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Abstract: Honeypots are widely used to study adversary behavior and support enterprise 
detection, yet their evaluation is fragmented and often qualitative. This paper proposes a 
unified, metrics-driven framework assessing honeypots across five dimensions—interaction, 
data quality, resource use, stealth, and fingerprinting resistance—using hard (observable) 
and soft (context-dependent) indicators. A normalization and weighting pipeline yields 
composite scores, while methods combining attack automation, anomaly detection, and 
ATT&CK enrichment enable reproducible comparisons. Case studies span IT, IoT/OT, and 
ICS/PLC. Benchmarking guidelines and modern datasets are recommended. An integration 
roadmap positions honeypot telemetry in SIEM–SOAR–CTI with LLM support and ethical 
guardrails. Standardized metrics and reproducible methods make honeypot studies 
comparable, operationally useful and fit for continuous improvement. 
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1 Introduction 
The growth of cyberspace has exposed infrastructures to diverse, sophisticated 
attacks [1, 5, 22, 46]. Reactive defenses alone cannot counter zero-day exploits, 
ransomware, botnets, and advanced persistent threats [1, 5, 6, 32]. 
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To address this, researchers employ deception-based defense mechanisms, notably 
honeypots [2, 3, 5, 42, 61]. Honeypots are decoy systems that mimic real assets to 
attract and monitor adversaries without jeopardizing production [3, 32, 43, 56, 57, 
58]. They enable real-time study of attacks, collection of threat intelligence, and 
serve as early warnings or distractions [3, 11, 21, 22]. 

Conventional honeypots face limits: many are finger-printable, and no standardized 
framework exists for assessing deception or impact [1, 3, 5, 10, 14, 15, 25, 49]. 
Recent surveys show renewed interest in evaluation [1, 3, 5, 45, 61]. LLM-driven 
deception and interaction safety further motivate standardized metrics [26, 27, 47, 
48, 61]. Advances in cloaking, fingerprinting resistance, protocol fidelity, 
engagement analysis, ML-based anomaly detection (e.g., Honeyboost) [10, 14, 15, 
23], and visualization highlight the need for scalable, standardized methodologies 
[3, 24, 25]. 

This paper introduces a unified, metrics-driven framework for evaluating honeypots 
across five dimensions: interaction, data quality, resource efficiency, stealth, and 
fingerprinting resistance. It defines measurable indicators and applies them in 
comparative case studies, providing a reproducible foundation for systematic 
honeypot assessment. The framework also lays groundwork for adaptive systems 
using LLMs [26] [27] and provenance-aware audit logging [62][63]. 

2 Related Work 
Honeypots have evolved from simple decoys to advanced deception platforms with 
integrated analytics [2, 3, 5, 38, 58], reflecting interest in attacker behavior, 
detection, and optimized deployments [1, 3, 4]. 

Honeypot Taxonomy. Honeypots are classified by interaction level: low, medium, 
and high. Low-interaction (LIHs) simulate limited services for tracking automated 
attacks; medium-interaction (MIHs) simulate OS shells or service responses for 
deeper intent analysis; high-interaction (HIHs) expose full systems for compromise, 
yielding rich forensic data but requiring strict containment [3, 37, 56, 57]. Beyond 
LI/MI/HI, frameworks like T-POT enable modular multi-service deployments [68]; 
specialized honeypots (e.g., Dionaea, Glastopf) target specific vectors [70] [71]; and 
HoneyMesh or SpiderTrap extend coverage [5]. 

Counter-Deception Techniques and Attacker Fingerprinting. Advanced attackers 
fingerprint honeypots via probing and inconsistencies [10] [61]. Countermeasures 
include protocol-accurate responses, realistic artifacts, and traffic normalization [2] 
[15]. Industrial studies show both PLC identification and obfuscation, highlighting 
an arms race [14] [15]. Adaptive deception that adjusts to attacker behavior is 
emerging [1] [27]. 
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Evaluation methods lack consensus [1] [3]. Automation frameworks such as 
HARMer support repeatable tests [25], while suites like T-POT [68] offer rich data 
but need added methodology for deception-quality assessment. Surveys show many 
evaluations remain ad hoc, relying on qualitative findings or activity counts instead 
of reproducible benchmarks, underscoring the need for standardized, multi-
dimensional metrics [1] [3]. Fusion and anomaly detection on honeypot logs (e.g., 
Honeyboost) suggest paths toward metrics-driven pipelines [23]. 

Table 1 
Prior honeypot surveys and taxonomies, showing classification focus and motivating our framework 

Year Authors 
(Work) 

Honeypot Type Deployment 
Scale 

Key 
Contributions 

Evaluated 
Metrics 

Ref 

2004 Provos (Virtual 
Honeypot 

Framework) 

LI (Honeyd) Lab Foundational 
service 

emulation 

Interaction; 
protocol 
coverage 

[55] 

2012 
HoneyMesh 

(Virtual 

Honeypot Mesh) 

Virtual LI/MI Design/concept DDoS 
mitigation via a 

mesh of 
redirecting 

decoys; early 
LI/HI 

hybridization 

Redirection 
success; 

engagement; 
overhead 

[5] 

2016 Zhan et al. Mixed traces Research 
testbed 

Statistical 
characterization 

of attacks 

Rates; 
session 
length; 

distributions 

[11] 

2020 López–Morales et 
al. 

(HoneyPLC) 
ICS/PLC 

Lab/ICS Next-gen ICS 
honeypot design 

Protocol 
fidelity; 

robustness 

[33] 

2022 Kandanaarachchi 
et al. 

(Honeyboost) 

MI logs Lab dataset Fusion + 
anomaly 

detection over 
logs 

Anomaly 
rate; 

temporal 
divergence 

[23] 

2022 Ummels et al. 
(RIoTPot) 

Hybrid IoT/OT Depl./field Deployable 
IoT/OT 

deception 

Coverage; 
realism; 
footprint 

[36] 

2023 Ilg et al. Multi-protocol (T-
POT, Dionaea, 

Cowrie) 

Enterprise/large Survey + 
comparative 

analysis 

Protocol 
diversity; 
logging 
depth; 

resources 

[3] 

2023 Priya & 
Chakkaravarthy 

Containerized/cloud Cloud cluster Scalable 
containerized 

deception 

Scalability; 
resource 

usage 

[31] 

2023 Etcheverry et al. Identification 
methods 

Mixed Multistage 
honeypot 

identification 

Detection 
accuracy; 
features 

[10] 

2024 Zhu et al. 
(HoneyJudge) 

ICS/PLC Lab/ICS PLC honeypot 
identification 
via memory 

tests 

Detection 
accuracy; 
resilience 

[14] 
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2022–
2024 

T-POT CE 
(variants; incl. 
SpiderTrap/ 
Heralding) 

Multi-protocol suite Enterprise/large Expanded 
service set; 

Elastic-based 
logging; 
container 

orchestration for 
scale 

Protocol 
diversity; 
logging 
depth; 

storage/CPU 

[68] 

3 Honeypot Types and Deployment Models 
Honeypot classification goes beyond interaction level to include architecture, 
deployment, and integration with security stacks [1, 3, 5]. This section synthesizes 
principal types and models, with Table 1 anchoring categories in representative 
studies and metrics [3, 11, 23]. 

Software-based honeypots. Software honeypots dominate: LI (Honeyd, Glastopf), 
MI (Cowrie, Dionaea), and HI (full systems) balance realism, risk, and resource 
cost [2, 3, 41, 55-57, 69-71]. Cloud-native variants use containers for elasticity but 
add operational burden [24, 31, 68]. 

Hardware-based honeypots. In IoT and ICS, physical decoys use device firmware 
and protocols (e.g., Modbus, BACnet) to capture hardware-specific exploits [4, 16, 
72]. They offer high realism but are fragile and costlier than software-only 
approaches [4] [16]. Large IoT honeypots also reveal brute-force and malware 
propagation, against embedded devices [4] [8]. 

Hybrid, virtualized, and distributed deployments. Hybrid designs use low-
interaction front ends with selective high-interaction back ends, forwarding traffic 
for deeper observation [3, 5, 18]. Virtualization via containers/VMs simplifies 
replication and isolation; T-POT variants broaden protocol coverage and datasets 
but add overhead [3] [68]. Honeynets link decoys to emulate enterprise/cloud 
settings, while distributed versions support propagation and coordination studies [3, 
11, 18]. Centralized control eases management but risks single points of failure; 
decentralized designs trade simplicity for resilience [3]. SDN and moving-target 
defense reconfigure services to increase attacker uncertainty but add complexity [1, 
6, 17, 19]. Honeypot telemetry is increasingly integrated with SIEM/SOAR and 
IDS/IPS for correlation, though governance is needed to avoid analyst fatigue [22, 
44, 61, 66, 67]. Large-scale, including hybrid IoT/OT, deployments are feasible but 
require SOC-grade expertise [3, 22, 36]. 
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4 Defining Measurables: A Metrics Framework 
Honeypot assessment needs standardized metrics beyond ad-hoc counts [2, 3, 5]. 
We propose a five-dimensional framework ‒ interaction, data quality, resource 
usage, stealth, and fingerprinting resistance ‒ with hard (observable) and soft 
(context-dependent) indicators [2, 3, 5]. Figures 1-2 show the pipeline and 
benchmarking; Table 2 lists the metrics. 

Metric dimensions and indicators. Interaction level shapes fidelity and risk. Low-
interaction systems (e.g., Honeyd) emulate few services [55]; high-interaction (e.g., 
Cowrie) expose full environments [56] [69]; medium-interaction (e.g., Dionaea) 
balance safety and observability [3] [70]. Analysts track session length, command 
diversity, and payload complexity [3, 11, 37]. More interactivity yields richer data 
but higher risk/cost [3] [56]. Data quality and attribution depend on complete attack 
sequences, malware diversity, and enrichment with knowledge bases such as 
MITRE ATT&CK [59]. Fusion and anomaly detection (e.g., Honeyboost) motivate 
monitoring information content and novelty [23] [40], while realistic artifacts and 
timing improve engagement [2, 3, 5]. Resource use governs scalability; CPU/RAM, 
network I/O, and storage footprints are logged for binaries and transcripts. 
Containerized and flow-based honeypots show typical profiles [24] [31]; stress tests 
use frameworks like HARMer [25]. Stealth reflects believable interaction, with soft 
indicators (cloaking success, dwell time) and hard correlates (session duration) [2] 
[5]. Fingerprinting resistance covers protocol fidelity, realism, and probe failure 
rates [2, 10, 14, 15]. Adaptive mimicry, randomized timing, and architectural 
diversity further reduce detectability [3] [31]. 

Methodological mapping. Hard indicators (session length, command diversity, 
CPU/RAM, network I/O) are computed with direct measurement and descriptive 
statistics. Soft indicators (cloaking success, protocol fidelity, realism) use ML-
assisted scoring ‒ e.g., anomaly models on temporal features [23] or resilience tests 
from recent frameworks [10] [14]. Narrative synthesis (ATT&CK mapping, 
evidence cards) can be LLM-assisted under structured schemas for safety and 
auditability [26] [27] via protocol fidelity, realism, and probe failure rates [2, 10, 
14, 15]. Adaptive mimicry, randomized timing, and architectural diversity further 
reduce detectability [3] [31]. 
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Figure 1 
Aggregation pipeline: indicators are normalized, weighted, and combined into a composite 

effectiveness score used in later benchmarking [3] [5] 

 

Figure 2 
Framework overview: five metric dimensions feed a central engine to produce composite scores for 

cross-deployment comparison [2, 3, 5] 

Table 2 
Overview of honeypot evaluation metrics across five dimensions: interaction, data quality, resource 

usage, stealth, and fingerprinting resistance 

 Metric Name Type Data Format Notes 

(A) 
Interaction 

Level 

Session Length Hard Time (seconds) Duration of each attacker 
session. Longer sessions may 

indicate greater honeypot 
realism or deception success. 

 Command 
Diversity 

Hard Count (unique 
commands) 

Behavioral richness of 
interactions. High values 

suggest effective engagement. 
 Payload 

Complexity 
Hard Ordinal 

(Low/Medium/High) 
Type and sophistication of 

binaries or scripts dropped by 
attackers. 
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(B) 
Data Quality & 

Attack 
Attribution 

Completeness Soft Percentage/proportio
n 

Degree to which the full 
sequence of an attack is 

captured; higher completeness 
enables stronger attribution. 

 Malicious 
Payload 

Collection 

Hard Count (files 
captured) 

Number of malware artifacts or 
scripts downloaded/executed 

during sessions. 
 Enrichment 

Capability 
Soft Boolean/scored 

match 
Ability to enrich captured data 
via threat-intel sources (e.g., 

VirusTotal, MITRE 
ATT&CK). 

(C) 
Resource 

Usage 

CPU and RAM 
Consumption 

Hard Percentage 
utilization/MB 

Processing and memory 
overhead per honeypot 

instance. 

 Network I/O Hard MB/s or packet count Total incoming/outgoing traffic 
volumes; helps assess risk and 

scalability. 
 Storage 

Footprint 
Hard GB/file count Size and number of logs, 

binaries, and session captures 
retained. 

(D) 
Stealth and 

Deceptiveness 

Cloaking 
Success Rate 

Soft Percentage Ratio of sessions where the 
attacker fails to identify the 

honeypot. 

 Attacker Dwell 
Time 

Hard Time (seconds) Time an attacker remains 
active before exit or evasion; 

proxy for believability. 
(E) 

Fingerprinting 
Resistance 

Protocol 
Fidelity 

Soft Deviation 
score/qualitative 

Accuracy of protocol behavior 
emulation (e.g., banners, error 

codes). 

 Environmental 
Realism 

Soft Qualitative/checklist Presence of realistic OS 
artifacts (logs, files, 

timestamps) that hinder 
detection. 

 Detection 
Evasion 

Hard Count (failed probes) Number of attacker 
fingerprinting attempts that did 

not identify the honeypot. 

5 Evaluation Methodologies 
Honeypot assessment must consider interaction depth, stealth, fingerprinting 
resistance, and intelligence quality, not isolated metrics. Current approaches 
combine taxonomy-driven models, deception metrics, attack automation, and 
anomaly detection over multi-source logs [2, 3, 5, 23, 25]. 

Taxonomy and effectiveness models. These studies frame evaluation around 
deception fidelity, fingerprinting resistance, and attacker engagement, enabling 
consistent platform comparison [2] [5]. Open-source surveys benchmark protocol 
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coverage, logging granularity, and operational utility, mapping to interaction, data 
quality, and resource usage [3]. Domain-specific work for IoT/IIoT and CPS 
motivates environment-aware metrics tied to industrial protocols and realism [4, 7, 
20]. Concepts from moving-target defense extend to configuration churn and 
adversary uncertainty [6]. 

Real-time deception metrics and modeling. Deception quality evolves with attacker 
behavior and system adaptation [25]. Indicators include behavioral realism, 
misdirection/confusion rates, and progression depth [2] [5]. Research on PLC 
obfuscation and identification countermeasures highlights measurable protocol 
fidelity and probing resilience [14] [15]. Autonomy-oriented work (e.g., 
reinforcement learning) suggests metrics for state adaptation and reward policies 
[6] [34]. LLM-driven deception motivates standardized, reproducible evaluation of 
interactive honeypots [26] [27]. 

Controlled evaluation via attack automation. HARMer benchmarks protocol 
realism, fingerprinting resilience, logging accuracy, and resource use through 
scripted attacks [25]. 

Time-series anomaly detection. Anomaly detection quantifies deviations from 
learned behavior. Honeyboost fuses heterogeneous logs and applies time-series 
models (including autoencoders) to detect novel tactics or strategy shifts [23]. 
Metrics include temporal divergence, behavioral variance, and engagement 
irregularities, strengthening data quality and stealth. Statistical methods further 
characterize attack distributions and uncertainty [11]. 

Metric collection and analysis in case studies. Case studies extract metrics from 
session transcripts and telemetry from Cowrie, Dionaea, and T-POT [41, 68-70], 
enriched with packet captures and flows via Zeek and Wireshark [73] [74]. Host-
level monitors log CPU, memory, and I/O for resource usage, while 
protocol/behavioral artifacts inform stealth and fingerprinting resistance [10] [14]. 
These multi-source datasets enable consistent computation of hard (e.g., session 
length, command counts) and soft (e.g., deception success, protocol fidelity) 
indicators, aggregated and scored within the framework (Figures 1-2, Table 2). 

6 Case Studies and Comparative Analysis 
Five representative deployments demonstrate the framework, applying Table 2 
metrics and the aggregation pipeline in Figure 1. The cases cover SSH cloaking, 
multi-protocol engagement, cloud-native orchestration with ML analytics, a hybrid 
IoT/OT setting (RIoTPot), and an ICS/PLC honeypot [3, 4, 16, 23, 31]. Judgments 
are based on normalized indicators and interpreted with Figure 2. 

SSH honeypot fingerprinting resistance. Cowrie is a widely used SSH/Telnet 
honeypot evaluated by command diversity, session duration, and logging depth [3]. 
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Identification studies show unrealistic artifacts, timing, or banners enable 
fingerprinting; cloaking with realistic environments and timing normalization 
improves engagement and reduces abandonment [10]. These adjustments enhance 
interaction, data quality, and stealth in the framework [2, 3, 10]. 

T-POT, Cowrie, and Dionaea span multiple protocols, balancing fidelity, logging 
depth, and overhead [3, 68, 69, 70]. Dionaea captures diverse binaries but is finger-
printable; session and command distributions aid comparison [3, 10, 11]. 

Cloud-based honeypots offer elastic scaling and isolation but consume more 
resources [31]. Fusion-based anomaly detection (e.g., Honeyboost) learns baselines 
and surfaces deviations, improving data quality and stealth [23]. Tamper-evident 
logging further supports trustworthy forensics [60]. 

Industrial IoT honeypots. In ICS/IIoT, protocol-aware deception (e.g., 
Modbus/BACnet) and PLC honeypots face targeted identification; studies show 
both obfuscation and active tests [14, 15, 33]. Surveys note brute-force and probing 
of embedded devices, stressing realistic telemetry for completeness but with higher 
cost and fragility [4] [16]. Such settings score high in interaction and data quality, 
but lower in scalability and resources. 

Comparative summary. Table 3 synthesizes the five deployments on a qualitative 
Low/Medium/High scale derived from normalized measurements (e.g., session 
duration, commands captured, fingerprint-probe failure rate, resource utilization). 
Rows correspond to the framework’s metric categories, columns to deployment 
types, and the entries reflect the composite interpretation outlined in Figures 1 and 
2 [3, 23, 31]. 

These cases show how the framework enables evaluation across diverse 
deployments but also highlight a key limitation: the lack of standardized, 
reproducible benchmarks [3] [5]. This motivates the following discussion on 
benchmarking and validation. 

Table 3 
Comparison of representative deployments using the proposed metrics (Table 2); values are qualitative 

summaries from normalized indicators (Figures 1-2) 

Metric SSH 
Cloaking 

Multi-
Protocol  
(T-POT) 

Cloud + 
ML 

RIoTPot 
(IoT/OT) 

ICS/PLC 

Interaction Level Medium Medium Mixed Medium High 
Data Completeness High Med.–High High Med.–High High 
Cmd./Behavior Diversity High Medium High Medium Medium 
Resource Usage Low–Med. Medium High Medium High 
Stealth High Variable High Medium Variable 
Fingerprint Resistance Strong Mixed Adaptive Mixed Medium 
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7 Role of Honeypots in CTI, SIEM, and SOAR 
Architectures 

Honeypots generate telemetry (e.g., IPs, flows, IoCs) that, once normalized and 
correlated, can be elevated into operational and strategic intelligence [21] [22]. In 
the framework, these streams inform data quality, stealth, and fingerprinting 
resistance, and should be exchanged using open standards for interoperability [64] 
[65]. 

CTI role and outputs. In CTI, honeypots act as passive sensors emitting observables 
and IoCs, shareable via STIX/TAXII [64] [65]. SOC and CTI studies show such 
feeds aid in characterizing TTPs and producing reports and risk assessments [21] 
[22]. Figure 3 illustrates the path from honeypot data to CTI enrichment and 
SOC/CSIRT action [21, 22, 64, 65]. 

SIEM/SOAR ingestion and automation. SIEMs aggregate logs and serve as the 
main ingestion point for honeypot telemetry [22]. JSON/CEF/LEEF simplify 
parsing, and tools like Wazuh or TheHive integrate with STIX/TAXII [64, 65, 66, 
67]. SOAR systems orchestrate enrichment, triage, and containment (e.g., EDR 
queries, lookups, ticketing), reducing MTTR and workload [22]. Fusion and 
anomaly detection over honeypot logs (e.g., Honeyboost) improve signal quality 
[23, 40], while automation frameworks (e.g., HARMer) support repeatable 
playbook testing [25]. These roles align with Figure 3 and Table 2. 

Operational challenges. High-interaction honeypots can generate large event 
volumes that strain SIEM storage and risk alert fatigue without tuning [22]. False 
positives and inconsistent normalization slow triage, while over-filtering may drop 
rare but useful signals, motivating careful parser design and retention policies [22] 
[23]. Distributed deployments also require secure transport, identity management, 
and reproducible playbook testing [22] [25]. 

Performance indicators inside SIEM–SOAR. To gauge honeypot impact in SIEM–
SOAR (per Table 2), we focus on four outcomes: MTTD/MTTR reduction from 
honeypot-driven detections and automation [22]; data-volume efficiency, i.e., ratio 
of high-value to total events [22]; novel IoC yield promoted to CTI via STIX/TAXII 
[21, 64, 65]; and false-positive reduction from fusion and anomaly scoring (e.g., 
Honeyboost) [23]. These map to the composite-scoring approach and interfaces in 
Figure 3. 
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Figure 3 
End-to-end interfaces among honeypots, SIEM, SOAR, and CTI. Normalized honeypot events 
(CEF/LEEF/JSON) and standardized threat data (STIX/TAXII) flow through correlation and 

orchestration to enrich CTI and guide SOC/CSIRT response [21, 22, 64, 65, 66, 67]. 

Summary. Integrated with SIEM and SOAR, honeypots expand detection, shorten 
response, and enrich CTI with novel indicators, if normalization and automation 
manage volume while preserving signal quality [21-23, 25, 64-67]. Figure 3 shows 
the interfaces. 

8 Discussion 
This section summarizes benchmarking guidance, integration plans, ethical 
guardrails, and takeaways to improve transparency and reproducibility. It links back 
to Table 2, Figures 1-2, and situates telemetry in enterprise workflows (Figure 3). 

Benchmarking and validation. This topic remains difficult due to heterogeneous 
deployments and uneven scoring. We recommend versioned configs, public scripts, 
and recent datasets (e.g., CICIoT2023, TON_IoT, Bot-IoT, CSE-CIC-IDS2018, 
LITNET-2020) [50-54], with uncertainty reporting and cost-sensitive SOC metrics. 

System integration and near-term roadmap. Future work should align honeypot 
telemetry with SIEM–SOAR–CTI pipelines [21-23, 25-27, 60, 64, 65]. Ingestion 
normalizes events, enriches with STIX/TAXII IoCs, and maps to ATT&CK TTPs 
(Table 2) [21, 22, 59, 64, 65]. A decision engine correlates signals by timing, rarity, 
reputation, and metric scores, producing normalized bundles (Figures 1-2) [11, 23, 
28, 29, 30]. The LLM layer uses these bundles to draft summaries, hypotheses, 
playbooks, and notes under safe-evaluation guidance [26] [27]. Analyst interfaces 
post results to IR/ticketing (e.g., TheHive/ServiceNow), while SOAR playbooks 
run in guarded modes [22, 60, 67]. These stages ensure the LLM augments, not 
replaces, deterministic gates [21, 22, 60]. 

Data, governance, and evaluation rigor. Training data includes honeypot logs, SIEM 
events, tickets, sandbox detonations, curated negatives, and synthetic traffic [23] 
[25]. Labels cover operational outcomes (true positive, benign, duplicate, 
informational, noise), with weak labels from IoC confidence and TTP alignments 
plus a human-reviewed subset [21, 22, 64, 65]. Features combine temporal, 
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behavioral, context, and deception signals; cross-network transfer builds on recent 
embedding work [28]. Controls include deduplication, PII scrubbing, drift 
monitoring, and data sheets aligned with systems-engineering guidance [21, 22, 60]. 
Evaluation applies temporal splits, cost-sensitive metrics (e.g., precision@k), and 
shadow-mode SOC trials before automation [22, 26, 28]. 

Safety guardrails and SOC operations. To cut false positives and analyst load, 
promotions require multi-signal consensus (honeypot + reputation/EDR); 
thresholds scale with risk; calibrated scores allow abstention; canaries catch unsafe 
automation; and active learning targets uncertain cases [21-23, 25, 60]. LLMs serve 
as Tier 0.5 assistants drafting ATT&CK summaries and playbooks, with Tier 1 
approval and Tier 2/3 handling containment [22] [59]. Effectiveness is tracked via 
MTTD/MTTR, analyst time, duplicate suppression, and enrichment rates; error 
budgets trigger advisory-only fallback [22]. Immutable audit trails log prompts, 
model versions, and decisions [21] [60]. In ICS/OT, automation defaults to observe-
and-advise and stays confined to decoys, per deception and fingerprinting work [12, 
14, 16, 60]. Milestones: M1 ‒ data path & shadow mode; M2 ‒ ranking + LLM 
summarizer; M3 ‒ guarded automation with drift calibration; M4 ‒ A/B workload 
studies [22, 25, 26]. 

Standardization, trade-offs, and limits. No platform-agnostic evaluation method 
exists; definitions of engagement quality, stealth, and dwell time remain 
fragmented, requiring reproducible baselines and uncertainty reporting [1-5, 11]. 
High-interaction designs provide rich data but expand attack surface and risk 
fingerprinting; PLC studies show small inconsistencies can expose decoys [9, 13, 
14, 16]. Low-interaction lowers risk/cost but misses advanced tactics [3, 16]. 
Cloud/container deployments add elasticity but need careful tuning [24, 31, 68]. 
The framework aligns stealth, scalability, and data quality with objectives, but faces 
unvalidated weightings (Figure 1), soft-indicator bias, and uncertain long-term 
stability [22, 64, 65]. 

ML, anomaly detection, and LLM use. Data–fusion and anomaly–detection over 
honeypot logs (e.g., Honeyboost) learn temporal baselines and can surface novel 
tactics in near real time [23]. Classical learners and transfer methods support 
correlation/prioritization [28-30], and studies of learning–based alert triage show 
operational gains when embedded in SOC workflows [34] [35]. LLMs help with 
semantic summarization, TTP mapping, and controlled decoy interaction when 
strictly bound to structured inputs and auditable prompts [26, 27, 39]; risks (bias, 
misclassification, adversarial evasion) and integration cost require calibration, 
abstention policies, and clearly bounded action scopes [22] [60]. 

Ethical and legal considerations. Ethical/legal guidance includes lawful basis, data 
minimization, PII scrubbing, safe malware handling, and restricting deception to 
decoys. Publish configs and logs responsibly, with IRB/ethics approvals and 
tamper-evident audits [21, 60]. 
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Table 4 
Possible LLM integration points across the honeypot–SIEM–SOAR–CTI pipeline. Roles are paired 
with structured inputs and guardrails to ensure reproducibility and safety. Citations point to surveys, 

frameworks, and empirical systems that motivate each integration. 

Pipeline stage LLM role 
(examples) 

Structured inputs & 
safety guardrails Primary refs. 

Ingestion / 
Normalization 

Schema validation 
helper; IoC 

extraction from logs; 
ATT&CK mapping 

notes 

JSON/CEF/LEEF events; 
STIX/TAXII indicators; 

deterministic parsers 
precede LLM; human-in-
the-loop on schema drift 

[21, 22, 59, 64, 
65] 

Correlation / 
Prioritization 

Natural-language 
feature synthesis; 

hypothesis 
generation; 

similarity search 
across past cases 

Scored bundles from 
decision engine; LLM 

suggestions remain 
advisory while ranking uses 

classical ML (e.g., 
XGBoost, Random Forests) 

[11, 22, 23, 29, 
30] 

Anomaly Triage 
(Honeyboost-

like) 

Explain anomalies; 
propose follow-up 
queries; translate 

temporal 
divergences into 

analyst notes 

Time-series anomaly scores 
from fusion models; no raw 
PCAPs—bounded schema 

only 

[22, 23] 

Interactive 
Deception / 

LLM Honeypots 

Policy-constrained 
dialog in decoy 

services; believable 
banners/responses; 
red-team scripting 

support 

Prompt whitelisting; rate 
limits; output filters; 

execution in 
sandboxed/decoy networks 

to contain risk 

[5, 26, 27] 

SOAR 
Playbooks & IR 

Support 

Playbook selection 
and parameter 
filling; action 

justification; case 
summarization 

Case context from SIEM; 
guardrails per systems-

security engineering with 
mandatory human approval 

for risky actions 

[22, 60] 

CTI Production 
& Reporting 

Narrative synthesis; 
TTP mapping; 
drafting STIX 

bundles for sharing 

Validated indicators and 
evidence cards; analyst 

review before publication to 
CTI stores 

[21, 22, 59, 64, 
65] 

Evaluation & 
Benchmarking 

Workflow 

Auto-generate test 
scenarios; A/B 

summaries; dataset 
documentation 
(“data sheets”) 

HARMer-generated traffic; 
shadow-mode trials; 

precision@k and workload 
metrics; reproducible audit 

trails 

[25, 26, 28] 

Takeaways. The proposed metrics (Table 2) and aggregation logic (Figures 1-2) 
enable reproducible assessment across SSH honeypots, multi-protocol suites, cloud 
deployments, and ICS/IIoT, moving beyond ad-hoc counts [1-2, 3, 5, 8, 11, 16, 22, 
24, 31]. Integrated with SIEM–SOAR–CTI (Figure 3), standardized indicators and 
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open formats support defensible investment, sharing, and analytics [21, 22, 64, 65]. 
Near-term priorities include coupling scores with correlation models and guarded 
LLM use; longer-term work requires validation, cost-sensitive weighting, and 
mixed synthetic/real evaluation (e.g., HARMer) to quantify MTTD/MTTR and 
workload [25-30]. 

Conclusions 

This work proposed a unified, metrics-driven framework for honeypot evaluation, 
structured around interaction, data quality, resource efficiency, stealth and 
fingerprinting resistance. Case studies across SSH, multi-protocol, cloud-native, 
IoT/OT, and ICS/PLC environments confirmed its applicability and revealed trade–
offs between realism, scalability, and detectability. The framework moves beyond 
ad-hoc or qualitative assessments by providing reproducible, comparable indicators. 
It also outlines how honeypot telemetry can be integrated with SIEM, SOAR, and 
CTI pipelines to improve detection, response, and threat intelligence. The proposed 
methodology thus, meets its objective of standardizing honeypot evaluation and 
supporting operational adoption. 

Future work will focus on refining metric weighting, validating across larger 
datasets, and incorporating adaptive deception with anomaly detection and LLM 
support. 
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