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Abstract: Control solutions are often based on a dynamic model of important, physically 
interpreted, but only imprecisely known parameters, e.g., in control-based treatment of 
patients suffering from diabetes, certain cancerous illnesses, and in anesthesia control. 
Besides making efforts to identify the model parameters that normally have serious inter-
patient deviations, an alternative approach can be the Fixed Point Iteration-based Adaptive 
Control that evades the complicated task of parameter identification, though it also applies 
an approximate model. However, for qualifying the control process, besides the tracking 
precision, quantitative evaluation of the consequences of the model’s imprecision also has 
practical significance. In this paper, a particular metric is introduced for this purpose that 
is based on the specialties of this adaptive approach by considering the differences between 
the actually needed and the purely model-based control efforts. It measures the consequences 
of the errors without revealing the errors themselves. It allows a wide field of applications 
in which not only are the parameters of the model uncertain, but even the analytical structure 
of the model can be questionable, too. The use of this metric is illustrated via simulations. 
An alternative possible use of this metric in Multidimensional Scaling is also illustrated. 
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1 Introduction 
Model-based control applications are widely used in the life sciences. For instance, 
to treat Type 1 diabetes mellitus, various models were developed, e.g., [1]. Model 
predictive control is a natural approach in anesthesia, e.g., [2]. Model identification 
plays an important role in cancer research, too [3]. Chemical reactions also represent 
an interesting field for modeling approaches, e.g., [4]. For relatively simple systems 
such as particular mechanical constructions or electric motors, direct measurement 
procedures can be invented, as in [5]. The use of particular model structure as Linear 
Parameter Varying form in cruise control of cars (e.g., [6]) or even the “Model-Free 
Approaches”, actually also use some simple universal model form, as in [7] can be 
mentioned, too. 

With respect to parameter estimation efforts, it is expedient to note that in practical 
control applications, coping with the aftermath and consequences of the estimation 
errors is much more significant than obtaining precise information on the model 
parameters. These consequences manifest themselves in the variation of several 
variables of important physical interpretation, and depend on the complex 
circumstances of the whole control task. In certain segments of the controlled 
motion, the estimation errors can have quite insignificant effects, while in other 
segments they may become quite serious. For this reason, the introduction of a 
single, time-dependent scalar variable that measures this significance during the 
execution of the control task can be practically useful. Also, if we are not in the 
possession of a satisfactory, analytically precise model form, quantifying the 
consequences of its modeling inadequacy can be reasonable, though in this case it 
cannot be stated that it originates from the estimation error of certain parameter(s). 

The latter example in [8] belongs to the special class of adaptive controllers, the 
Fixed Point Iteration (FPI)-based controllers that transform the control task into 
iteratively finding the fixed point of a contractive map in a Banach space based on 
Banach’s fixed point theorem [9]. In the next section, the operation of these 
controllers is briefed. Following that, the particular metric that was inspired by this 
control structure is defined and formally analyzed. For illustrating the applicability 
of this metric, the effects of particular parameter imprecision are demonstrated via 
simulations. Simulations will be given for an example when the analytical model 
form used by the controller does not cover the “reality”, i.e., when the controlled 
system is precisely described by a different model form. Finally, the application of 
this metric in Multidimensional Scaling will be presented. 
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2 Operational Principle of the FPI-based Adaptive 
Controllers 

The whole computational structure developed for the FPI-based adaptive control of 
a fully driven second-order system, announced in 2009 in [10], is described in 
Figure 1. This figure also contains the complementary elements that are used for the 
calculation of the novel metric. 

 

Figure 1 
The Control Lyapunov Function-based Adaptive Controller with Rotational Metric for a fully driven 

2nd order dynamic system 

Its main function is prescribing how the trajectory tracking error should converge 
to zero and realizing this error decay. This description happens by the use of purely 
kinematic terms, using the nominal trajectory )(tq N  to be tracked, and the actually 
realized trajectory )(tq as inputs into the block "Control Lyapunov Function." Its 
output is the desired 2nd time-derivative of the coordinates of the system q . It must 
be stressed that within this block numerous different kinematic descriptions can be 
present based on the needs of, e.g., the "Computed Torque Control," "Backstepping 
Control," "Variable Structure / Sliding Mode Control," etc. By defining the main 
components of the so called PID feedback terms that successfully were used for 
automatic steering of ships in the forties of the past century [11] the definitions in 
(1) can be used: the error, the integrated error, and the time-derivative of the error 

)()(:)( tqtqte N −=  ,   ξξ dete
t

t∫= 0

)()(int ,    
dt

tdete )()( =                            (1) 

In the mainstream of adaptive control design based on Lyapunov’s 2nd Method [12] 
a quadratic metric composed of the array TTTT tetetex )](),(),([ int =
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TMM = is introduced as a Lyapunov 
function MxxtV T=:)( . The design purpose is to guarantee that 0<V , or more 

precisely, V must be negative enough for concluding 0)( →tx  as 

∞→t . In [10] the main criticism of using Lyapunov’s technique was 
summarized as follows: 

i)  From 0<V it cannot be concluded that the time-derivative of the absolute value 
of any component of x  would be negative. However, e.g., in life sciences, such a 
property would be desirable. 

ii)  The method concentrates on the asymptotic stability of the controller. However, 
again, e.g., in life sciences, the behavior of the details of the initial transients would 
be of great interest. 

To evade these problems in the FPI-based Adaptive Control definite behavior was 
prescribed for the components of the tracking error )(tei . In the case of a 2nd order 
nonlinear physical system the existence of an exact dynamic model 

( ))(),(),()( tQtqtqFtq  =  was assumed, where Q refers to the exerted forces 
(including the control and disturbance forces, too). Even in the case of dynamic 
modeling of robots even in the nineties it became clear that it is impossible to 
develop a very precise model [13]. Therefore, it was assumed that there is an 
approximate inverse dynamic model available for the controller for computing the 
control forces as ( ))(),(),(~)( 1 tqtqtqFtQ Des−= . Evidently, the use of this 
approximate model in the Computed Torque Control [13] will not precisely realize 
the desired )(tq Des  value due to the modeling imprecision: 

( )( ) )(≠)(),(),(~),(),()( 1 tqtqtqtqFtqtqFtq DesDef  =   .                           (2) 

The main idea was that for realizing the desirable )()( tqtq Des =  situation, 

instead of )(tq Des  its deformed version )(tq Def  must be used as the input of the 
approximate model as in (3) 

( )( ) ( ))()(),(),(~),(),()( 1- tqtqtqtqFtqtqFtq DefDef  ℑ≈= .                    (3) 

where it was assumed that the controller can abruptly or in a very fast manner 
modify the control force )(tQ )(tq  and )(tq  can vary only slowly. In the 
case of a digital controller in Fig. 1 the delay time exactly corresponds to the tδ
cycle time of the controller, and during one digital  control step only one step of the 
adaptive iteration  can be done, in which the slow drift of )(tq and )(tq is 
neglected. In the block called "Rotational Adaptive Deformation" in a more general 
framework various deformation functions 
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( ) ( ))(),(),( 11 ++ = i
Des

ii
Def

i
Def tqtqtqGtq   can be present. In this paper we use 

the Abstract Rotations-based solution published in [14]. 

3 Details of the Present Design of the Controller 
In the present simulations in the Kinematic Block the Control Lyapunov Function 
was present. In this approach a simple diagonal metric can be used for the Lyapunov 
function containing the error feedback gains as in (4), with the desired convergence 
to zero as )()( tKVtV −=  where 0>K  is constant: 

D
T

P
T

I
T KeeeKeKeetV 

2
1

2
1

2
1)( intint ++=                                                    (4) 

The derivative of  )(tV easily can be computed as in (5) 

D
T

P
T

I
T KeeeKeKeetV  ++= int)(                                                                   (5) 

in which the identity 221
e

eT
e

ee eT







 
+

≅≡
ε

can be used with the use of a small 0>ε

by the use of which the numerically inconvenient “division by zero” situation can 
be avoided. The common multiplicative array Te  can be placed to the left-hand 
side and an equation 

0)( 2int =











++

+
+ eKeK

e
eKVeeKe DP

T
I

T 





ε
                                         (6) 

is obtained that can be valid for an arbitrary array )(teT  if the term within the 

square brackets is zero. In this manner )(tqDes  can be obtained via purely 
kinematic considerations as 














+

+
++= eK

e

eKVeeK
K

tqtq PT

T
I

D

NDes

ε
2int )(1)()(




                            (7) 

In the Adaptive Deformation block we applied the abstract rotations that were 
introduced in [14]. Figure 2 illustrates the simple idea for two dimensional vectors. 
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Figure 2 
The idea representing the abstract rotations-based adaptive deformations for two dimensional vectors 

Assume that we have two nonzero vectors nba ℜ∈
,  and we wish to deform vector 

b


 toward a . Generally, this means the modification of the direction and the 

Frobenius norm of vector b


. A simultaneous modification can be achieved by so 
adding a new, physically not interpreted dimension to these vectors as 

[ ]a
n DaA ,1 

=∋ℜ +  and [ ]b
n DbB ,1


=∋ℜ +  with 0, >ba DD  that 

RBA ==


, i.e., the augmented vectors obtain a common Frobenius norm R. 

The part of vector B


 that is orthogonal to vector A


 can be computed as 
ABB

AA
BA

A T

T 
−=⊥ : . In this manner two orthogonal unit vectors 

A
Ae 


=: , and 

A

A
B
Bf
⊥

⊥=


 can be obtained that generate rotations in 1+ℜn with the skew symmetric 

matrix TT feefG −=  having the special property GG −=3 . 

In this manner the rotations with angle ϕ  in 1+ℜn  leaving the orthogonal subspace 

of vectors  fe
,   invariant have the closed analytical form given in (8) 

2

0
)]cos(1[)sin(

!
GGI

l
GeO

l

l

lG ϕϕϕϕ −++=== ∑
∝

=

                                  (8) 

The angle of rotation that rotates B


A


R
B A⊥=


)sin(ϕ

ϕ  then the physically interpreted part b


 

will be exactly deformed into a . If only a fragment of ϕ  is used, then b


will be 
deformed toward a . In the iterative adaptive application a G  matrix and an angle 

nϕ  is calculated that deforms the realized value )( ntq  into )( 1+n
Des tq , and the 

)( n
Def tq  value is transformed with G  and a fragment of nϕ  to obtain 
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)( 1+n
Def tq . It is expected that in the case of convergence near identity rotations 

will be applied as the fixed point slowly drifts with  )(tq  and  )(tq . 

4 Introduction of the Rotational Metric 
Consider a subset of  nℜ  for the vector v the Frobenius norm of which is smaller 

than :0>R  { }RvvS n <ℜ∈=
 :: . Three of such vectors, say ba

, , and c

can be augmented into 1+ℜn  vectors as BA


, , and C


according to the above 

detailed procedure, i.e., RCBA ===


. It is stated that the absolute value 

of the angles between these augmented vectors behave as a metric. 

This statement can be proved in the following manner. In 1+ℜn  consider the points 
as follows: the origin O , and the endpoints of the above vectors as BA, and C . 

These three points determine a 3-dimensional subspace of  1+ℜn  that is equivalent 
to 3ℜ . The plain determined by these points BA, , and  C  corresponds to a 2-
dimensional plane, while the location of O  determines the direction of the third 
dimension as it is illustrated in Fig. 3. 

 
Figure 3 

Illustration of the points CBA ,, and O  in 1+ℜn  determining a 3-dimensional orthogonal 

subspace in  1+ℜn . The identical signs of 1C  and 2C  determine the orientation of the two unit 

vectors in the 3D subspace. 

Since RBOAO ==


, and RCOBO ==


, i.e., we have special triangles, 

it can be written as 
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





=

2
sin2 αRBA


, 







=

2
sin2 βRCB


,                                                                                             (9) 







=

2
sin2 γRCA


 . 

The consequence of (9) is that the following two equations are valid: 
22

2
2

1 RCC =+ ,                                                                                                  (10a) 

( ) ( ) 





=−+−

2
sin40 222

2
2

1
γRCRC   i.e.,                                                 (10b) 







=+−+

2
sin42 222

1
2
2

2
1

γRRRCCC  ,                                                      (10c) 

From (10a) and (10c) it follows that 

01
2

sin2 2
1 >








−





−=
γRC  .                                                                        (11) 

Now apply the formula 

)sin()sin()cos()cos()cos( vuvuvu −=+ ,    

1)(sin)(cos 22 =+ uu                                                                                        (12) 

That for 2
γ== vu  yields 

)cos(1
2

sin2 2 γγ
−=−






  .                                                                               (13) 

Substitute that into (11) yielding 

)cos(1 γRC =  .                                                                                                   (14) 

Then from (10a) it follows that a positive 2C  value can be obtained as 

)sin(2 γRC =  .                                                                                                   (15) 

In similar manner, it can be written that 
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( ) 





=++−

2
sin4 222

3
2
2

2
1

γRBBRB ,                                                                             (16) 

22
3

2
2

2
1 RBBB =++ . 

That with the analogy of  1C  yields that 

)cos(1 αRB = .                                                                                                  (17) 

Now take it into account that because of (9) 

( ) ( ) ( )233
2

22
2

11
22

2
sin4 CBCBCBR −+−+−=






 β ,                               (18) 

22
3

2
2

2
1 RBBB =++    , 22

3
2
2

2
1 RCCC =++ . 

This results in 







=++++−−−

2
sin4322 22

3
2
2

2
1

2
332211

βRBBBRCBCBCB    i.e., 

                                                                                                                             (19) 









−





=−−− 1

2
sin2 22

332211
βRCBCBCB  

By substituting here )cos(1 γRC = ,  )sin(2 γRC = , 03 =C , and 

)cos(1 αRB =  it is obtained that 

)cos()sin()cos()cos( 2
2 βγγα RRBR −=−− ,                                        (20) 

i.e., 

0
)sin(

)cos()cos()cos(
2 >

−
=

γ
γαβRB  .                                                          (21) 

Substituting  here that )sin()sin()cos()cos()cos( αγγααγ ++= , and 

taking into account that 0>R  and for ],0[, 2
πγα ∈ , 0)sin(),sin( ≥γα  this 

means that  

)cos()sin()sin()cos()cos( γαγαγαβ +≥++>  ,                                 (22) 

i.e., 



A. Atinga et al. Novel Metric to Quantify the Consequences of Modeling Imprecisions in Adaptive Dynamic Control 

‒ 60 ‒ 

)cos()cos( βαβ +≥  .                                                                                     (23) 

Since for ],0[ π∈x  the function )cos(x  is monotonic decreasing, this means 
that γαβ +≤  if β<0 , 2, πγα ≤ , that is for acute angles the triangle 
inequality of the metric spaces has been proved for the rotational metric. For this 

purpose, great enough common baR
 ,>>  norm has to be chosen. 

The other metric properties that ),(),( abba ρρ = , 0),( ≥baρ , 0),( =aaρ , 
and from 0),( =baρ  it follows that ba =  are trivially valid. Therefore, these 
angles can be used as metrics. 

 

Figure 4 
Certain trivial but interesting properties of the new “Rotational Metric” 

This new metric has certain trivial but interesting properties listed as follows: 

i) In contrast to the usual quadratic metrics in which the matrix elements of a 
positive definite symmetric matrix of the metric tensor have numerous free, 
arbitrary parameters, this special nonlinear metric has only a single real free 
parameter, i.e., R , the common norm of the augmented vectors. 
ii) According to Fig. 4, obtuse angle between two vectors of originally identical 
norm is transformed into acute angle. 
iii) Again, according to Fig. 4, the norm difference between two vectors of 
originally identical direction is transformed into angular differences. 

In the sequel, application possibilities are illustrated. 
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5 Application Possibilities in Adaptive Dynamic 
Control 

With the presented computational results, we wish to illustrate the fact that the 
consequences of modeling imprecision depend on the combination of the 
independent factors as follows: 

a) the imprecision of the dynamic model itself; 

b) the nominal trajectory to be tracked that determines the force need of the control 
in the case of available exact dynamic model and zero initial tracking error for )(tq  
and )(tq ; 

c) the initial tracking error for )(tq  and )(tq ; 

d) the kinematic tracking strategy that prescribes how the components of the 
integrated tracking error, the tracking error and its time-derivative have to converge 
to zero; for instance, in the case of a PID-type CTC controller the feedback gains 
with these error terms will serve as a basis for computing the necessary control 
forces on the basis of the available imprecise system model; in similar manner, in 
the case of other kinematic prescriptions the appropriate control parameters play the 
same role; 

e) if the controller has some adaptation ability the parameters of the adaptation 
mechanism will determine the finally exerted control forces. 

In general, the "significance of modeling imprecisions" cannot be considered or 
defined independently of the above factors. This simple fact explains the experience 
when for observing the model parameters evolutionary methods as Genetic 
Algorithms or Particle Swarm Optimization are used real-time. Instead of firm 
convergence some fluctuation in the identified parameters can be observed since 
the model parameter values have different importance in the various segments of 
the motion, and this time-varying significance cannot be generally well-balanced. 

However, in the case of the adaptive controllers the above context can be simplified 
if the adaptation mechanism is successful and consequently the integrated tracking 
error, the error and its time-derivatives already achieved are very small (practically 
zero) value: in this case the error terms fed back are very small, )(tqN , )(tqN  

and )(tqN  are well approximated by )(tq , and )(tq  respectively. In this case the 
above-mentioned items c) and d) can be neglected in the context. The significance 
of modeling imprecision remains a typically time-dependent data determined by the 
properties of the "nominal trajectory," the reality, and the imprecise model under 
consideration. 

In the simulations two typical cases were considered: 
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a) when the precise analytical form of the model of the controlled system is 
available, only the parameter values are imprecisely known: in this case the question 
of the significance of the estimation error of a certain parameter or set of parameters 
can be quantified by this metric; 

b) when even the precise analytical form of the available model is dubious, i.e., it 
cannot be expected that a given parameter of the model itself represents something 
in the reality: then the inadequacy of the whole model can be measured by the new 
metric. The simulations were made using Julia Language Version 1.10.4 (2024-06-
04). 

5.1 Simulations for the Motion of Mass Points Hanging on 
Nonlinear Springs-The precise Analytical Model Form is 
Available 

The controlled system consisted of a mass point hanging from the ceiling with a 
distance generalized coordinate 01 >q , and a second mass point hanging on the 

first one with a distance from the ceiling as generalized coordinate 12 qq > . The 
mass points are connected to nonlinear springs having nonzero force lengths. The 
motion of each spring is damped by viscous friction. The equations of motion are 
given (24). Let 21, mm  be a diagonal matrix of size 22× , 

)(sign 0111 Lqs
def

−= , )(sign 02122 Lqqs
def

−−= , and  

11022220111111
21 qbLqskLqskgmh +−−−+−= σσ

   ,                            (24a) 

2202122222
2 qbLqqskgmh +−−+−= σ

  ,                                                 (24b) 

)(1 hQHq −= − .                                                                                               (24c) 

in which 01L  and 02L  are zero force springs lengths, ]mN[ 1
1

σ−⋅k  and 

]mN[ 2
2

σ−⋅k  are nonlinear spring stiffness values, 1σ  and 2σ  are non-

dimensional stiffness exponents, and ]kg[1m  and ]kg[2m  are masses, 

]msN[, 1
21

−⋅⋅bb  are viscous damping coefficients, ]sm[ 2−⋅g  is the 

gravitational acceleration, ][1 mq  and ][2 mq  denote the vertical positions of the 

appropriate mass-points, and 2RQ∈  denote the active control forces exerted on 
the appropriate mass points. The dynamic parameters of the exact model are given 
in Table 1. (If the exact parameters are known, the output of the box “Controlled 
Dynamic System” in Fig. 1 must be measured real-time.) 
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The novel metric is used for the force components )],,();,,([ 21 qqqQqqqQ   and 

)],,();,,([ 21 qqqQqqqQ ApprAppr   telling us to what extent the force need of the 
approximate model must be deformed to achieve the really necessary force 
components in the given control task. This is a reasonable question when the 
capacities of the controllers are designed on the basis of an available dynamic 
model and control task is formulated by the use of purely kinematic terms. The 
appropriate nominal trajectory to be tracked and the initial conditions are the same 
in each simulation example. The control parameters for the Control Lyapunov 
Function approach were 0.6=Λ  ]s[ 1− , 0.12=K  ]s[ 1− , 310−=ε  

]sm[ 22 −⋅  in (6). In the adaptive deformation the common norm augmented 

vectors was -226 sm10 ⋅=αR , and the “interpolation parameter” was =aλ 1.3 
in Fig. 2 that in this case realized some “nonlinear extrapolation”. The common 
norm of the augmented vectors in the rotational metric was 3105.2 ×=ℜ≡R
[N]. To check the adequacy of the adaptive control in the first step the parameters 
of the approximate model were identical with that of the exact one. 

Table 1 
The exact Model parameters 

Parameter and Measurement Unit Exact Value 

Mass kg][1m  1.0 

Mass kg][2m  2.0 

Spring stiffness  ]mN[ -
1

σ⋅k  100.0 

Spring stiffness  ]mN[ -
2

σ⋅k  150.0 

Zero force length m][01L  2.0 

Zero force length m][02L  2.5 

Non-linearity parameter of the spring  σ  1.5 

Viscous damping friction coefficient  ]msN[ 1-
1 ⋅⋅b  0.1 

Viscous damping friction coefficient  ]msN[ 1-
2 ⋅⋅b  2.0 

Viscous damping friction coefficient  ]sm[ -2⋅g  9.81 
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Figure 5 
Operation of the adaptive controller for the exact dynamic model 1: trajectory tracking, phase trajectory 

tracking, trajectory tracking error, and the 2nd  time- derivatives. 

According to the expectations, Fig. 5 reveals precise trajectory and phase trajectory 
tracking without observable adaptive deformation in the space of the 2nd time-
derivatives of the generalized coordinates. Fig. 6 shows adaptive deformation 
corrections with very little angles that belong to the slow drift of the fixed point of 
the iteration with the variables )(tq , and )(tq . 
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Figure 6 

Operation of the adaptive controller for the exact dynamic model 2: angle of the corrective adaptive 
rotations, Lyapunov function, the control force components, and the novel metric for the control forces 

(the filled in box in the "Metric Angle" graph reveals fluctuation between 0 and a maximal value of 
order of magnitude -1610  that practically corresponds to zero) 

 

 
Figure 7 

The consequences of using the approximate nonlinearity parameter value =Apprσ 3.0 instead of the 
exact value =σ 1.5 1: trajectory tracking error, deformation in the space of the 2nd time-derivatives of 

the generalized coordinates, angle of adaptive rotation, Lyapunov function. 
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Evidently no modification happened with the control forces, and the order of 
magnitude 610− [rad] metric of force deformation practically corresponds to 0 if 
the floating point representation of numbers is considered. Also, the control 
Lyapunov function was kept near zero. Therefore, the simulations passed the test 
based on the use of the exact model. 

 
Figure 8 

The consequences of using the approximate nonlinearity parameter value =Apprσ 3.0 instead of the exact 
value =σ 1.5  2: control forces, and the novel metric for the deformation of the control forces 

Figures 7 and 8 reveal the consequences of the modeling error in the nonlinearity 
parameter of the spring )0.3,5.1( == Apprσσ . The controller produced precise 
trajectory tracking and near zero Lyapunov function with appropriate, but still very 
small corrective adaptive rotations that caused drastic deformation in the q  values. 

By the use of the novel metric the relative significance of the modeling error of this 
parameter can be tracked as the function of time within this control task. Figure 8 
shows that at certain instances this error is quite insignificant while in order  it 
becomes very important. 
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Figure 9 

The consequences of using of the approximate zero force length parameter value =ApprL01
 3.0 [m] instead 

of the exact value =01L  2.0 [m] 1: trajectory tracking error, deformation in the space of the 2nd  time-

derivatives of the generalized coordinates, angle of adaptive rotation, Lyapunov function. 

 
Figure 10 

The consequences of using of the approximate zero force length parameter value =ApprL01
 3.0 [m] 

instead of the exact value =01L  2.0 [m] 2: control forces, and the novel metric for the deformation of 

the control forces. 
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Figure 11 
The consequences of swapping the 1k , 2k  spring stiffness parameters 1: trajectory tracking error, 

deformation in the space of the 2nd time-derivatives of the generalized coordinates, angle of adaptive 
rotation, Lyapunov.function. 

In the next step the significance of the error in the estimation of the zero force length 
spring 1 is considered:  =01L 2.0 [m], =ApprL01 3.0 [m]. Figure 9 reveals ample 
differences in the details of the controller’s operation, however, Fig 10 lucidly 
summarizes the main consequences by the use of the novel metric that describes the 
necessary deformation in the adaptive forces. 

Finally the consequences of swapping the 1k , 2k  spring stiffness parameters are 
considered as “modeling errors in parameter groups” in Figs. 11 and 12. The figures 
testify that the controller worked stably and the proposed rotational metric well 
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comprises the results of the various different effects. 

 
Figure 12 

The consequences of swapping the  1k , 2k  spring stiffness parameters 2:  control forces, and the novel 

metric for the deformation of the control forces. 

Briefly, the here presented simulations corresponded to the case in which the 
significance of the estimation errors of a single parameter or a pair of parameters in 
an analytically exact model form were considered. The adaptive control soon 
eliminated the tracking error components, therefore, this significance can be related 
"purely" to the modeling error and the properties of the nominal trajectory. The 
significance values of the considered parameters were studied in various parts of 
the trajectory (time), and they varied from zero to the maximum of about 0480.0 . 

5.2 Simulations for the Motion of Mass Points Hanging on 
Nonlinear Springs - No precise Analytical Model Form is 
Applied 

In this example, instead of the precise model form given in (24) qualitatively similar 
but different approximate model form was used as given in (25) 

aaaaaaa gmLqkLqkqmQ 12211111 )()( −−−−+=    ,                                  (25) 

aaaaa gmLqkqmQ 222222 )( −−+=  , 

where the parameters  were: =ag 10.0 ]sm[ -2⋅ , =am1 1.5 [kg], =am2 2.6 [kg], 

=ak 150.0 ]mN[ -1⋅ , 011 LL a = , and 02012 LLL a += . In this case, we cannot 
speak about the individual effect of the modeling error of certain parameter. 

To achieve stable controller the control parameters for the Control Lyapunov 
Function approach were =Λ ]s[ -1 , =K 30.0 ]s[ -1 , and =ε 110−  ]sm[ -22 ⋅  
in (6). In adaptive deformation the common norm of the augmented vectors was 

610=aR ]sm[ -22 ⋅ , and the  “interpolation parameter ” was reduced to 2105 −×=aλ  
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in Fig. 2. The common norm of the augmented vectors in the rotational metric was 
5.2=ℜ≡R [N]. 

 
Figure 13 

The consequences of using formally not correct model 1: trajectory tracking and phase trajectory 
tracking 

Figure 14 
The consequences of using formally not correct model 2: trajectory tracking error and q values 
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Figure 15 
The consequences of using formally not correct model 3: angle of adaptive rotation and the Lyapunov 

function 

 

Figure 16 
The consequences of using formally not correct model 4: control force components and the novel 

rotational metric 

Figures 13-16 reveal that both the FPI-based Adaptive Controller and the novel 
rotational metric can work in this case, too. Due to the successful adaptive control 
only the nominal trajectory and the modeling error play important role. Depending 
on the phase of the nominal trajectory the error metric varied between [0.01,0.10] 
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is the same scale. The control designer can modify either the parameters of the 
model of inexact form, or the properties of the nominal trajectory to achieve more 
acceptable results. Due to the adaptivity no knowledge is needed on the exact 
model. If the simulation is replaced with measurements and realized experiment, 
the adaptively produced forces are known and the deformation effort can be 
compared by the use of the novel metric. 

5 Application for Multidimensional Scaling 
The idea of “Multidimensional Scaling” – MDS originally was developed by John 
W. Sammon Jr. in 1969 [15] with the aim of giving lucid visualization of the 
distribution of point clouds in higher dimensional metric spaces. The higher 
dimensional points are represented by 3 or 2 dimensional ones so that the “distances 
between the different points” are maintained in the lower dimension as precisely as 
possible. Also, for practical purposes the neighboring points can be gathered into 
clusters to improve lucidity of visualization. For the “distances” various metrics can 
be applied, and modern software products as, e.g., Julia Language offer useful 
packages for this purpose, e.g., the package “MultivariateStats”, for which the 
appropriate metric can be conveniently chosen from the program package 
“Distances”. 
For visualization purposes the novel metric easily can be added to the Julia's library 
without serious programming effort. Simply it must be added to the set of already 
existing metrics in the library by defining it as a new structure as \verb"struct 
Rotational <: Metric end". Following that the new function \verb"Rotational()" can 
be defined with a function declaration line as \verb"function (dist::Rotational)(p, 
q)". (The internal parts of the so defined function make the calculation of the 
rotational distance in Julia language code between the columns of equal dimension 
\verb"p",  and \verb"q".) For realizing MDS the appropriate metric can be set up as, 
e.g., \verb"metric=Euclidean()" or \verb"metric=Rotational()". 

For application example it is investigated how the original FPI-based adaptive 
controller defined in [10] improves its tracking precision before losing its stability 
as one of its adaptive parameter is slowly increased in time. The dynamical system 
considered was the approximately modeled van der Pol oscillator that was published 
in [16] in 1927 and later became a popular benchmarking paradigm used for 
representing nonlinearly oscillating dynamical systems. Its equation of motion with 
extended 3rd and 5th order terms is given in (26) 

m
qqqqquq

5322 )1( λαωµ −−−−+
=


 ,                                                       (26) 
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where u denotes the control force, µ  denotes the extent of external excitation for 

1<q  and damping for 1>q , ω acts like a spring stiffness, while α  and λ  
belong to further nonlinear contributions in variable q . Parameter m  behaves like 
an inertia. (The physical dimensions are not important for the simulations; one can 
imagine electrical or instead of that classical mechanical units.) The "exact" and 
"approximate" parameter values were set as follows: =µ o.4, =aµ 0.5, =ω
0.46, =aω 0.42, =α 1.0 , =aα 0.9, =λ 0.1, =aλ 0.09, =m 1 In the 

simulations Euler integration was applied with discrete time resolution of =tδ 1 
ms. The kinematic requirement was formulated similarly to the CTC controllers of 
robots with PID-type error feedback as 

)(3)(3)()()( 2
int

3 tetetetqtq NDes  λλλ +++= ,                                           (27) 

with =λ 1.0 ]s[ -1  and a sinusoidal nominal trajectory )(tqN . The adaptive 
deformation was generated by the function 

( ) ( )( ) KttqtqABtqKttq DesDefDef −+−++=+ )()((t)(tanh1)()( δδ  , 
(28) 

with the adaptive parameters 510=K , 1−=B  and the initial value for parameter 
A  was 5

0 10−=A . In each digital control step A  was increased with 
9105 −×=aδ . In the control 4999  steps were considered, and the matrix 

analyzed by the MDS, X , had 13 columns and 4999  rows as follows: 1st column: 
the )(tA , 2nd column: the )(tq , 3rd column: the )(tq , 4th column: the )(tq , 5th 

column: the )(tqN , 6th column: the )(tqN , 7th column: the )(tqN , 8th column: 

the )(tu , 9th column: the )(tqDes , 10th column: the )(tqDef , 11th column: the 

)(int te , 12th column: the )(te , and 13th column: the )(te  values, respectively. 

The common radius of the augmented vectors was 200 . 

Returning to the MDS, the matrix X was normalized as 
\verb"X_norm=X/norm(X)", and the distance matrix was created as 
\verb"D=pairwise(metric, X_norm')". Then, the 2-5 dimensional representations 
were computed into the appropriate variables as \verb"Y2 = classical_mds(D, 2)", 
\verb"Y3 = classical_mds(D, 3)", etc. The trajectory tracking function in Fig. 17 
reveals how the controller becomes unstable after continuously reducing the 
tracking error. 
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Figure 17 

The trajectory tracking and the stress value versus dimensionality function of MDS 

The stress function for dimension 2-5 in Fig. 17 reveals that 3 or even 2 dimensions 
are satisfactory for the visualization of the complex dynamical phenomenon. In Fig. 
18 the 3 dimensional result can be seen from two different aspects. 

 

Figure 18 
The 3D representation of the results from different aspect using the novel rotational metric 

It is evident that this novel metric can be used for the visualization of dynamic 
phenomena. 

Conclusions 

In this paper a special, novel, nonlinear metric referred to as “Rotational Metric” 
was introduced. It was inspired by the particular rotational deformations applied in 
a special version of the FPI-based adaptive dynamic controller. It is assumed that 
the task is driving the generalized coordinate of the controlled system ntq ℜ∈)(

 ovo known nominal trajectory nN tq ℜ∈)(
)( 0tq , )( 0tq  -- in the case of a second order system -- are known, too. For this 

purpose a purely kinematic tracking strategy prescribing how the integrated 
tracking error, this error itself and its time-derivative has to converge to zero is 
available. Also, an approximate dynamic model of the controlled system is 



Acta Polytechnica Hungarica Vol. 22, No. 9, 2025 

‒ 75 ‒ 

available, too. It may be of analytically correct form with approximate parameters 
or an analytically not precise form with some fictive parameters. Either by 
measurements or by simulations the adaptive controller can track the nominal 
trajectory with certain precision. The exerted or simulated control force along the 
realized trajectory ( ) ntqtqtqQ ℜ∈)(),(),(  can be compared with the force need 

of the approximate model ( ) nAppr tqtqtqQ ℜ∈)(),(),(  in the following manner: 
the original vectors are augmented with positive complementary components as  

( )[ ] 1,)(),(),( +ℜ∈ nDtqtqtqQ  , ( )[ ] 1,)(),(),( +ℜ∈ nApprAppr DtqtqtqQ   so 
that they have common Frobenius norm. In this case, these vectors can be rotated 
into each other in 1+ℜn  with an analytically computable angle that is the numerical 
value of this metric. (The common norm is a free parameter in this metric, and the 
orthogonal subspace of these vectors is left invariant.) 

Generally, this metric varies in time as the controlled system's state propagates. 
Beside the modeling inaccuracies it depends on the nature and the parameters of the 
nominal trajectory, that of the kinematic prescription for the damping of the error 
components, the initial state of the controlled system, and the parameters of the 
adaptive controller. If the adaptive controller precisely tracks the nominal trajectory, 
the situation becomes simpler and the force needs can be attributed only to the 
dynamic model and the nominal trajectory. The obtained metric provides the 
designer with information on the significance of the modeling errors in various 
phases of the nominal trajectory. Also, he/she can consider possible modification of 
this trajectory. 

Following the formal proof of the general properties of the suggested rotational 
metric particular applications were demonstrated. The motion of two nonlinearly 
coupled mass points was considered in which the kinematic tracking strategy was 
formulated by the use of the control Lyapunov function technique. Analytically 
correct model form with approximate parameters were considered to quantitatively 
measure the significance of individual parameters and a pair of model parameters. 
Furthermore, the significance of an analytically incorrect form with fictive 
parameters was considered. 

Finally, it was demonstrated how this rotational metric can be added to the Julia 
language's library without considerable programming effort for use in MDS. The 
dynamic process of losing the convergence of a formal version of an FPI-based 
adaptive controller applied on a nonlinear dynamical system was considered by 
visualizing a 13-dimensional problem in a 3-dimensional space. 

Briefly the result of the research can be formulated as follows: since the 
identification of the model parameters of strongly nonlinear system normally is very 
complicated or impossible task, instead of it the significance of the modeling errors 
in the resulted motion of the controlled system can be easily measured and 
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simulated. In this manner the difficult task of precise identification can be easily 
evaded. 
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