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Abstract: Wind energy is one of the leading renewable sources. Multiple wind turbines are 
installed at a given site to produce more electrical energy, making wind farm efficiency 
optimization a vital area of study. The flow field in the wake of the first row of turbines is 
characterized by wind velocity deficit and high turbulent intensity. For this reason, a 
downstream turbines in a wind farm can capture less wind energy than the first-row turbine. 
The present research specifically focuses on intelligently estimating the wake speed in wind 
farm using well-known five machine learning algorithms. The data used is computationally 
synthesized from the Jensen wake model. Machine learning models such as Artificial Neural 
Networks (ANN), Random Forest Regression (RFR), Decision Tree Regression (DTR), 
Support Vector Machines (SVM), and the Adaptive Neuro-Fuzzy Inference System (ANFIS) 
are implemented to adopt the complex nonlinear relationship for accurately estimating the 
wake speed. Among the tested models, the Random Forest Model performed the best with an 
R2 score of 0.9905, Mean Square Error (MSE) of 1.26E-06, and Root Mean Square Error 
(RMSE) of 0.0011, demonstrating its effectiveness in accurately estimating wake effects. In 
comparison, the Decision Tree Regression also showed promising results with an R2 score 
of 0.9646, although it exhibited a slightly higher MSE of 4.75E-06, and RMSE of 0.0021.  
The outcomes of this research have the potential to revolutionize wind farm optimization by 
providing more adaptive and faster wake estimation. 
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1 Introduction 

Wind energy is captured using wind turbines to generate electricity. A wind farm 
consists of many wind turbines connected in parallel. Each wind rotor produces a 
wake, which is a turbulent region in the air. An optimal localization of wind turbines 
in wind farm, is essential, since it can lead to a significant increase in a fields power 
output. Dense configurations may seem like a good idea, but the wake effect, a 
known consequence of the close spacing between the turbines, is a problem. Each 
wind turbine generates a cone of slower, more turbulent air behind it, which causes 
downstream wind turbines to experience a drop in wind speed, which lowers energy 
production [1]. The abrupt fall in velocity caused by this wake results in a decrease 
in the amount of air and wind speed entering the downstream turbine, which reduces 
the amount of energy the downstream turbine can produce. The air exiting the wind 
turbine rotor initially has a diameter that nearly matches the rotor’s diameter before 
spreading out conically. Various factors, including wind speed, turbine design, and 
rotor radius, influence the characteristics and development of turbine wakes [2].  
An essential part of estimating energy production for large wind farm planning is 
modelling the wake effects [3]. Reducing power losses and prolonging blade life in 
a wind farm requires a complete understanding of how wind turbine waves behave. 
Numerical simulation of the wake effects in wind farms can provide such 
knowledge. The wake plays a vital role in wind energy capturing capacity. It refers 
to the trail of disturbed wind flow left behind a turbine, as illustrated in Figure 1. 
The wake, which is an invisible region behind the wind turbine where the wind is 
weaker and slower, is created when the blades rotate. A wind turbine’s performance 
is significantly impacted by wake; if upstream wind turbine generates a huge wake, 
the subsequent downstream turbine will receive less wind and generate less energy, 
which will impact all the wind turbines in the row ahead, resulting in all the 
subsequent turbines having less energy as well [4]. 

The Jensen’s wake model views momentum as being conserved inside the wake. 
Therefore, it is crucial to estimate the wake effect before installing the wind 
turbines, as well as how and when to install them to minimize the wake and 
maximize energy production [5]. 

According to Jensen’s model, as illustrated in Figure 2, the wake grows linearly 
with downstream distance. The mean wind speed ሺ𝑢଴ሻ, also referred as free stream 
wind speed is taken as 12 m/s; 𝑢ଵ is the decreased wake wind speed; 𝑅ଵ is the 
downstream wake radius in meters (m). The 𝑅ଵ and 𝑋 (downstream distance of the 
turbine in meters) have a linear relationship as the wake spreads downstream.  
The 𝑅୰ is the rotor radius of upstream turbine measured in meters (m).  
A complicated but essential phenomenon in wind energy production is multiple 
partial interferences of wake effects in wind turbine arrays. This phenomenon is 
known as wake interference, which occurs when wind passes over a turbine array 
and interacts with the wake produced by each turbine. 
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Nevertheless, when turbines are placed in irregular configurations or many rows, 
the wake impact becomes more intricate. To maximize wind farm performance and 
efficiency, researchers work to understand and minimize the effects of multiple 
partial interference, which occurs when the wake of one turbine partially interferes 
with several neighboring turbines, causing variations in wind speed and turbulence 
levels across the array. 

 

Figure 1 

Wake effect at the Horns Rev offshore wind farm in Denmark [6] 

Through advanced modelling techniques, researchers attempt to unravel the 
complex dynamics of multiple partial interferences, offering insights that can 
inform improved turbine placement strategies and operational practices. In the end, 
resolving the challenges posed by multiple partial interferences holds the key to 
unlocking the full potential of wind energy as a sustainable and dependable power 
source. 

The wake speed is calculated using equation (1), considering the influence of the 
two wind turbine rotors [7]. 

𝑢௜ାଵ ൌ 𝑢௜ ⋅ ൥1 െ
ଵିඥଵି஼೅

ቀଵାఈ
೉
ೃೝ
ቁ
మ൩ (1) 

Where, 𝑢଴= Mean wind speed or the free stream wind speed and 𝑢଴ = 12 m/s, 

𝑖 = 0, 1, . . . , 20. 
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Figure 2 

Wake model scheme [7] 

The thrust coefficient (𝐶்) can be calculated by equation (2) [8]: 

𝐶் ൌ 4 ⋅ 𝑎 ⋅ ሺ1 െ 𝑎ሻ       (2) 

where, 𝑎= Axial induction factor 

In the Jensen wake model, the axial induction factor ‘𝑎’ is usually assigned a 

constant value of 𝑎 ൌ  
ଵ

ଷ
  to simplify calculations, especially in analytical wind farm 

design, corresponding to the Betz limit (maximum theoretical efficiency). 

The downstream wake radius (𝑅ଵ) is related to downstream distance of the turbine 
(𝑋) and rotor radius of upstream turbine (𝑅௥) as represented in equation (3) [8]: 

𝑅ଵ ൌ 𝛼𝑋 ൅ 𝑅௥       (3) 

Where, 𝛼 is wake decay coefficient and it can be calculated using equation (3), (4), 
and (5) [8]: 

𝑅ଵ ൌ 𝑅௥ ⋅ ට
ଵି௔

ଵିଶ௔
 (4) 

𝛼 ൌ
଴.ହ

୪୬ቀ
ೋ
ೋ೚
ቁ
 (5) 

Where, 𝑍 is the hub height, while the surface roughness is represented by 𝑍௢. 
Surface roughness has a different value in each field. In terms of flat terrain, the 
value for 𝑍௢=0.3. 

The values for the wake parameters are listed below, 

𝑋 = ሼ100, 200, 300, 400, 500ሽ m 
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𝑅௥ = ሼ10, 20, 30, 40ሽ m 

𝑢଴ = 12 m/s 

𝑎 = 0.326795 

𝛼 = 0. 09437 

𝑖 = 0, 1, . . . , 20 

In this research, machine learning algorithms are used to estimate the wake effect 
in wind farms. There are two main effects of wake in a wind farm [9]: 

(i)  A reduction in the wind speed leading to a reduction in the energy 
produced by the wind farm. 

(ii)  An increase in wind turbulence leading to an increase in dynamic 
mechanical loading in downwind turbines. 

To optimize wind turbine production and production lifetime, these wakes must be 
considered while developing wind farms. As a result, numerous models ‒ many of 
which are intricate and numerical ‒ have been created to take these wakes into 
account. 

2 Literature Review 

The wake disturbances caused by upstream turbines to the wind flow reaching 
downstream turbines emerge as a significant barrier that significantly reduces the 
effectiveness of wind energy extraction in wind farms [10] [11]. The wake effect 
reduces the available wind speeds for downstream turbines due to turbulence, which 
raises mechanical stress and reduces energy output [12]. Historically, wake effect 
modelling has been based on empirical data and analytical models such as Jensen’s 
wake model. Despite being crucial for understanding wake dynamics, these models 
usually fall short in capturing the complex, nonlinear interactions that take place in 
a wind farm environment [13-15]. According to the research, more accurate and 
flexible modelling approaches are greatly needed to predict wake effects in a variety 
of operational settings. 

Scientists have put a lot of effort into developing wind energy technology to 
increase efficiency and preserve environmental sustainability. The creation of 
complex models and the application of state-of-the-art technologies have 
significantly aided in the precision optimization of wind energy systems [16-18]. 
These models aim to ensure wind turbine longevity, while optimizing energy 
extraction. Computational fluid dynamics (CFD) and other advanced simulation 
methods are commonly their foundation [19]. In recent years, the application of 
machine learning models and algorithms has emerged as a disruptive force in the 
study of wind energy. Because of the potential for increased energy output, 
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researchers have been thorough in their investigation of the incorporation of 
machine learning into various aspects of wind farm operations. Wake effect 
estimations and other applications rely on machine learning models because of their 
critical ability to identify complex patterns and adapt to changing conditions. This 
review of the literature looks closely at the many approaches and advancements in 
wake effects estimation in wind farms. 

To estimate wake velocity and to minimize loss, researchers have used machine 
learning algorithms, including Support Vector Regression (SVR), Artificial Neural 
Networks (ANN), Extreme Gradient Boosting (XGBoost), etc. The long Short-
Term Memory (LSTM) model is also used to capture the wake effects in wind 
farms. Support Vector Regression is applied to tasks involving regression and 
classification. The SVM model is used to evaluate the wake effects in wind farms 
because it can capture both linear and non-linear relationships in data. An SVR 
model’s performance is influenced by a few factors, including function type, 
gamma, epsilon, and C. The most helpful parameter, function type, is selected based 
on the characteristics of the incoming data. Gamma and C parameters are used to 
protect the model from over-fitting and under-fitting problems [20] [21]. 

The wake effect of turbines in wind farms is calculated employing numerous 
numerical models to enhance energy production. There are several issues and 
challenges with the numerical models. Among its weaknesses and limitations are 
meticulous turbulence modelling, the number of grid points along the length of an 
object, computational density, and model verification [22] [23]. Numerical models 
are computationally intensive models, like CFD simulations, and solving such 
models is a computationally intensive process and time consuming [24]. High grid 
resolution is essential for achieving more accurate and reliable simulations; 
however, it often increases the demand for computational resources. In the real 
world, the accuracy of the results is impacted by grid resolution compromises 
brought on by a lack of processing capability. Turbulence models are used in CFD 
simulations and have limitations in predicting accurate wake turbulence in wind 
turbines. Due to this limitation, a discrepancy arises between simulated and real-
world wake behaviors. There are validation challenges in numeric models against 
real world data, such as in complex terrain. This challenge in validation makes it 
difficult to reliability of model as well as it is uncertain to ensure the accuracy of a 
model’s prediction in diverse and changing environmental conditions [25-28]. 

Kinetic models also have limitations and gaps like numerical models. Some of these 
gaps and limitations in kinetic models to estimate wind effect in wind farms are 
empirical nature, simplified representation, limited physics, and modelling 
calibration. Kinetic models are empirical nature style models. These models are 
relying on the empirical relationships derived from datasets and use limited datasets. 
Kinetic models are theory-driven, not data-driven. Unlike machine learning 
algorithms, kinetic models do not learn from data. They often perform well on 
datasets that reflect their underlying assumptions, but struggle to generalize to new 
or more complex datasets. Kinetic models have another gap, which is providing a 
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simplified representation of wake effects and not capturing the complex pattern that 
affects the accuracy of results of a complex wind farm or a wind farm that has 
unique and specific atmospheric conditions. Kinetic models are based on physics-
based models, but these models sometimes do not capture the physics of complex 
interaction of wake effects in a wind farm. This physics related limitation can create 
a big hindrance to the ability of these models to predict certain phenomena with 
accuracy. Kinetic models need calibration to account for some sort of specific 
conditions. Due to this limitation, these models face challenges while extrapolating 
the parameters of these models to a different location [29] [30]. 

3 Materials and Methods 

3.1 Dataset Formulation and Description 

The dataset encompasses 4 columns (3 input and one output variable), each variable 
having 1000 non-null entries. Column one, denoted by “𝑢௜ାଵ” (Row) is for a row-
associated integer variable, while” 𝑋-(Distance)” shows distance as an integer and 
“𝑅௥-(Rotor Radius)” records the rotor radius. The metric wake speed receives a 
more precise outcome and is stored in floating-point form (float64) under the “Wake 
Speed” column. 

The following points provide key insights into the distribution of the dataset.  
The dataset contains 1000 entries for each variable: 𝑢௜ାଵ (Row), 𝑋-(Distance), 𝑅௥-
(Rotor Radius) and Wake Speed: 

 The mean values for 𝑢௜ାଵ-(Row), 𝑋-(Distance), 𝑅௥-(Rotor Radius), and 
Wake Speed are 500.5, 254.6, 25.47, and 0.00575, respectively. 

 The minimum values range from 0 for 𝑋-(Distance) and Wake Speed to 1 
for 𝑢௜ାଵ- (Row) and 10 for 𝑅௥-(Rotor Radius). 

 The 25th, 50th (median), and 75th percentiles provide insight into data 
spread, with Wake Speed mostly concentrated at 0 until the maximum 
value of 0.90821. 

 Standard deviations show that 𝑢௜ାଵ-(Row) and 𝑋-(Distance) have wider 
variability compared to 𝑅௥-(Rotor Radius) and Wake Speed. 

The machine learning algorithms were implemented in Python on a high-
performance workstation equipped with an Intel Core i7 processor, 32 GB RAM, 
and NVIDIA RTX 2060 GPU. A total of 1000 samples were analyzed to ensure 
computational accuracy and reliability. The descriptive statistics of the data are 
shown in Figure 3. 
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Figure 3 

Descriptive Stats of the dataset 

3.2 Methodology 

Figure 4 depicts the research methodology adopted in the present study. The dataset 
is generated from the Jensen wake model by setting values of the wake model 
parameters. Then the dataset is divided into training and testing data. The machine 
learning algorithms are implemented in Python and trained using Keras Tuner 
library. The trained model is then tested on the testing data, and the values of key 
performance indicators are recorded to compare the results. The best performing 
algorithm is selected to estimate the wake speed and further optimize the layout of 
wind farm or adjust the yaw angle of upstream wind turbines. 

 

Figure 4 

Schematic Diagram of Research Methodology 
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4 Experimental Results 

The “Keras Tuner” was used for training the machine learning algorithms rather 
than manual tuning. The “Keras Tuner” is a library that automates the process of 
finding the best hyperparameters for the implemented model. “Keras Tuner” uses 
different search algorithms such as, Random Search, Hyperband, and Bayesian 
optimization, to explore the defined search space of hyperparameters and identify 
the optimal parameters for the model. Therefore, the best possible results for each 
algorithm are presented with the optimized value of hyperparameters. 

The experimental results of machine learning algorithms are compared based on 
Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error 
(RMSE) and R2 score as follows: 

𝑀𝐴𝐸 ൌ
∑ |௬೔ି௫೔|
೙
೔సభ

௡
 (6) 

𝑀𝑆𝐸 ൌ
∑ ሺ௬೔ି௫೔ሻ

మ೙
೔సభ

௡
   (7) 

𝑅𝑀𝑆𝐸 ൌ ට∑ ሺ௬೔ି௫೔ሻమ
೙
೔సభ

௡
 (8) 

𝑅2 ൌ 1 െ
∑ ሺ௬೔ି௫೔ሻ

మ೙
೔సభ
∑ ሺ௬೔ି௬തሻమ
೙
೔సభ

 (9) 

Where,  𝑦௜= Actual values 

𝑥௜= Predicted value  

𝑦ത = Mean of actual values 

 𝑛= Number of data points 

4.1 Artificial Neural Network (ANN) 

Two hidden layers and one output layer were part of the artificial neural network 
(ANN) model configuration. To get better results, the Keras Tuner was used to 
further fine-tune the model. The best configuration was found by experimenting 
with a few parameters, leading to the following ideal hyperparameters: 

Hidden Layers: (480, 480) 

Max Iterations: 1000 

Optimizer: Adam 

Learning Rate: 0.001 

Activation: ReLU 

Loss Function: Mean Squared Error 
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For the given regression task, this arrangement was shown to be the most effective. 
The ANN model has two hidden layers, each with 480 neurons. For training, the 
model uses the Adam optimizer and a ReLU activation function, the optimal results 
produced by ANN are shown in Table 1. 

Table 1 

Performance of Artificial Neural Networks (ANN) 

Metric R2 score 
Testing MSE 

(m/s)2 
Testing RMSE 

(m/s) 
Testing MAE 

(m/s) 

Value 0.39 4.35E-05 0.0066 0.0038 

4.2 Random Forest Regression (RFR) 

The random forest model was built using the SKLEARN package.  
The GridSearchCV function was used to improve the predictive accuracy of the 
model. During the tuning process, the following parameters were altered: n 
estimators, which determines the number of trees; maximum depth of the trees; min-
samples-split, which indicates the minimum number of samples required to split an 
internal node; min-samples-leaf, which indicates the minimum number of samples 
required to create a terminal node; and bootstrapping. The following parameters 
were the most effective for the model. 

n Estimators: 100 

Min Samples split: 2 

Min Samples leaf: 1 

Bootstrap: True 

Max depth: 10 

The random forest model of 100 decision trees yields a perfect match with an R2 
score of 0.9905, as shown in Table 2, using a minimum sample split of two and one 
leaf. 

Table 2 

Performance of Random Forest Model 

Metric R2 score 
Testing MSE 

(m/s)2 
Testing RMSE 

(m/s) 
Testing MAE 

(m/s) 

Value 0.9905 1.26E-06 0.0011 9.60E-05 
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4.3 Decision Tree Regression (DTR) 

The SKLEARN package was utilized to develop the decision tree model.  
The GridSearchCV function was used to improve and fine-tune the model’s forecast 
accuracy. The tuning process was completed by adjusting parameters such as max 
depth, which establishes the maximum depth of the tree; min-samples-split, which 
indicates the minimum number of samples required to split an internal node; and 
min-samples-leaf, which indicates the minimum number of samples needed to 
create a terminal node. The model performed best with the following settings. 

Max Depth: 20 

Min Samples split: 2 

Min Samples leaf: 1 

Max Features: sqrt 

Random State: 42 

The decision tree model partitions the data by minimizing the mean squared error 
and auto optimizing the maximum depth as shown in Table 3. 

Table 3 

Performance of Decision Tree Regression 

Metric R2 score 
Testing MSE 

(m/s)2 
Testing RMSE 

(m/s) 
Testing MAE 

(m/s) 

Value 0.9646 4.75E-06 0.0021 0.0001 

4.4 Support Vector Regression (SVR) 

The support vector regression model was implemented using the sklearn library. To 
enhance the model’s predictive performance, the GridSearchCV function was 
employed for hyperparameter tuning. An expanded parameter grid was defined, 
varying key parameters such as the kernel type, the regularization parameter C (with 
an extended range), the epsilon value, and the gamma parameter for non-linear 
kernels. The cross-validation process was increased to 5 folds to ensure robust 
evaluation. After fitting the GridSearchCV to the training data, the best 
hyperparameters were identified as: 

Kernel: rbf 

C: 1000 

Epsilon: 0.01 

Gamma: scale 
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The linear kernel is used in the Support Vector Regression (SVR) model to find the 
optimal line for regression and concurrently employ a regularization parameter C = 
0.1 to manage the trade-off between reducing the error and keeping model 
simplicity, and an epsilon value of 0.01 to specify the margin of tolerance where 
there is no penalty for errors within this margin. The results produced by SVM is 
shown in Table 4. 

Table 4 

Performance of Support Vector Machine 

Metric R2 score 
Testing MSE 

(m/s)2 
Testing RMSE 

(m/s) 
Testing MAE 

(m/s) 

Value 0.2557 0.0001 0.01 0.0072 

4.5 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

The ANFIS model is developed by setting the type of input membership functions, 
epochs, learning method, and learning rates as hyperparameters. The optimal results 
produced by ANFIS are shown in Table 5. 

Number of Inputs: 3 

Type of Input Membership Functions: Gaussian 

Number of Rules: 5 

Learning Rate: 0.001 

Epochs: 100 

Table 5 

Performance of Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Metric R2 score 
Testing MSE 

(m/s)2 
Testing RMSE 

(m/s) 
Testing MAE 

(m/s) 

Value 0.05 0.0031 0.0558 0.0173 

The ANFIS model design includes fuzzy logic and neural networks; it makes use of 
Gaussian membership functions and 5 fuzzy rules for forecasting. 

All 5 models show different results. The comparison of the results of these models 
is given in Table 6. 

Table 6 

Comparison of Machine Learning Models Performance 

Model 
R2 
score 

Testing 
MSE 
(m/s)2 

Testing 
RMSE 
(m/s) 

Testing 
MAE 
(m/s) 

Random Forest Regression 0.9905 1.26E-06 0.0011 9.60E-05 
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Decision Tree Regression 0.9646 4.75E-06 0.0021 0.0001 

Artificial Neural Network 0.39 4.35E-05 0.0066 0.0038 

Support Vector Regression 0.2557 0.0001 0.01 0.0072 

Adaptive Neuro-Fuzzy Inference System 0.05 0.0031 0.0558 0.0173 

Random Forest and Decision Tree Regression: Random forest performs better 
than decision tree with a higher R2 score of 0.9905 vs 0.9646, MSE of 1.26E-06 vs 
4.75E-06, RMSE of 0.0011 vs 0.0021 and MAE of 9.60E-05 vs 0.0001. 

Random Forest and Support Vector Regression: Random forest model performs 
significantly better than support vector regression with an R2 score of 0.9905 vs 
0.2557, MSE of 1.26E-06 vs 0.0001, RMSE of 0.0011 vs 0.01 and MAE of 9.60E-
05 vs 0.0072. 

Random Forest and Adaptive Neuro-Fuzzy Inference System: Random forest 
again performed better than ANFIS as random forest has R2 score of 0.9905 while 
ANFIS has 0.05, which is poorer than random forest. The MSE, RMSE, and MAE 
achieved by ANFIS are 0.0031, 0.0558, and 0.0173. 

Random Forest and Artificial Neural Networks (ANNs): Random forest 
performed better in R2-score than ANN. Random Forest has an R2 score of 0.9905 
and ANN has 0.39. The MSE, RMSE, and MAE achieved by ANN are 4.35E-05, 
0.0066, and 0.0038. 

Figure 5 provides the visual performance of the evaluation metric R2 score of 
Random Forest, Decision tree, ANN, ANFIS, and SVR models’ performance. 

 

Figure 5 

R2-Score Comparison 
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The graph of R2 scores highlights the remarkable accuracy of the Random Forest 
regression model compared to other methods analyzed in the study. Random Forest 
achieves an impressive R2 score of 0.9905, showcasing its strong predictive 
capability and reliability in estimating the wake effect in wind farms. The Decision 
Tree model, while performing relatively well with an R2 score of 0.9646, does not 
match the precision of Random Forest. This outcome underscores the advantage of 
Random Forest’s ensemble approach, which leverages the strength of multiple 
decision trees for improved accuracy. The Support Vector Machine (SVM) and 
Adaptive Neuro-Fuzzy Inference System (ANFIS) models exhibit much weaker 
performance, with R2 scores of 0.2557 and 0.05, respectively. These results suggest 
that SVM struggles to generalize effectively to the data, while ANFIS is not well-
suited for this type of prediction task, yielding particularly poor results.  
The Artificial Neural Network (ANN) model, with an R2 score of 0.39, 
demonstrates limited predictive ability compared to Random Forest. This 
performance gap highlights the challenges faced by ANN in achieving high 
accuracy without substantial optimization of parameters and sufficient training data. 

Figure 6 illustrates that the Random Forest model consistently delivers the highest 
predictive accuracy, making it the most suitable algorithm for modelling the wake 
effect in wind farms. 

 

Figure 6 

Performance Metrics Comparison 

The combination of these metrics reinforces the conclusion that Random Forest 
consistently delivers the best performance across all evaluation criteria. It achieves 
the lowest MSE, RMSE, and MAE, along with the highest R2 score, showcasing its 
accuracy and robustness. Decision Tree performs moderately well, while models 
like SVM, ANFIS, and ANN demonstrate weaker predictive abilities with higher 
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errors and lower R2 scores. These results confirm the suitability of Random Forest 
for estimating wake effects in wind farms. 

Conclusions and Future Work 

In order to optimize the power produced by wind farms, it is very important to 
estimate the wake speed, due to upstream wind turbines. The wake is referred to as 
the turbulent airflow behind the wind turbine rotor after it extracts the energy from 
the wind. The rotor of the downstream wind turbine faces this wake (turbulent and 
reduced in speed) affecting its’ output power and its’ service life. Therefore, it is 
very important to estimate the wake speed in wind farms. The Jensen model is 
widely used to estimate the wake effect of wind farms. Despite the complex and 
turbulent nature of the wake, the Jensen model simplifies it into an ideal cone-
shaped wake. Jensen's wake model requires less computation than computational 
fluid dynamics (CFD) simulations. In this study, the Jensen wake model is used to 
computationally generate the dataset for the wind turbine wake. Then, the well-
known five machine learning algorithms are implemented to intelligently estimate 
the wake speed in a wind farm. The simulations are done in Python, and machine 
learning algorithms are trained for an optimized set of hyperparameters using the 
“Keras Tuner” library. The results of implemented machine learning algorithms are 
compared based on four performance indicators, such as R2 score, MSE, RMSE 
and MAE. It is observed that the random forest regression outperformed other 
algorithms in accurately estimating the wake effect. The estimated wake speed can 
be used to schedule the yaw angle for upstream wind turbines to divert the wake 
away from the rotor of the downstream wind turbine, which can improve the overall 
power-capturing capacity of the wind farm. 

The detailed examination of five distinct machine learning models yields invaluable 
insights into wind farm wake effect estimation. In terms of wake impact prediction, 
each machine learning model has unique characteristics and performance metrics 
that highlight its benefits and drawbacks. The complexity of the wake effect 
estimation is highlighted by the observed heterogeneity among multiple machine 
learning models. Each model employs different algorithms and methodologies, 
resulting in varying degrees of accuracy and forecasting capabilities. This 
demonstrates the importance of selecting a suitable model based on the wind farm’s 
specific requirements and characteristics. The constraints of the wind farm 
estimation task, the dataset, and other considerations determine which model is best 
for estimating the wake effects in a wind farm. Strong prediction abilities are 
demonstrated by the ANFIS, ANN, and SVR models to estimate wake effects on 
this dataset. Random forest model stands first among all of them in estimating wake 
effects. It shows an exceptional predictive power, with an R2 score of 0.9905, which 
is the highest of all. Its’ treelike structure enables it to capture complex relationships 
from the data and makes it a robust choice for estimating wake effects in wind 
farms.  
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The Decision tree model performed very well. However, it slightly overperformed 
by the Random forest model, but not very bad, even better than the other 3 models 
with a 0.9646 R2 score. Its simplicity and easy interpretability make it an attractive 
option for the estimation of wake effects in wind farms. The support vector machine 
also performed well at the R2 score, with a value of 0.2557.  ANFIS and ANN show 
mixed results in estimating wake effects. As the R2 score in ANFIS is 0.05, while 
ANN achieves 0.39.  

Table 7 

Comparison of proposed work with the literature 

Ref Year Model Used R2 score MSE RMSE 

Proposed 
work 

- 
Random Forest Model 0.9905 1.26E-06 0.0011 

[31] 2023 ANN-Jesen wake model 0.93 - 0.06 

[32] 2022 Data Driven Analytical 
Wake Model 

0.8522 - 0.046 

[33] 2022 CNN-LSTM - 0.838 0.915 

[34] 2022 Gaussian process modelling 0.83 - - 

[8] 2016 Extreme Learning Machine 
coupled with Wavelet 
Transform 

0.9956 - 0.269 

In Table 7, the results of the present research work have been compared with the 
results published in the literature. The results have been compared on the basis of 
performance indicators recorded in the literature [35]. It has been observed from 
Table 7 that the proposed Random Forest Model produced better results than the 
models applied in the literature. 

In the future, the proposed study can also be further utilized to deploy real-time 
sensors integrated with the machine learning based control mechanism to 
intelligently adjust the yaw angle of the wind turbines, considering the wind regime 
and the local terrain. The proposed study can be further implemented by 
intelligently optimizing the layout of wind turbines by avoiding direct alignment of 
wind turbines and maintaining an adequate distance of about 5-9 rotor diameters 
between the turbines [36]. 

Future investigations into the assessment of wake impacts in wind farms could go 
in a few different areas [37]. Expanding the quantity of the dataset used for analysis 
may increase the accuracy of predictive models and provide a more complete 
understanding of wake dynamics [38]. Scholars can contribute to the development 
of more accurate and reliable forecast models for wind farm management and 
optimization [39] [40]. Moreover, other advanced wake models can be implemented 
to investigate the impact of terrain on wake characteristics, especially complex 
terrain, as it significantly affects the wind direction and velocity. 
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