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Abstract: Due to their internal mathematical structure Sliding Mode Controllers (SMC) are
robust against the imprecisions of the dynamic model they use for the calculation of the
necessary  control  forces  as  well  as  against  a  priori  not  known  external  disturbances.
However, this robustness has natural limits. To widen the range of stable operation various
particular constructions have been developed and tested in the recent decades. Key element
of stability is the more or less precise realization of the invented kinematic design.  To
guarantee  that  natural  possibility  seems  to  be  the  integration  of  SMC technique  with
adaptive  ones  that  also  aim at  the precise  realization  of  the  kinematic  designs  in  the
possession  of  some  available,  normally  imprecise  dynamic  model.  Due  to  its  simple
mathematical structure the Fixed Point Iteration (FPI)-based adaptive control seems to be
a good candidate for this purpose. Like the SMC control, FPI-based adaptive controllers
also  suffer  from certain  limitations  due  to  which  they  cannot  be  considered  as  some
“panacea”  against  modeling  errors.  They  work  on  the  basis  of  iterative  sequences
generated by a contractive map in a Banach space,  and their  speed of  convergence is
limited by the fact that during one digital control step only one step in this iteration can be
executed. Beside decreasing the cycle time of the digital control this convergence can be
speeded up by a witty trick suggested by Steffensen in 1936 for single variable functions. In
this paper it is shown how Steffensen’s convergence accelerator can be generalized for
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multiple variable Banach sequences. Following that simulation results are presented that
testify that the simplest SMC and the simplest variant of the FPI-based adaptive controller
using Steffensen’s generalized accelerator can be successfully integrated in  the precise
control of a strongly nonlinear benchmark system consisting of two nonlinearly coupled
generalized van der Pol oscillators. Robustness of the integrated controller is also tested
against  the  modification  of  the  control  parameters.  Furthermore,  it  is  shown  that  the
sensitivity of the control to the measurement noise efficiently can be reduced by reducing
the cycle time of the digital control.

Keywords: Sliding Mode Control, Fixed Point Iteration-based Adaptive Control, Banach
Sequences, Steffensen’s Convergence Accelerator.

1 Introduction

Control systems can be modeled mathematically by coupled nonlinear differential
equations.  Nonetheless,  these  models  may  contain  errors  that  can  negatively
impact the controlled system’s performance. Therefore, it is essential to consider
these  inaccuracies  while  designing  control  systems.  The  most  widely  used
approaches for addressing these inaccuracies are robust and adaptive ones. These
approaches compensate for the model’s inaccuracies and ensure that the control
system performs more precisely [1, 2].

In general, in the robust technology outlined in [1] the controlled system may
chatter that practically must be avoided because it destroys its drive system and
can excite not modeled internal degrees of freedom similarly to some resonance
effect. A brief survey on the technologies that were elaborated to further develop
the Robust Variable Structure/Sliding Mode (VS/SM) technology will be given in
Section I.1

This study proposes a new design approach to reduce or eliminate chattering
in controlled systems. It applies Fixed Point Iteration (FPI)-based adaptive control,
namely the Robust Fixed Point Transformation (RFPT) control framework [3] to
precisely realize the kinematically designed sliding mode controller. Furthermore,
it applies a generalized version of Steffensen’s original convergence accelerator
[4] to achieve even more precise trajectory tracking than that  available by the
simple iterative adaptive control considered in [5].

In this paper at first the details of the suggested control are expounded, then
Steffensen’s convergence accelerator is briefed as it was originally elaborated for a
single  variable  system.  Following  that  Steffensen’s  method  is  generalized  for
multiple variables systems. To demonstrate the potential efficiency of the VS/SM
technology  improved  with  the  accelerated  FPI/RFPT-based  adaptation  the
dynamic model of two modified, nonlinearly coupled van der Pol Oscillator is
discussed.  This  strongly  nonlinear  system is  used  as  a  benchmark  to  produce
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simulation results. Robustness of the integrated method against the modification
of the control  parameters are also investigated. The paper is  completed with a
section of conclusions.

1.1 THE CLASSIC SLIDING MODE CONTROLLER

The Sliding Mode Controller can be regarded as a modification of  the special
version  of  the  simplest  model-based  controller,  the  Computed  Torque  Control
developed for robots (e.g., [6]), in which the dynamic model of a second order
system and its inverse in the form of (1)

q̈=Φ (q, q̇ ,Q )      ,      Q=Ψ (q , q̇ , q̈ )  (1)

are directly utilized for the calculation of the necessary control forces Q ( t )  (q ( t )
denotes the generalized coordinate of the controlled system). Normally there is an
a priori  known nominal  trajectory to  be tracked,  i.e.,  qN ( t) ,  while  the  actual
trajectory is q ( t ) . The tracking error is their difference that mainly originates from
the differences in the initial conditions. If the inverse model in (1) is precise, the
following kinematic strategy, based on the tracking error, its time-integral, and
time-derivative

e (t) :=qN(t )−q (t) , e int (t):=∫t0

t
e(ξ)d ξ (2)

 can be realized:

(Λ+ d
dt )

2
eint( t )≡0  leading to (3a)

q̈Des( t )=q̈N ( t)+Λ3 e int( t )+3 Λ2e (t )+3 Λ ė( t ) (3b)

in  which  the  feedback  gains  of  the  integrated  error,  the  error,  and  its  time-
derivative are calculated from a single positive constant, Λ>0 . Since the general

solution  of  the  equation  (Λ+ d
dt ) f ( t )=0  is  f ( t )=exp(−Λ ( t−t0 )) f ( t0) that

converges to 0 as t→∞ , from (3a) it evidently follows that (Λ+ d
dt )

2
eint( t )  as well

as (Λ+ d
dt )e int( t)→0  as t→∞  that implies that e int( t )→0  as t→∞ . Since 

(Λ+ d
dt )

2
eint( t )=0  leads to (4)
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(2 Λ+ d
dt )e( t )=− Λ2e int( t ) , from which, after vanishing the inhomogeneous term

at the right hand side, e( t )→0 as t→∞  can be concluded. In similar manner (3a)
can be rewritten as 

(3 Λ+ d
dt ) ė int( t )=−Λ2e int( t )−3 Λ2e( t ) (5)

in which the inhomogenous term vanishes again, therefore ė( t )→0 as t→∞  can be
concluded.

Simulation results as well as practical experiences have shown that precise
realization of the kinematic strategy in (3) requires quite precise dynamic model
that normally is not available (e.g.,[7, 8] ). To tackle this problem the basic idea
was introduction of the error metric as

S ( t ) =
def

(Λ+ d
dt )

2
e int( t)  ,

(6)

and instead of prescribing the precise damping for the tracking error in (3a) it is
required to drive  S ( t )  during finite time near zero, and afterwards keeping it in
the vicinity of zero, e.g., by approximating the strategy given in (7)

dS( t )
dt

=−K tanh( S
w )  , (7)

in which the constant parameter K>0  determines the speed of damping S ( t ) , and
w>0 is the smoothing parameter  that  determines the nature of  the motion near
S=0  (e.g., [1]). The main point is that no precise realization of (7) is necessary.
From  S ( t )≈0 ,  similarly  to  the  consideration  made  for  (3a)  e int( t )→0 ,  and
e( t )→0  can be concluded, but generally nothing can be stated about the behavior
of  ė( t ) .  It  can take  huge values  even  for  quite  small  e( t )  errors  (this  is  the
phenomenon referred to as chattering), or can be nicely limited, depending on the
modeling  errors,  and  the  parameters  K  and  w .  While  Λ  and  K  mainly  are
responsible for the tracking error,  can be set to avoid chattering. Since greater
w  keeps S ( t )  less precisely around zero, increasing its value normally makes the
tracking less precise. The inherent robustness of the  method consists in the fact
that  a  very precise  realization  of  (7)  would require  a  precise  dynamic  model,
however, its exact realization practically is out of interest. 

Evidently,  (7)  is  not  the  only  kinematically  formulated  strategy  that  can
satisfy the goals to push  S  during finite time to zero then keeping the physical
state of the system creeping in the vicinity of the hypersurface S≃0 . Already in
the past Soviet Union the idea was extended to higher order dynamical systems as
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supervision of rough bang-bang control (e.g., [9]– [11]). According to the actual
kinematic prescriptions the controlled system receives a drastic “flap” from the
controller  whenever  its  error  metric  crosses  the  S≡0  hypersurface.  In  this
technology the crucial aspect is appropriate timing of the “flaps” (e.g., [12, 13]).
Due to its robustness, fast error convergence, and dynamic response, the sliding
mode  method  has  obtained  significant  attention  in  developing  controllers  for
robotic manipulators, underwater vehicles, automotive transmissions and engines,
high-performance electric motors, and power systems (e.g., [14]). 

Various  methods  were  suggested  that  tried  to  decrease  or  eliminate  the
reaching phase of  S=0   to minimize the system’s parameter sensitivity. Among
these  methods,  one  involves  modifying the  sliding  surface  of  classical  SMCs,
which are naturally linear and constant. The system’s performance is determined
by the design of  the  sliding surface,  making it  the focal  point  of  most robust
control strategies (e.g., [15]).

The idea of chattering reduction by “smoothing” the signum function (i.e.,
replacing it with some saturation function) in the switching rule similar to (7) was
suggested  in  [16].  To  further  reduce  chattering,  a  Recurrent  Elman  Neural
Network (RENN) was constructed to determine the switching gain.

A possible method to avoid chattering is using a dead band or boundary layer
in a tight neighborhood of the sliding surface [17]. In [18], boundary layers are
employed near  the  sliding surface  to  implement  continuous control  within  the
boundary.  The  paper  also  discusses  the  effect  of  different  controls  within  the
boundary layer on chattering and error convergence in various systems. Also, in
[19], discontinuous control is used outside the boundary layer and then switches to
uncertainty  and  disturbance  estimator  (UDE)  based  control  inside.  The  paper
addresses the issue of sizable initial control underlying the method of UDE with a
modified sliding surface. In [20], a control law is presented that incorporates a
cone-shaped boundary layer around the sliding mode plane to eliminate chattering.
This boundary layer combines two types: a  constant  layer and a sector-shaped
layer. The system states will always enter the cone-shaped boundary layer, and the
choice of the sliding mode will determine the system’s performance.

In many practical cases, in which the modeling errors are not critical, by well
setting Λ , K , and w , quite acceptable results can be achieved by using the simple
idea formulated in (7). However, the method is not a “panacea”, and too drastic
errors cannot be well treated by it. In the lack of better dynamic model, beside the
above  mentioned  more  sophisticated  and  complex  methodologies,  a  natural
possibility is to combine this robust technique with some adaptive one to better
approximate (7).

    The design of adaptive techniques goes back to the nineties of the past century
[2] when formally correct dynamic models having imprecise parameters were used
as a starting point then the system learned the precise parameter values by a tuning

– 417 –



Awudu Atinga et al. Multivariable Steffensen’s Accelerator in Adaptive Sliding Mode Control

process based on Lyapunov’s 2nd method [21, 22]. This technique can be regarded
a  prevailing  design  concept  in  or  days,  too.  After  inventing  the  concept  of
“universal  approximators”  (Weierstraß’  polynomials  in  1885  in  [23],  the
generalization  of  this  idea  by Stone  in  1948 [24],  the  construction  method of
making  multiple  variable  continuous  functions  from  single  variable  ones  by
Kolmogorov in 1957 [25], Sprecher and Lorentz in the sixties in [26, 27],  the
concept of fuzzy sets by Zadeh in 1965 in [28]),  a new trend was initiated in
which huge universal structures having plenty of free parameters that are tuned by
some nature-inspired method as Genetic Algorithm yields the solution even for
relatively simple dynamical systems (e.g., the “ball on the wheel system” in [29]).
Special  model  forms  as  the  Linear  Parameter  Varying  models  (e.g.,  [30])  are
applied  in  [31]  in  the  cruise  control  of  autonomous  cars.  The  adaptation
mechanism can be based on learning control as e.g., in [32]. It was Weierstraß
who made the first pioneering step towards the understanding of the incredible
complexity by modeling with continuous functions by giving an example that is an
everywhere continuous function that nowhere is differentiable in 1872 in [33]. A
plausible possibility is the implementation of this robust technique in the Adaptive
Fixed-Point Transformation (RFPT) digital control framework that is the simplest
adaptive technique. It is briefed in the sequel.

1.1.1 ON THE FIXED POINT ITERATIONS-BASED ADAPTIVE 
CONTROL.

The basic idea of the method at first published in [3] is very simple. Let us return
to (1) in which  Φ (q , q̇ ,Q )  is precisely realized by the physics of the controlled
system  while  the  inverse  model  is  only  approximately  known  as
Q=~Ψ (q, q̇ , q̈Des ) ,  in which the  desired 2nd time-derivative   q̈Des  is computed
from (7). Evidently, the realized 2nd time-derivative q̈ ( t )  will be

q̈Des≠q̈=Φ (q , q̇ ,~Ψ (q, q̇ , q̈Des ))≈ f ( q̈Des ) (8)

where it was taken into account that q̇  and q can only vary slowly, while q̈  can be
drastically  and  abruptly  changed  by  abrupt  changes  in  the  control  force.  The
response  function defined  in  (8)  slowly  can  drift  with  q ( t )  and  q̇ ( t ) .  To
compensate for the effects of the modeling errors the idea arose that it would be
expedient to find some deformed  q̈Def  value and placing it into the approximate
inverse dynamic model to achieve the situation q̈= q̈Des=f ( q̈ Def ) . In this case (7)
would be precisely realized. For finding the necessary deformation, in the case of
a digital controller an iteration was suggested so that during each digital control
step  only  one  step  of  the  adaptive  iteration  can  be  done.  For  this  purpose  a
deformation function in (9)

q̈Def (i+1 )=G ( q̈Def (i ), q̈ ( i ), q̈ Des( i+1 )) (9)
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was suggested with the physical interpretation as follows: for the calculation of the
deformed value in the cycle  i+1 , i.e.,  q̈ Def (i+1 ) , in which the desired value is
q̈Des( i+1 ) , the observed effect (i.e.,  q̈ ( t )) of the previously applied deformation

 is  taken  into  account.  In  the  above  approximation  G  contains  the
response function in  the form  G ( q̈Def ( i) , f ( q̈Def ( i)) , q̈Des (i+1) ).  This  function
must be so constructed that the appropriate deformation , i.e., the solution of the
control task, q̈*

Def  must be its fixed point as q̈*
Def=G ( q̈*

Def ( i ) , f (q̈*
Def ) , q̈Des )  for a

constant q̈ Des . For constructing such a function various possibilities exist. Perhaps
the  simplest  idea  is  based  on  a  constant  α>0 parameter  and  direct  use  of  the
response function in the iterative sequence in the vicinity of the desired solution
f ( x*)=xDes  as 

xi+1=xi+α( xDes−f (x*))  , (10)

in which the correction happens in the direction that connects the desired value
with  the  last  obtained  response.  For  a  differentiable  response  function  in  the
vicinity of the solution it can be written that

f ( x)≡f (x*+x−x* )≃xDes+ ∂ f
∂ x
|x*
(x−x* ) ,

(11)

that simply leads to

xi+1−x*≈[I−α ∂ f
∂ x
|x*](x i−x*)  ,

(12)

from which it follows that

‖xi+1−x¿‖
2≈‖xi−x*‖

2−α(x i−x*)
T (∂ fT

∂ x
+∂ f
∂ x )(x i−x* )

+α2(x i−x*)
T ∂ f
∂ x

T ∂ f
∂ x

(x i−x*).
 , (13)

In (13) the last term is always positive but for small enough α it can be neglected
in comparison with the first order term in α . In [34] as the generalization of the
monotonic  increasing  single  variable  function the  concept  of  the  locally
approximately direction keeping multivariable function was defined as follows:

Δ xT Δ f≡Δ xT ( f (x+Δ x )−f ( x))≈Δ xT ∂ f
∂ x

Δ x>0  , (14)

that simply means that the scalar product of the vectors  Δ x  and  Δ f is positive,
that is the angle between these vectors is acute, i.e., these vectors approximately
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have the same direction. By decomposing the matrix  ∂ f
∂ x  into its  symmetric and

skew symmetric parts the above definition means that

Δ xT [12 (∂ f
∂ x

+∂ f
∂ x )+1

2 (∂ f
∂ x

−∂ f
∂ x

T )]Δ x=

Δ xT 1
2 (∂ f
∂ x

+∂ f T

∂ x )Δ x>0 ,

 , (15)

since due to symmetry reasons the contribution of the skew symmetric part is
exactly  0.  Therefore  in  (13)  it  can  be  achieved  that  for  a  small  positive
α>0 ‖x i+1−x* ‖<‖x i−x*‖, i.e., the iteration goes closer to the solution x* . At
this point Banach’s fixed point theorem can be referred to from 1922 [36]: if a
contractive map over a Banach space (i.e., linear, normed, complete metric space
Β )  Φ :Β↦Β  generates  a  sequence  as  {x0 , x1=Φ( x0 ) , .. . , xn+1=Φ(xn ), . ..}  it
converges  to  the  unique  fixed  point  of  this  map  defined  as  Φ( x*)=x* .  By
definition  Φ( x)  is  contractive if  ∃0≤K<1  so  that
∀ y , x∈Β ‖Φ ( y )−Φ( x)‖≤K‖y−x‖. On this basis it can be expected that for
many physical systems with their approximate models convergent iteration can be
obtained. Since in the practice it  is difficult to estimate the appropriate  α  that
keeps fast enough convergence, various G deformation functions were elaborated
for use in (9). In [35] this parameter was replaced with another one that must be
located in the (0, 1] interval. Earlier in [36] a different solution was suggested that
practically used a single parameter, and originally in [3] a solution was given that
used  three  real  parameters  (Kc ,Bc  and  Ac )  for  single  variable  functions,  the
Robust Fixed Point Transformation, that was defined as follows:

q̈Def (i+1 )=( q̈ Def ( i )+Kc )[1+Bc tanh( Ac ( q̈ (i )−q̈ Des( i+1 )))]−Kc  . (16)

These parameters were set in the following manner: after making simulations for
the non-adaptive PID-type CTC controller a great positive K c >>|q̈| was chosen.
By trying to set Bc=±1  a small Ac>0  was chosen to achieve convergence in the
adaptive simulations. In the present simulations a primitive generalization of (16)
will be applied: it must be valid for each component of q̈ ∈ℜn .

According to simulation investigations (16) worked well in the solution of
certain adaptive control solutions, but in other cases problems arose with the speed
of  convergence  with  a  fixed  parameter  set.  So  this  adaptive  solution  is  not  a
“panacea” in the adaptive PID-type CTC control, similarly to the simple SMC
control in (7) with its fixed parameters. The idea of combining the two methods
naturally arises. Before doing that it is expedient to consider the possibilities for
speeding up the convergence of the fixed point iteration-based approach, because
during one  digital  control  step  only one  iterative  step can be  realized.  In  this
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direction Steffensen made the pioneering work for single variable functions. In the
sequel  its  original  idea  is  briefed  then  its  generalization  to  multiple  variable
functions will be presented.

1.1.1 STEFFENSEN’S CONVERGENCE ACCELERATOR

This method was invented in  1933 in [4]  for  speeding up the convergence of
single variable sequences generated by a  contractive map over a Banach space
Φ :Β↦Β  as  {x0 , x1=Φ( x0) , .. . , xn+1=Φ(xn), . ..}  that  according  to  Banach’s
fixed point theorem converges to the unique fixed point of this map  Φ( x*)=x*

[36].  By  definition  Φ( x) is  contractive  if  ∃0≤K<1  so  that
∀ y , x∈Β ‖Φ ( y )−Φ( x)‖≤K‖y−x‖.  The  speed  of  convergence  can  be
estimated by the parameter K  and it can be quite slow if it is close to 1. 

A     The Single Variable Case

Steffensen realized that it is expedient to break the infinite sequence into finite
number  excerpts  as  {x0 , xn−1=Φ(x0) , xn=Φ(xn−1) , xn+1=Φ(xn)}in  which  x0
does not originate as a function of a previous point of the sequence. Instead of
that, in the vicinity of the fixed point the derivative of Φ( x) , i.e.,  Φ '( x ) can be
estimated as 

Φ '( x )≈
Φ(xn)−Φ(xn−1)

xn−xn−1
=

xn+1−xn

xn−xn−1
 ,

(17)

and in first order Taylor estimation , instead of generating xn+2=Φ (xn+1 )  of the
Banach  sequence  immediately  try  to  find  the  fixed  point  as
Φ( xn+1+Δ x )=xn+1+Δ x≈x*  that  with  the  above  estimation  of  the  derivative
leads to the approximation

 . (18)

This value will be the initial element of the next excerpt of the sequence that can
be written into the next starting variable  x0 .  To avoid division by zero by the
introduction of the small positive constant  0<ε  the following approximation can
be done:

x0≈xn+1+
(xn+1−xn+2)(xn−xn−1)( xn+1−2 xn+xn−1)

ε+( xn+1−2 xn+xn−1)
2 .  ,

(19)

In the case of the digital controller it must be taken into account that the response
functiom’s values are not known in advance: they are obtained via observations

xn+1+Δ x=xn+1+
(xn+1−xn+2 )( xn−xn−1 )

xn+1−2 xn+xn−1

– 421 –



Awudu Atinga et al. Multivariable Steffensen’s Accelerator in Adaptive Sliding Mode Control

with a fixed cycle time δ t . Accordingly, a deformed sequence {q̈Def (n)|n∈N } is
initiated  q̈ Def (1 )=q̈Des (1 ) .  The  elements  as
{x0 , xn−1=Φ(x0) , xn=Φ(xn−1 ) , xn+1=Φ(xn )}can be refreshed as global variables
in a sequential program code for simulation investigations.

B     The Multiple Variable Case

Formally the idea could be applied if in the vicinity of the fixed point the Jacobian
matrix ∂ Φ∂ x  could be estimated for x ,Φ∈ℜn . An equation 

f ( xi+1+Δ x )≈ f ( xi+1)+
∂ f
∂ x
|x*
Δ x=x i+1+Δ x  , (20)

could be solved for  Δ x .  However, in the case of a smooth motion there is no
mode to estimate the Jacobian because for this purpose real time measurements
should be made in essentially linearly independent directions. Fortunately in the
case of a continous smooth function it is not necessary to obtain information on
various directions. Again, the idea of motion approximately in the same direction
can be introduced and utilized similarly as it was done in (14). Instead of going to

point xi+2=Φ(xi+1)  introduce the unit vector e i+1=
def xi+2−xi+1

‖xi+2−xi+1‖
, and instead of

estimating the Jacobian, estimate its effect approximately in the same direction as

γ=
def ‖xi+2−xi+1‖

‖x i+1−xi‖
 ,

(21)

and seek the appropriate  Δ x  appropriately in the same direction as  Δ x=βei+1 .
For approximating the fixed point in this direction the equation

Φ( xi+1+Δ x )≈Φ(xi+1)+γβ e i+1=x i+1+β ei+1  , (22)

should be solved. Since xi+2=Φ(xi+1)  a consistent solution can be obtained as

‖xi+2−xi+1‖( xi+2−xi+1)=β(1−γ)(x i+2−x i+1)  , (23)

that can be solved for the vector ( xi+2−xi+1)≠0  leading to

Δ x=
‖xi+1−xi‖( xi+2−x i+1)
‖xi+1−xi‖−‖xi+2−xi+1‖

 .
(24)

Again, to avoid division by 0 the trick using a small positive value  ε>0  can be
applied for the approximation of the fixed point as

Δ x≈( xi+2−xi+1)
‖x i+1−x i‖(‖xi+1−x i‖−‖xi+2−xi+1‖)
ε+(‖xi+1−x i‖−‖xi+2−xi+1‖)

2  .
(25)
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1.1.2 THE EFFECTS OF THE MEASUREMENT NOISE

By  feeding  back  the  observed  q̈ ( t )value  that  normally  is  burdened  by
measurement noise, the FPI-based approach normally requires the application of a
simple low pass filter as it was done e.g., by Bodó et Lantos in [37]. The main
source  of  the  noise  normally  is  the  imprecision  of  the  measurement  of  the
coordinates  q ( t ) . In general it can be modeled by adding a random term to the
exact coordinate value  q ( t )  so that the addition has Gaussian distribution with
zero mean as

qo( t )=q ( t )+ℵ(t )  . (26)

that normally cause high frequency disturbance of which one can get rid by the
application of a simple low pass filter that consists of an observer that follows the
noisy signal with some “inertia” represented by the constant parameter 0<Λ f  as

(Λf+
d
dt )

3
qs( t )=Λ f

3 qo(t )  .
(27)

For computing the filtered qo ( t )  determined by (27) in the time domain with the
initial condition  qo ( t )=0 ,  q̇o( t0 )=0 , and  q̈o( t0 )=0  the simple numerical Euler
integration of the third order differential equation (28) can be done as

q⃛ s( t )=Λf
3 (qo(t )−qs (t ))−3Λf

2 q̇s ( t )−3Λf q̈s( t )  . (28)

Normally  the  assumption  of  the  Gaussian  distribution  is  proposed  on  the
theoretical  basis  that  the  resulting  distribution  of  infinite  number  of  random
external effects must be of Gaussian type. However, if the noise originates from
the measuring imprecision of digital encoders,  the even distribution within the
bounded interval  [−σ ,+σ ]  is a physically more realistic assumption (e.g.,[38]).
The “delay” caused by the “inertia” of the noise filter considerably concerns the
operation of the FPI-based control even if σ=0 . In the sequel the dynamic model
of the nonlinearly coupled van der Pol oscillators as a benchmark system is briefly
presented.

1.1.3 THE DYNAMIC MODEL OF THE COUPLED VAN DER POL 
OSCILLATORS

In the simulations two modified van der Pol oscillators (the original version was
published in [39]) was used that evolves according to the equation of motion the 
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ℑ=k|q1−q2|
νsign (q1−q2) ,

q̈1=
u1+μ1(a1

2−q1
2) q̇1−ω1 o

2 q1−α1q1
3−λ1q1

3−ℑ
m1

q̈2=
u2+μ2(a2

2−q2
2)q̇2−ω2 o

2 q2−α2 q2
3−λ2q2

3+ℑ
m2

.

(29)

where for oscillator i  qi  [m] represents the position coordinate, ui [N] denotes the
control force, mi [kg] is themass of the oscillator, and 0<μi  is the scalar parameter
that shows the damping strength. If |qi|<ai  the oscillator is excited (i.e., energy is
added  to  the  system),  and  if  |q i|>ai ,  the  oscillator  is  damped.  Parameter

k [N⋅m−ν ] describes  the  strength,  while  ν  [nondimensional]  determines  the
nonlinearity of coupling. Letter ℑ  denotes the coupling force. The dynamic model
parameters used in the simulations are given in Table I.
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TABLE 1

The dynamic model parameters used in the simulations

 

For free oscillations,  i.e.,  ui≡0 ,  ℑ≡0 ,  the state  qi=0 , q̇i=0 corresponds to  an
unstable  equilibrium  point.  However,  if  the  system  is  moved  out  of  this
equilibrium  point  ,  it  approaches  a  limit  cycle  corresponding  to  nonlinear
oscillation. 

1.1.4 THE SIMULATION RESULTS

         The method intentionally was texted for a very  drastic dynamic range
caused by the strong nonlinear coupling in the two oscillators as given in Table I.
In the simulation at first the SMC controller’s parameters were set by applying
various trials evaluating the improvement achieved in  the phase trajectories in
comparison  with  that  of  the  simple  non-adaptive  PID-type  CTC  controller
determined by  Λ=0.5 [ s−1 ] . For noise reduction the constant  Λf=1300.0 [ s−1 ]
was  applied.  The  discrete  time  resolution  and  the  cycle  time  of  the  adaptive

Model 
Parameter

Exact
Value

Approximate
value

Physical Unit

ν 1.5 2.0 [nondimensional]

k 80.0 60.0 [ N⋅m−ν ]

a1
0.5 0.8 [m ]

a2
1.5 1.0 [m ]

μ1
0.4 0.5 [N⋅m−3⋅s ]

μ2 0.3 0.4 [N⋅m−3⋅s ]

ω1 o
0.46 0.42 [N0 .5⋅m−0 .5 ]

ω2 o
0.40 0.32 [N0 .5⋅m−0 .5 ]

α1
1.0 0.9 [N⋅m−3 ]

α2
1.2 1.0 [N⋅m−3 ]

λ1 0.1 0.09 [N⋅m−5 ]
λ2

0.2 0.1 [N⋅m−5 ]
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controller was fixed cycle time δ t=10−3[ s−1 ] . In the beginning no measurement
noise was simulated. 

Figure 1 reveals very imprecise phase trajectory tracking

                                

                 Figure 1                                                                                              Figure 2
Phase trajectory  tracking of the original PID                      Phase trajectory tracking of the simple SMC
controller without adaptivity, and simulated noise              controller without adaptivity, and noise

Following  that  some  SMC  parameters  were  sought  for.  Without  finding
satisfactory solution the setting  K=104  [m⋅s−2 ]w=600 [m⋅s−1 ] produced the
result in Fig. 2 that revealvery little improvement in the phase trajectory tracking.
It can be seen that no chattering occurred in the control. The trajectory tracking
error is displayed in Fig. 3.

                                  

                 Figure 3                                                                                              Figure 4
Trajectory  tracking error of the simple SMC                  Phase trajectory tracking of the Adaptive SMC
controller without adaptivity, and simulated noise          controller without Steffensen , and noise

In  the  next  step  the  adaptive  parameters  were  set  via  trials  without  using
Steffensen’s accelerator. It was found that the setting  K c=104 [m⋅s−2 ] ,  Bc=−1
and  Ac=0.15/K c  for the adaptive control produced some little improvement in
the phase trajectory tracking (Fig. 4). However, Fig. 5 shows little increase in the
tracking  error.  Fig.  6  indicates  that  the  applied  parameter  Ac  was  too  great:
instead speeding up the convergence the FPI-based control went out of its region
of convergence and this fact caused the observable chattering.

The significance of guranteeing the necessary speed of convergence can be
well revealed following switching on the generalized Steffensen’s acclerator with
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its parameter ε=10−3 [m2⋅s−4 ]  in Figs. 7 and 8. Considering Fig. 9 well illustrates
the significance of this small tracking error. In Fig. 10 it definetely can be seen
that the chattering disappeared. Figs. 11 and 12 show that very drastic extent of
adaptive deformation was necessary to well approximate the prescribed nominal
motion. 

                       

                 Figure 5                                                                                       Figure 6
Trajectory  tracking error of the adaptive SMC                 Control force of the Adaptive SMC controller
controller without Steffensen, and simulated noise           controller without Steffensen , and noise

                                       

                     Figure 7                                                                                          Figure 8
Phase trajectory tracking  of the adaptive SMC              Trajectory tracking error  of the Adaptive SMC
controller with Steffensen, and without noise                  controller with Steffensen , and without noise
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                         Figure 9                                                                                          Figure 10
Trajectory tracking  of the adaptive SMC                         Control force  of the Adaptive SMC controller
with Steffensen accelerator, and without                           with Steffensen’s accelarator, and without 
simulated  noise                                                                  simulated noise

                                  

                         Figure 11                                                                                  Figure 12
The q̈1( t )  second time-derivatives in the adaptive            The q̈2( t )  second time-derivatives in the  

SMC controller with Steffensen’s accelerator , and           adaptive SMC controller with Steffensen’s     
without simulated noise                                                      accelerator, and without simulated noise.  

To the effects  of  measurement  noise some realistic  noise  distribution was
chosen. In the Web various linear magnetic encoders can be found for measuring
q1 and q2 . For instance in 

“https://www.rls.i/eng/la11-linear-absolute-encoder”

the “LA11 Linear  Absolute Magnetic Encoder ” is advertised with resolutions up
to 0.244[μm ]  that corresponds to  σ=0. 488⋅10−6≈5⋅10−7 [m] even distribution.
To the category of “High accuracy Linear Magnetic Encoder System” resolutions
down to 0.1[μm ]belong to industrially advertised items.  
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                        Figure 13                                                                                      Figure 14
Trajectory tracking error  of the adaptive SMC                   Trajectory tracking of the Adaptive SMC 
controller controller with Steffensen accelerator,                controller  with Steffensen’s accelarator, and
and simulated  noise of σ=5×10− 7   [m]                             simulated noise σ=5×10− 7  [m]

                         Figure 15                                                                                                                     
Control force  of the Adaptive SMC controller with Steffensen’s                                                
accelerator, and with simulated noise  σ=5×10−7  [m]  

Figs. 13, 14, and 15 well illustrate that this order of magnitude noise cannot
destroy  the  controller.  Certain  random  fluctuation  necessarily  appears  in  the
control forces because they are calculated by the use of noisy feedback terms in
spite of the action of the noise filters.

On the basis of the symmetry in the driving force pictures (Figs 6, 10, and 15)
it can be guessed that the main dynamice effect originated from the coupling force
between the oscillators. Robustness of the suggested simple adaptive method can
be tested for a model in which the coupling forces coefficient (parameter  k  in
Table 1) is drastically decreased (naturally together with its approximate value) to
allow the  manifestation  of  the  effects  governed  by  the  other  nonlinear  model
parameters.
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1.1.5 ROBUSTNESS TEST BY CONSIDERING WEAKENED 
NONLINEAR COUPLING BETWEEN THE OSCILLATORS

In the following simulations the exact value of the coupling parameter  k=0. 5
[N⋅m−ν ] instead of that given in Table 1. Its approximate value was 1.0[N⋅m−ν ] .
For setting the SMC  control parameters the same consecutive steps were done as
in the strongly coupled case.

                               

                         Figure 16                                                                              Figure 17                               
Phase trajectory tracking of the  original PID                    Phase trajectory tracking of the simple  SMC 
controller without adaptivity, and simulated                     controller without adaptivity, and simulated    
noise in the case of weak coupling                                    noise in the case of weak coupling

                                                 

                             Figure 18                                                                              Figure 19                           
Trajectory tracking error of the simple SMC         Phase trajectory tracking of the adaptive  SMC cont- 
controller without adaptivity, and simulated          roller without Steffensen’s accelerator, and simulated
noise in the case of weak coupling                         noise in the case of weak coupling

Figure 16 in comparison with Fig. 1 reveals that these  parameter estimation
errors caused quite complicated phase tracking pattern in the simple non-adaptive
PID-type control. Fig. 17 testifies that in this case switching on the simple SMC
control without adaptation resulted in much better phase trajectory tracking. For
further comparison the appropriate tracking errors are given in Fig. 18.

Figs. 19 and 20 show that something similar happened than in the case of strong
coupling: without Steffensen’s accelerator both of the phase trajectory tracking
and the trajectory tracking error were worsened. Fig. 21 shows a little chattering
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that was cause by the too great parameter Ac . This conclusion is confirmed by the
figures of the second time-derivatives (Figs. 22, 23), too. 

                         

                             Figure 20                                                                             Figure 21                            
Trajectory tracking error of the adaptive SMC             Control force of the adaptive  SMC controller     
controller without Steffensen’s accelerator, and          without Steffensens accelerator, and simulated 
noise in the case of weak coupling                               noise in the case of weak coupling

                                       

                             Figure 22                                                                             Figure 23                            
The q̈1( t )  second-order derivative in the adaptive          The q̈2( t )  second-order in the adaptive  SMC 

controller without Steffensen’s accelerator, and              SMC without Steffensens accelerator, and 
simulated noise in the case of weak coupling                   simulated noise in the case of weak coupling

The previously observed “symmetry” disappeared in the graph of the control
forces indicating that the dynamic details were mainly determined by the internal
parameters of the coupled oscillations and the dynamic coupling between them
played less significant role. In comparison with Figs. 11 and 12 of strong coupling
it definitely can be stated that the extent of the necessary adaptive deformation
was considerably smaller in the case of weak coupling. 

Finally Steffensen’s generalized accelerator was switched on with the same
parameter  ε=10−3 [m2⋅s−4 ] .  Figs.  24,  25,  and  26  testify  that  very  precise
trajectory tracking was achieved. Comparison of Figs. 10 and 27 confirm that the
reduction of the extent of dynamic coupling considerably reduced the necessary
control forces. Also, comparison of Figs. 28, 29 and 11, 12 reveals that the extent
of the necessary adaptive deformation was considerably reduced by weakening the
dynamic coupling between the subsystems. 
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                             Figure 24                                                                             Figure 25                            
Phase trajectory tracking of the adaptive SMC         Trajectory tracking of the adaptive  SMC controller
controller with Steffensen’s accelerator, and             controller  with Steffensens accelerator, and  
without noise in the case of weak coupling                without noise in the case of weak coupling

                                    

                         Figure 26                                                                             Figure 27                                
Trajectory tracking error of the adaptive SMC         The control forces of the adaptive  SMC controller 
controller with Steffensen’s accelerator, and            controller  with Steffensens accelerator, and  
without noise in the case of weak coupling               without noise in the case of weak coupling

                                             

                             Figure 28                                                                             Figure 29                            
The q̈1( t )  second-order derivative in the adaptive          The q̈2( t )  second-order in the adaptive SMC 

controller with Steffensen’s accelerator, and                   SMC with Steffensens accelerator, and without
simulated noise in the case of weak coupling                  without noise in the case of weak coupling

Finally, by switching on the noise simulation in Fig. 30 it can be seen that
though  the  trajectory  tracking  precision  to  some  extent  was  corrupted,  the
controllers remained stable. In Fig. 31 it can be well observed that the reduced
necessary control force lead to quite bad signal to noise ratio: the noise content
completely hides the signal. 
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                            Figure 30                                                                             Figure 31                             
Trajectory tracking of the adaptive SMC                   The control forces of the adaptive  SMC controller
controller with Steffensen, and σ=5×10−7  noise      with Steffensen, and with noise of  σ=5×10−7  in 

the case of weak coupling                                           in the case of weak coupling 

To the question what can be done for  improving the situation within FPI-
based adaptive SMC control framework the answer is: further reduction the cycle
time  δ t  (that  in  the  same  time  is  the  discrete  time  resolution  of  the  Euler
integration in the computations). Because during one digital cycle only one step of
adaptive  deformation  can  be  done,  reduction  of  the  cycle  time  allows  more
adaptive steps  during unit  time, i.e.,  it  accelerates the speed of  the process of
adaptation. The same parameter setting yielded stable results for δ t=0. 5⋅10−3  [s].
Figures 32, 33, and 34 testify that quality of tracking became almost as good as in
the noise-free case. Figure 35 shows drastic improvement in the reduction of the
signal to noise ratio of the control force and that the control forces went back to
the order of magnitude as in the noise-free case in Fig. 27. Also, the necessary
extent of adaptive deformation in Figs. 35 and 36 that the signal to noise become
good enough to reveal the continuous trends in the variation of these quantities.

                               

                            Figure 32                                                                             Figure 33                             
Phase trajectory tracking  of the adaptive SMC                      Tracjectory tracking of the adaptive  SMC 
controller with Steffensen and noise of                                   controller with Steffensen and noise of      
σ=5×10− 7 [m] in the case of weak                                         σ=5×10− 7  [m] in the case  of weak 

coupling and δt=0. 5⋅10−3 [s]                                                 coupling  and δt=0. 5⋅10−3  [s]
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                            Figure 34                                                                             Figure 35                             
Trajectory tracking error  of the adaptive SMC                      The control force  of the adaptive  SMC 
controller with Steffensen and noise of                                   controller with Steffensen and noise of      
σ=5×10− 7 [m] in the case of weak                                        σ=5×10−7  [m] in the case  of weak 

coupling and δt=0. 5⋅10−3 [s]                                                  coupling and δt=0. 5⋅10−3  [s]

                                 

                           Figure 36                                                                             Figure 37                              
The q̈1( t )second-order derivative of the adaptive     The q̈2( t )second-order derivativef  the adaptive 

SMC controller with Steffensen and noise of             SMC controller with Steffensen and noise of         
σ=5×10−7 [m] in the case of weak coupling and       σ=5×10−7  [m] in the case  of weak coupling and

δt=0. 5⋅10−3 [s]                                                            δt=0. 5⋅10−3  [s] 

Conclusions 

Very briefly the following conclusions can be drawn from this research:

• The various sliding mode controllers show excellent robustness against modeling
imprecisions and parameter uncertainties. However, their robustness have natural
limitations.

• Precision of their operation can be considerably improved by their combination
with the very simple fixed point iteration-based adaptive controllers, however, the
improvement  is  successful  only  if  these  adaptive  controllers  have  very  fast
convergence.
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•  This  fast  convergence  can  be  guaranteed  by  the  application  of  Steffensen’s
convergence  accelerator  trick  that  successfully  was  generalized  from  single
variable to multiple variable functions.

•  The  ultimate  possibility  for  speeding  up  the  convergence  of  the  adaptation
mechanism is the reduction of the cycle time of the digital controller applied. This
reduction very significantly can reduce the noise-sensitivity of the control method.

In the present investigations only the integration of the simplest SMC and the
simplest FPI-based adaptive control was considered. Integration of the different
variants of these methods means an interesting further research area.
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