve efficiencies of 95-98%. 

According to the literature, there is a growing emphasis on the use of feed-forward 
neural networks. 

In this model, neurons can be grouped into several hidden layers. The main 
features are an input layer, whose length depends on the number of inputs, an 
arbitrary number of so-called hidden layers, and an output part, whose size is 
equal to the number of desired outputs. 

The size of the input and output layers were not varied and since no significant 
change was detected by varying the number of hidden layers, we worked with a 
network having only one hidden layer, varying only the number of neurons. 

3 Results and Discussion 

The main aim of the real-world test was to measure the effect of different onboard 
consumers on vehicle fuel consumption and distance prediction. The result can be 
summarized as it is presented in Table 4. 

Table 4 
Fuel consumption differences caused by the additional consumers 

  l/100 km kg/h difference 
Power 

[W] 
no consumer 4.6 6.24 0 0 
radio 4.65 6.31 1% 160 
lightning 4.7 6.38 2% 200 
air condition 5.3 7.19 15% 2,480 
heating 5.4 7.33 17% 2,720 
all consumers (radio, lightning, 
heating) 5.6 7.60 22% 3,080 

 

 



I. Zsombok et al. Modelling, Simulation and Validation of Hybrid Vehicle Fuel Consumption 

 – 70 – 

Topological differences and environmental effects as wind were compensated so 
that the test was carried out in both directions, and the results were averaged. This 
approach helped to eliminate this effect and put onboard consumers in focus.  
A further research step could be to extend the investigations on the external effect 
on fuel consumption. Results of the simulation are presented in Figure 3.  
The baseline case was that no extra onboard consumers were added. The chart x-
axis is the driven distance [m], and y is the fuel/electric consumption (absolute 
fuel consumption, actual fuel consumption, and actual electric consumption). 
Results are presented with and without extra onboard consumers in Figure 4. Four 
different onboard consumer level was simulated on the same track with similar 
environmental parameters: no consumer (left up), lightning as 200 W energy 
consumption (right up), air-condition with 2,500 W (right bottom) and radio, 
lightning and heating with 3,000 W (left bottom). 

  

  
 

Figure 3 
Results of fuel and energy consumption simulation 

Figure 3 shows the simulations results in the distance function in all cases.  
The length of the testing curve is 2.4 km. The fuel and energy consumption 
profiles of the four cases are very similar. The main difference in energy/fuel 
utilization is seen in the first part of the track between 0 and 180 meters and the 
closing part after 2,300 meters. In the first track, the start-up energy consumption 
of the vehicle is the reason for the different behavior. In the last part, the 
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accumulator charge appears. During the intermedium parts of the track, only a 
slight difference is to realize that the tendencies (start and stop of ICE, start and 
stop of electric engine, recharge of accumulator) are the same. Table 5 gives an 
overall picture of the measured and simulated fuel consumption. In the third row 
of Table 5, the raw simulation data is compared to the measurement. It is to 
recognize that increasing onboard energy consumption increases the difference 
between simulated and measured values. 

Table 5 
Average fuel and energy consumptions 

Fuel consumption [l/100 km] 
w/o 

consumer 
200 W 
load 

2500 W 
load 

3000W 
load 

Simulation (Sim) 4.6 4.66 4.85 5.02 
Measurement (Meas) 4.6 4.70 5.3 5.6 
Sim - Meas difference 0% 1% 8% 10% 
Corrected simulation (Corr Sim) 4.60 4.70 5.34 5.62 
Corr Sim - Meas. Difference 0% 0% 1% 0% 

 

After evaluating the data, it is proposed to use a correction that is a multiplication 
of a z constant and the extra load as presented in Equation 6: 

 (6) 

where Bcorr is the corrected simulated fuel consumption, Bsim is the simulated fuel 
consumption, Z is the constant correction factor of 0.0002, and L is the actual 
extra load of the onboard consumers. As Table 5 last row shows with the proposed 
correction, the simulation results were in the 1% range of the measured results. 

Conclusions 

This work established a correction factor, to correlate fuel consumption simulation 
results, with onboard consumers and road test data. A comprehensive literature 
overview in the research paper highlights the importance of fuel consumption 
prediction of autonomous plug-in-hybrid vehicles. These vehicles contain all 
state-of-the-art propulsion technologies that will play an essential role in the 
mobility of the following decades [37]. The basis of the forecasting is a simulation 
model that correlates with the actual consumption. Development and testing of 
autonomous vehicles will be done partially in virtual reality. To have accurate fuel 
consumption simulation results, it is crucial to have correct fuel consumption data 
connected to that realistic emission and environment load. The three commonly 
used models and simulation environments were examined, and one was chosen, 
based on the potential for utilization. In this test environment, a basic setup was 
built, to do a basic test concerning the potential utilization and validate it with our 
tests. Our tests concluded that, the modelled fuel consumption method could be 
verified in simulations, for hybrid autonomous vehicles, in the future, with an 
accurate correction factor. 
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