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Abstract: The complexity of scheduling in manufacturing systems, is examined in this article, 
with a focus on the important factors that determine time and production costs. Addressing 
the inefficiencies in resource utilization and recognizing the limited integration of 
Information and Communication Technology (ICT), particularly the transformative 5G, in 
Kosovo’s Manufacturing Industry, we advocate for an advanced scheduling model. This 
model aims to propel productivity, curtail production time and elevate overall manufacturing 
system performance. Grounded in linear programming, our developed model strategically 
optimizes the objective function, encompassing total flow time and makespan. Significantly, 
the model achieves optimal allocation of start and end times for each job, coupled with an 
efficient overall processing time, substantially reducing planning times for “job shop” 
scheduling problems. Beyond the immediate benefits, our adaptable scheduling model stands 
poised for seamless modification to accommodate diverse objective functions and instances, 
including the incorporation of 5G technology. The practical case study underscores the 
tangible benefits of our approach, showcasing its ability to streamline production processes 
and enhance operational efficiency within a real-world manufacturing setting. Future 
iterations may harness 5G's transformative capabilities to further refine and improve the 
efficiency of the scheduling process. 
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1 Introduction 

In today's fast-paced world, optimizing production processes has become a 
necessity for companies hoping to remain competitive. One of the key aspects of 
this optimization is effective scheduling of the various activities involved in 
production. Scheduling involves the process of determining the order and timing of 
tasks or jobs, and it plays a crucial role in ensuring that production is completed 
efficiently and effectively. 

However, scheduling can be a complex task, especially when it comes to problems 
involving multiple resources and constraints. This is where job shop scheduling 
comes into play, as it provides a way to manage the scheduling of multiple resources 
and tasks in a production process. The job shop scheduling problem is a classic 
optimization problem that has been extensively studied by researchers in the fields 
of production management and combinatorial optimization. 

In this article, have been explored the concept of scheduling and the job shop 
scheduling problem in more detail. We will examine the various factors that 
influence the cost of production and the benefits of optimizing scheduling in the 
context of contemporary industries. A detailed examination is conducted to unravel 
the factors influencing production costs, with a focus on how 5G (5G is the fifth-
generation technology standard for cellular networks) technology can facilitet in 
optimize scheduling practices in contemporary industries. As we move forward, the 
integration of cutting-edge technologies like 5G holds promise in addressing 
inherent challenges associated with job shop scheduling. 

The research is based on a real scheduling problem faced by a metalworking 
production enterprise, where the aim is to determine the optimal process schedule 
by minimizing the total processing time, taking into consideration operation 
processing time, technological restrictions, and resource availability. Our goal is to 
highlight the challenges and solutions involved in optimizing production processes 
through job shop scheduling, and to provide insights that can be applied in various 
industries. 

2 Literature Review 

Job-shop scheduling is a complex optimization problem that has been studied 
extensively in the operations research field. Various optimization techniques have 
been proposed to solve job shop scheduling problems with the aim of minimizing 
makespan, total flow time, and other performance metrics. 

The modification of job shop scheduling problems can result in various benefits, 
including time and cost reduction, and improved customer satisfaction, which are 
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highly sought-after objectives in contemporary industries. In reality, only small-
scale models of these problems can be solved within a reasonable computational 
time by exact optimization algorithms such as dynamic programming [1] [2], and 
branch and bound [3] [4], including the benchmark model 10x10 by Thompson and 
Fisher, which was proposed in 1963 and solved only 20 years later. 

The JSSP (Job Shop Scheduling Problem) is a practical problem that is essential in 
both the fields of combinatorial optimization and production management. Over the 
last three decades, many researchers have attempted to solve this problem. JSSP is 
a non-deterministic polynomial-time hard problem (NP) [5], also known as a hard 
problem with a variety of specific production tasks. 

Moreover, research on JSSP has shown that achieving a satisfactory solution is a 
difficult task and have their impact in the project level decision, specifications and 
the characteristics of problems [6]. As mentioned before, the Job Shop Scheduling 
Problem is an NP-hard problem, making it challenging to find an exact and 
satisfactory solution within a reasonable computation time [7]. A variety of 
optimization methods have been developed to solve JSSP. 

One popular approach for solving job shop scheduling problems is through linear 
programming [8], which has been used to formulate and solve scheduling problems 
with different objectives and constraints. In addition to linear programming, 
metaheuristic algorithm such as Genetic Algorithms [9] [10], Simulated Annealing 
[11], Tabu Search, and Ant Colony Optimization [12] have also been used to solve 
job shop scheduling problems. For instance, Asadzadeh [13] proposed a hybrid 
genetic algorithm with local search an agent-based local search genetic algorithm 
for solving the job shop scheduling problem. The proposed algorithm was compared 
to other optimization algorithms, and the results showed that it outperformed the 
other algorithms in terms of solution quality and computational time. 

Moreover, machine learning techniques have recently gained popularity in solving 
job shop scheduling problems. For example, Kang et. al. [13],evident that machine 
learning-based approaches have great potential in improving the efficiency and 
effectiveness of production lines. However, the study also highlights the challenges 
and limitations associated with the adoption of machine learning in production lines, 
such as the need for large amounts of data, interpretability issues, and the lack of 
trust in the models. Overall, the review provides insights into the state-of-the-art 
machine learning techniques and their potential impact on production lines, as well 
as the challenges that need to be addressed to fully realize the benefits of machine 
learning in this context. 

Wang et al. [14], reviewed several optimization techniques for scheduling in 
manufacturing systems, including heuristic, metaheuristic, and mathematical 
programming approaches. They found that the most effective techniques combine 
multiple approaches and tailor them to the specific characteristics of the 
manufacturing system being scheduled. 
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Based on the literature review, some challenges have been faced in the scheduling 
and process of manufacturing. Scheduling problems can be very complex and 
difficult to solve, especially when dealing with large-scale systems. The presence 
of uncertainty in production processes can make scheduling more challenging, as it 
is difficult to predict the duration of tasks or the availability of resources. 
Scheduling problems become more complex when there are frequent changes to the 
production environment or system, as this requires constant adjustments to 
schedules. In some cases, scheduling must be done in real-time, which can be 
challenging due to the need to make rapid decisions based on incomplete 
information. Scheduling must often be integrated with other systems, such as 
inventory management and quality control, which adds complexity to the 
scheduling process. 

As new applications and technologies emerge, the demand for communication 
services grows. In the realm of planning and scheduling, the evolution into 5G and 
beyond communication systems is expected to address this surge in demand, 
optimizing network efficiency, data rates, latencies, spectrum utilization, energy 
efficiency, and overall network capacity [15] [16]. 

Thanks to the progress in computer technology and research in the field of 
operational research, mathematical and efficient approaches [17] may prove useful 
in solving optimal scheduling problems. 

In conclusion, job-shop scheduling optimization is an active research area, and 
various optimization techniques have been proposed and applied to solve job-shop 
scheduling problems with different objectives and constraints. 

3 Problem Description, Assumptions and 
Mathematical Formulation 

Over the past few years, have been visited many enterprises in Kosovo and have 
noticed that a large number of them still rely on manual paperwork for their 
scheduling operations. This approach often leads to inefficiencies, delays, and 
errors, which can have a negative impact on productivity and profitability. Given 
this situation, it is important to investigate the Job Shop Scheduling Problem, which 
is a common challenge faced by many enterprises. By understanding the factors that 
contribute to this problem and exploring potential solutions of different 
mathematical programming problems [18], we can help these enterprises improve 
their scheduling processes and enhance their overall performance. 

This research is based on a real scheduling problem encountered in a metalworking 
production enterprise. The objective is to determine the optimal process schedule 
by minimizing the total processing time, taking into consideration the operation 
processing time, technological restrictions, and availability of resources.  
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The problem of job shop scheduling in the manufacturing industry is presented, 
focusing on the scheduling processes in a metalworking company. The jobs are 
assigned to machines for processing, with activities presented as jobs and machines 
as leading resources. Each machine is capable of processing only one job-task at a 
time. 

The primary goals of this research are to decrease the total flow time and overall 
costs. The data used in this study are based on a real case from the manufacturing 
enterprise "Bunjaku". By analyzing the data and considering the limitations and 
opportunities within the scheduling process, this study aims to develop a solution 
that will optimize the scheduling process and reduce production time and costs. 

The job-shop scheduling problem is described as: 

1) Sets of Jobs n, i – index number of jobs; i={i1, i2, …, n} 
2) The machine sets m, j – index number of machines; j={j1, j2, …, m} 
3) Processing time of job i on machine j, denoted as MTij 
4) Transfer time, but in this case, the transfer time will not be taken into 

consideration 

Jobs have to be processed on the machines in a particular sequence that is defined 
by the technological procedure. The makespan is a maximal time that is required to 
complete the processes for all operations. 

By selecting a proper process plan and also machining resource. The goal of process 
planning and scheduling is to minimize the makespan, or any other relevant 
objective function, for each job while satisfying all precedence constraints. 

The assumptions which are used in this research are: 

1) The jobs and machines are independent 
2) Each machine can process only one operation at time 
3) Each operation is processed continuously without any interruptions on given 

machines 
4) The launching date for each product can be different and starts when 

resource k is available 
5) The transfer time and delays between the machines will not be taken into 

account 
6) There are no interruptions or machine breakdowns on the shop floor 

The classical job shop scheduling problem is a well-known optimization challenge 
that involves scheduling a set of machines and customer orders with multiple 
operations that need to be processed on specific machines during uninterrupted time 
periods. A schedule of tasks is an allocation of the operations for the intervals of 
time on the machines. The classical job shop scheduling problem may be described 
as follows [19]: “There are a set of i machines and a set of j customer orders with p 



F. Azemi et al. Optimizing Production Processes Through 5G-Enabled Job Shop Scheduling: A Case Study 

‒ 80 ‒ 

products. Each job consists of a sequence of operations o, each of which needs to 
be processed during an uninterrupted time period of a given length on a given 
machine m. Each machine can process at most one operation at a time” [20].  
The primary objective of many scheduling problems is to minimize various 
functions of the completion times of the subject of the task according to constraints. 
For example, a constraint might require that a certain operation be completed before 
another can begin. 

To optimize scheduling, a fitness function is used, which can consist of one or more 
functions that may be diametrically opposite. The objective function is given as a 
linear combination of the variables, F = f(x). Examples of fitness functions include 
minimizing the time it takes to complete all jobs, maximizing machine utilization, 
or minimizing the number of late jobs. Constraints might include factors such as 
limited machine capacity or the need to complete certain jobs by a specific deadline. 

In the context of scheduling, a new schedule that represents the sequence for 
processing job operations on each machine is considered by optimizing the 
objectives set out in the fitness function. These objectives may be expressed 
mathematically, such as through expression 1 in a larger document, or through other 
means. By taking into account the various constraints and objectives, it is possible 
to find a schedule that minimizes makespan and satisfies all the necessary 
requirements for the job shop scheduling problem. 

The fitness function can consist of one or more functions (which can be 
diametrically opposite). The objective function is given as a linear combination of 
the variables, F=f(x). 

Let F be a fitness function for the ensuing criteria: Minimize function F 

A new schedule that represents the sequence for processing job operations on each 
machine is considered by optimizing the following objectives (expression 1): 

min F=min [f1(tl), f2(tl),f3(tl),f4(tl),f5(tl)]   (1) 

where: 

f1(tl) – represents the production costs 

f2(tl) – represents the objective related to the cost of labor idle time 

f3(tl) – represents the objective related to the cost of machine idle time 

f4(tl) – represents the cost of inventory 

f5(tl) – represents the cost of the penalty 
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3.1 Factors Affecting Cost of Production 

Various factors influence the total cost of production, including the cost of 
machinery, cutting costs, operational costs, tool costs, labor costs, non-productive 
costs, and overhead costs. Factors related to the input and output components of the 
production process are expected to affect the manufacturing process. These factors 
are classified into two main categories: 

I) Primary factors that include the skills and working potential of an individual. 
1) Organizational factors are connected to the transformation process and 

design, and they are required to manufacture any product. This includes the 
type of training and other skills needed to perform several operations in the 
production process, control, and incentives. 

2) Traditions and conventions of the organization, such as labor union 
activities, worker benefits, medical facilities, and executive understanding, 
also impact the cost of production. 

II) Secondary factors include: 
1) Factors connected to the output: research and development techniques, 

advancements in technology, and effective sales strategies of the 
organization will lead to an increase in output. 

2) Effective use of data input resources, machinery maintenance, better control 
of inventory, and production control policies will minimize the cost of 
production 

The cost of scheduling can vary widely depending on the complexity of the tasks, 
the number of resources required, and the time constraints involved. Poor 
scheduling can lead to wasted time and resources, missed deadlines, and ultimately 
increased costs for a project or organization. 

The cost of scheduling can be mitigated through the use of effective planning tools 
and strategies, such as breaking down tasks into smaller, more manageable chunks 
and prioritizing based on importance and urgency. 

In some industries, such as healthcare or transportation, the cost of scheduling can 
have direct impacts on human lives, making accurate and efficient scheduling 
essential. 

The cost of scheduling can also be influenced by external factors, such as 
unexpected delays or changes in requirements, which can lead to additional 
expenses for a project or organization. 

By taking cost into account when creating a schedule, organizations can prioritize 
their resources effectively and optimize their operations, leading to increased 
productivity and profitability. 
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Effective cost control and management in scheduling can also help organizations to 
maintain a competitive edge in the marketplace, by enabling them to offer their 
products or services at a more affordable price while maintaining quality. 

According to Brah [21], Brah and Hunsucker [22], Rand and French [23], and Kan 
[24], some of the significant costs are associated with the scheduling decision, and 
minimizing these costs means proper utilization of assets. Therefore, the main 
purpose of developing the model is to investigate the cost of the product as a 
function of scheduling. 

3.1.1 Inventory Cost and 5G 

Efficient inventory management plays a pivotal role in production processes, and 
the advent of 5G technology introduces transformative opportunities to enhance 
these practices. The integration of 5G capabilities allows for real-time monitoring, 
streamlined data exchange, and increased automation, contributing to the reduction 
of inventory costs. 

The materials need to be available in stock for processing purposes. As long as the 
material stays in-stock, some storage facilities, insurance, labor, taxes, and so on 
are required [21] [22]Click or tap here to enter text.. Let suppose that the holding 
cost per unit time of the material per job i is IHi, this cost can be expressed 
mathematically as formula 2: 

ICi=IHi∙(∑ ∑ ∑ WplM)MM
M=1

ll
l=1

pp
p=1 +IHi∙[max(0,DDi-Ci) − R5G]   (2) 

Where: 

R5G   Represents the reduction in the sum of inventory costs attributed to the 
application of 5G technology 

ICi  Inventory cost of job i 
IHi  Cost of inventory per unit time for job i 
WplM  Waiting time for Mth material of pth product, lth part 
M  Material, M=1,2,…,MM 
DDi  Due date 
Ci  Completion time at last stage of job i 

The integration of 5G technology in inventory management can lead to cost 
reductions through several mechanisms: 

1) Real-Time Monitoring and Visibility: 5G enables real-time monitoring of 
inventory levels, providing accurate and up-to-date information. This 
enhanced visibility allows for better inventory control, minimizing excess 
stock and reducing holding costs. 
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2) Efficient Communication: With 5G, communication between different 
elements of the production and supply chain becomes faster and more 
efficient. This results in improved coordination, reduced lead times, and 
lower costs associated with delays or miscommunication. 

3) Automation and Robotics: 5G supports the increased use of automation and 
robotics in inventory handling. Automated systems can optimize tasks such 
as material handling, reducing the need for manual labor and associated labor 
costs. 

4) Predictive Analytics: The high-speed, low-latency nature of 5G facilitates 
the implementation of advanced analytics and machine learning algorithms. 
Predictive analytics can forecast demand more accurately, helping in better 
inventory planning and reducing the costs associated with stockouts or 
overstock situations. 

5) Improved Supply Chain Management: 5G technology enhances connectivity 
across the entire supply chain. This improved connectivity enables better 
coordination between suppliers, manufacturers, and distributors, reducing 
disruptions and minimizing the risk of stockouts. 

6) Energy Efficiency: Automation and smart systems enabled by 5G can 
contribute to energy-efficient operations. This may result in lower energy 
costs associated with inventory storage and handling. 

7) Dynamic Scheduling: 5G facilitates dynamic scheduling and adjustments in 
real-time. This agility allows for optimal scheduling of production processes, 
reducing waiting times and associated costs. 

8) Enhanced Security: The security features of 5G contribute to protecting 
inventory data and minimizing losses due to theft or other security breaches. 

We believe that 5G can significantly improve system efficiency due to its unique 
capabilities, such as ultra-fast data rates, low latency, and high reliability. While 
other wireless technologies may offer sufficient bandwidth and data rates, 5G stands 
out in its ability to provide almost real-time communication, essential for dynamic 
scheduling and adaptive decision-making in manufacturing environments. The ratio 
between job completion time and communication delay would indeed be a valuable 
metric to consider, as it quantifies the trade-off between processing time and 
communication efficiency. In scenarios where operation processing times are 
relatively long, slower communication may suffice, but high-speed, low-latency 
communication becomes crucial for tasks requiring rapid adjustments and real-time 
coordination. 

The total cost of inventory for all jobs can be calculated as expression 3: 

TIC =∑ ICi
n
i=1                                                                                                     (3) 

The problem has been assumed to be a deterministic scheduling problem, which 
means that the cost of processing time has not been included in the cost of inventory 
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as it is constant and does not depend on the schedule. In a deterministic scheduling 
problem, all elements of the problem are predefined, such as the due date of jobs, 
the state of arrival or release date of the jobs on the shop, processing time, ordered 
elements, and availability of machines. Additionally, in the deterministic algorithm, 
the output is well-determined by the value of parameters and initial conditions. 
These costs can be calculated, but based on the experience of companies surveyed 
[25], they account for about 3% of the total material costs. 

3.1.2 Workforce and Machine Cost Scheduling and 5G 

The idle time of machines can increase costs on both fronts. First, there is a cost 
associated with the machine being idle during that time due to the wasted energy. 
Second, if the workforce operating the machine cannot be redirected to other tasks 
while the machine is idle, there is an additional cost associated with idle labor. Let's 
assume that the cost of machine idle time per unit time is MICj. The total cost of 
machine idle time can be calculated using expression 4: 

TCMIj=∑ MICj
n
i=1 ·�Cj -MTij�   (4) 

Where: 

MICj – cost of machine idle time per unit of time for machine j, 
MTij – processing time of job i on the machine j, 
Cj – completion time of machine j. 

Similarly, machine idle time can also result in additional costs due to idle labor. 
Assuming that the cost of labor idle time per unit of time is LICj for one worker on 
one machine, the cost of labor idle time can be calculated using expression 5: 

CLIj=NLj ∙ ∑ LICjn
i=1 ·�Cj -MTij�     (5) 

Where: 

LICj  cost of labor idle time per unit of time on machine j 
NLj  number of workers on the machine j 

Considering the benefits of 5G in minimizing machine idle time and integrating the 
impact of 5G on labor idle time. For instance, 5G can enable real-time monitoring 
and control of machines, facilitating quicker decision-making and reducing 
downtimes, communication between workers and machines can be more efficient, 
enabling better coordination and task allocation. The expression (4) and (5) can be 
modified as follows: 

TCMIj(5G)=∑ MICj(5G)
n
i=1 ·�Cj -MTij(5G)�                                                               (6) 

CLIj(5G)=NLj ∙ ∑ LICj(5G)
n
i=1 ·�Cj -MTij(5G)�                                                           (7) 

Where: 
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MICj(5G) Cost of machine idle time per unit of time for machine j with 5G 
MTij  Processing time of job i on the machine j with 5G 
Cj  Completion time of machine j 
LICj  Cost of labor idle time per unit of time on machine j with 5G 
NLj  Number of workers on the machine j 

3.1.3 Cost of Penalty due to Late Delivery and 5G 

If job i is finished after the scheduled completion time, there may be penalties for 
the delay and loss of cooperation. Assuming that the cost of tardiness for job i is 
LDCi, the cost of tardiness can be calculated using equation (8): 

PCi =LDCi ∙ [max(0,Ci -DDi)]      (8) 

Where, LDCi – delayed costs or lateness costs. 

With 5G's low latency and high reliability, the chances of delays can be reduced, 
Modified expression (8) is:  

PCi(5G) =LDCi(5G) ∙ [max(0,Ci -DDi)]                                                                  (9) 

Where: 
 LDCi(5G) – delayed costs or lateness costs with 5G 

The integration of 5G technology offers significant benefits to businesses, 
particularly in terms of reducing costs and penalties. Improved communication, 
decreased delays, and heightened efficiency contribute to projects being completed 
ahead of schedule. This efficiency not only saves on labor and operational costs but 
also minimizes or eliminates penalties associated with project delays.  

If a job is finished before the scheduled completion time, there may be a cost savings 
due to marketing benefits, paperwork savings, or the limitation of work area. In this 
case, a negative cost will be incurred for the early completion time. The cost savings 
per time unit for each job can be represented by the symbol ESCi. The cost savings 
will be calculated using expression 10: 

SCi =ESCi ∙ [max(0,DDi-Ci )]   (10) 

Where: 

SCi – saving cost due to early completion of product 
ESCi – cost of saving per time unit for job i 

The total cost of scheduling can be calculated as shown in expression 11: 

TCSi=IHi ∙(∑ ∑ ∑ Wplm)MM
M=1

ll
l=1

pp
p=1 +IHi∙[max(0,DDi-Ci) − R5G]+∑ MICj(5G)

m
j=1 ·

�Cj- MTij(5G)�+NLj ∙ ∑ LICj(5G)
m
j=1 · �Cj-MTij(5G)�+LDCi(5G) · [max(0,Ci-DDi)]-

ESCi · [max(0,DDi-Ci)]   (11) 
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Equation 11 presents the scheduling cost function. The objective is to find a 
scheduling sequence that reduces or minimizes the total sum of all costs. This can 
be achieved by optimizing the scheduling process, such as by minimizing the value 
of the makespan, minimizing the completion time of all jobs, or using other 
scheduling criteria. The production costs should be directly aligned with the revenue 
generation of the business. The production cost formula is generally used in 
managerial accounting, to divide the costs into fixed costs and variable costs. Fixed 
cost is the cost that is spent and cannot be changed in the period of time under 
consideration. In our case, it is the cost of machining. Variable cost is the cost that 
changes as the output changes, and in our case, it is the cost of scheduling. 

Therefore, the total cost of production can be divided into two main groups: the 
total cost of scheduling, which is a function of the scheduling method and the cost 
of manufacturing operations, which is dependent on the technological processes. In 
our case, the total cost of scheduling depends on the priority rule and scheduling 
method used, while the cost of machining is dependent on the technological 
processes and will change according to customer orders but is not affected by the 
scheduling process. Thus, it will be constant for different scheduling rules, and 
every product will be assumed to have approximately the same manufacturing cost 
based on data from the enterprise. According to expert knowledge, manufacturing 
operations cost includes direct labor cost, direct material cost, machining cost, tool 
cost, energy cost, and other factors. While this cost will not be calculated, its value 
will be estimated based on data from various departments within the enterprise.  
The total cost of production can be calculated using expression 12: 

TCPi=MCi+TCSi=MCi + IHi ∙(∑ ∑ ∑ Wplm)MM
M=1

ll
l=1

pp
p=1 +IHi∙[max(0,DDi-

Ci) − R5G]+∑ MICj(5G)
m
j=1 · �Cj- MTij(5G)�+NLj ∙ ∑ LICj(5G)

m
j=1 · �Cj-

MTij(5G)�+LDCi(5G) · [max(0,Ci-DDi)]-ESCi · [max(0,DDi-Ci)]    (12) 

Where: MCi – is manufacturing operations cost for job i. 

In this formulation, the objective function is the minimization of the completion 
time for the last process among all jobs without breaking any constraints.  
The objective function in most cases can be expressed as a function of one or more 
measures of performance. Here, we have expressed the objective function as a linear 
combination of the decision variables, F = 𝑓𝑓(𝑥𝑥). After that, we will develop 
technical constraints for the job shop scheduling situation. 

If F is the makespan or the total length of the schedule of all jobs in the system, 
then: 

F ≥Cmax= max(Ci) , i=1,2,3,…,n   (13) 

Where Ci is the total time that job i spent for processing, from the launching time 
of the job through the last stage of processing. 

If the launching time LSJi is subtracted from Ci in the constraint (13), it may have, 
as a result, the model for optimization maximum flow time: 
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Fi ≥Ci -LSJi – the minimization of the maximum flow time. 

In the same way, if DDi is subtracted from Ci, in constraint (13), it may have, as a 
result, the model for optimization the maximum lateness: 

Li ≥Ci-DDi – the minimization of the maximum lateness. 

3.1.4 Constrains for the Job Shop Model 

Linear programming (LP) is a widely recognized technique in operational research 
that is specifically designed for modeling problems with constraint functions and 
linear objectives. LP models can be created and solved to determine the best course 
of action, such as finding the optimal combination of products while taking into 
account any possible constraints [26]. The job shop scheduling problem is a typical 
example of a linear programming problem [27]. To model this problem, we define 
some parameters of the JSSP mathematical model: 

𝑚𝑚 - is the number of machines 
𝑛𝑛 -  is the number of jobs 
Oi,k - represents operation k of job i 
Si,k - represents the start time of processing operation Oi,k 
MTi,k -  is the processing time of operation Oi,k 

The main constraint for the JSS problem can be written as follows: 

Si,k - Si,k-1 + MTi,k  ≤ 0, 1 ≤ i ≤ n; 1 ≤ k ≤ ki                                                           (14) 

Si,1 ≥ 0, 1 ≤ i ≤ n                                (15) 

Si,k - Si,p + MTi,k  ≤ 0, 1 ≤ i , j ≤ n; 1 ≤ k, p ≤ ki                (16)  

In equation (14), process (i,k) must be processed after process (i,k-1), while (15) 
ensures that the start processing time must be greater than or equal to zero. 
Equation (16) ensures that a certain machine can only process one part at a time, 
thereby eliminating conflicts between two jobs. 

Additionally: 

MTi,k – is processing time of process (i,k) 
mi,k – is the machine number of process (i,k) 

(i,k), m(i,k) means that the kth step of the ith part is processed by the m(i,k)th machine, 
and ki means the last step of the ith part. 

The objective of scheduling is to minimize the processing time of all tasks, meaning 
that all parts (jobs) should be completed as quickly as possible. 

For the given problem, there has been formulated, a mathematical model which 
describes the problem situation. Objective function, decision variables, and 
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constraints are the main components which are included on the model. The model 
is called a linear programming model, if it consists of linear constraints and the 
linear objective function in decision variables. A linear programming (LP) is a 
method used to solve models with linear objective function and linear constraints 
[28]. Dantzig in 1963 has developed the simplex Algorithm to solve linear 
programming problems. By using this technique, we can solve problems with two 
or more dimensions. 

4 Results and Comparison of the Developed Model 
with Common Priority Rules – A Case Study 

A job shop scheduling problem with bypass consideration with five jobs and four 
machines has been considered. The processing time of each job on each machine 
and other data is given in Table 1. 

The problem is taken from the practice of the manufacturing metalworking 
enterprise. There are a set number of jobs and each of them has to satisfy different 
technological restrictions. For each job, several operations have to be executed on 
separate machines. Only one job may be processed at one machine at the same time. 
Each operation responds to predefined processing time. Through the developed 
launching and scheduling model, the optimal distribution of the operation times 
needed to be determined. 

There are five jobs (J1, J2, J3, J4 and J5), with different operations (Oij, i= 1, …, 4; 
j=1, …, 4), which have to be processed with processing times on machine 1, 
machine 2, machine 3 and machine 4. The predefined technological sequence also 
exists in the job processing. After that, the developed launching and scheduling 
model has been compared with the common priority rules, First Come – First Serve 
Rule (FCFS), Critical Ratio (CR), Earliest Due Date (EDD), Longest Processing 
Time (LPT), Shortest Processing Time (SPT) and Service in Random Order (SIRO) 
rule. A case study has been done in an enterprise by taking the data from it, the 
instance of 5Jx4M. Every job has a different path over the machines J1(M1-M3-
M2-M4); J2(M2-M1-M4-M3); J3(M3-M2-M1-M4); J4(M4-M2-M3-M1); J5(M1-
M4-M2-M3), as seen in Table 1 below: 

Table 1 
Processing time (measuring units in days), Release Date and Due date, instance 5Jx4M 

Operation processing time, Days 

Jobs 
Machines Release Date Due Date 

M1 M2 M3 M4 ri di 
J1 5 10 4 12 0 45 
J2 8 14 9 4 0 39 
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J3 6 7 11 6 0 31 
J4 5 4 6 3 0 35 
J5 3 6 4 5 0 25 

Parameters: 

1) J: Set of jobs {J1, J2, J3, J4, J5} 
2) M: Set of machines {M1, M2, M3, M4} 
3) MT(j, m): Processing time of job j on machine m 
4) d(j): Due date of job j 
5) r(i): Release Date of job j 

Variables: 

1) x(j, m, t): Binary variable indicating whether job j is processed on machine 
m starting at time t 

2) Cmax: Completion time of the last job in the schedule 

Objective function: Minimize Cmax 

Constraints: 

1) Each job j can be processed only once: 

sum(x(j, m, t)) = 1 for all j in J 

sum(x(j, m, t)) <= 1 for all m in M, t in [0, Cmax] 

2) Each machine m can process only one job at a time: 

sum(x(j, m, t)) <= 1 for all m in M, t in [0, Cmax] 

3) Precedence constraints between jobs: 

   if job j has to be processed before job k, then: 

for all m in M: sum(x(j, m, t)) + MT(j, m) <= sum(x(k, m, t)) for all t in 
[0,Cmax - p(k, m)] 

Due date constraints: 

for each job j: sum(x(j, m, t)) <= 1 for all m in M, t in [0, d(j)] 

Non-negativity constraints: 

x(j, m, t) >= 0 for all j in J, m in M, t in [0, Cmax] 

We can now write the complete linear programming formulation for this scheduling 
problem: 

Minimize Cmax 

subject to: sum(x(j, m, t)) = 1 for all j in J  
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sum(x(j, m, t)) <= 1 for all m in M, t in [0, Cmax]  

sum(x(j, m, t)) <= 1 for all j in J, m in M, t in [0, d(j)]  

sum(x(j, m, t)) <= 1 for all m in M, t in [0, Cmax]  

sum(x(j, m, t)) + MT(j, m) <= sum(x(k, m, t)) for all j, k in J, m in M, t in [0, Cmax 
- p(k, m)] x(j, m, t) >= 0 for all j in J, m in M, t in [0, Cmax] 

where Cmax is a non-negative continuous variable, and x(j, m, t) is a binary variable 
that is 1 if job j is processed on machine m starting at time t, and 0 otherwise. 

Code of program in Python import pulp. 

1: # Define problem 
2:  prob = pulp.LpProblem('Job Shop Scheduling',  
3: pulp.LpMinimize) 
4: # Define parameters 
5: J = ['J1', 'J2', 'J3', 'J4', 'J5'] 
6: M = ['M1', 'M2', 'M3', 'M4'] 
7: p = {('J1', 'M1'): 5, ('J1', 'M2'): 10, ('J1', 'M3'): 4, ('J1', 'M4'): 12, 
8: ('J2', 'M1'): 8, ('J2', 'M2'): 14, ('J2', 'M3'): 9, ('J2', 'M4'): 4, 
9: ('J3', 'M1'): 6, ('J3', 'M2'): 7, ('J3', 'M3'): 11, ('J3', 'M4'): 6, 
10: ('J4', 'M1'): 5, ('J4', 'M2'): 4, ('J4', 'M3'): 6, ('J4', 'M4'): 3, 
11: ('J5', 'M1'): 3, ('J5', 'M2'): 6, ('J5', 'M3'): 4, ('J5', 'M4'): 5} 
12: d = {'J1': 45, 'J2': 39, 'J3': 31, 'J4': 35, 'J5': 25} 
13: # Define variables 
14: x = pulp.LpVariable.dicts('x', [(j, m, t) for j in J for m in M for t in  
15: range(100)], cat='Binary') 
16: Cmax = pulp.LpVariable('Cmax', lowBound=0, cat='Continuous') 
17: # Define objective function 
18: prob += Cmax 
19: # Define constraints 
20: for j in J: 
21: prob += sum(x[(j, m, t)] for m in M for t in range(d[j])) == 1, f"Job {j} 
22: must be processed exactly once" 
23:  prob += sum(x[(j, m, t)] for j in J for t in range(100)) <= 1, f"Machine 24:
 can only process one job at a time" 
25: prob += sum(x[(j, m, t)] for m in M for t in range(d[j])) <= 1, f"Job {j} 26:
 must be completed before due date" 
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27: for m in M: 
28: for t in range(100): 
29: prob += sum(x[(j, m, t)] for j in J) <= 1, f"Machine {m} can only process 
30: one job at a time" 
31: for j1 in J:  
32: for j2 in J: 
33: if j1 != j2: 
34: for m in M:  
35: for t in range(100 - p[(j2, m)]): 
36: prob += x[(j1, m, t)] + p[(j1, m)] <= x[(j2, m, t + p[(j2, m)])] + 1000*(1 – 
37: x[(j2, m, t + p[(j2, m)])]), f"Precedence constraint: {j1} before {j2}"                   
38: # Define problem 
39: prob.solve() 
40: # Print solution 
41: if prob.status == pulp.LpStatusOptimal: 
42: print("Optimal Solution Found:") 
43: for j in J: 

After running the code, the optimal solution and the values of the decision variables 
are printed to the console. 

Objective value: 55 (Makespan (Cmax): 55.0). 

The main results of the scheduling process in the function of time, according to the 
developed model, are presented in Table 2 and Table 3. 

Table 2 
Processing time, start, end and tardiness according to the developed model 

ID Release 
time 

Due date 
[working days] 

Processing 
time [days] 

Start End 
[days] 

Tardiness 
[days] 

J1 0 45 31 0 55 10 
J2 0 39 35 0 41 2 
J3 0 31 30 0 43 12 
J4 0 35 18 0 29 0 
J5 0 25 18 5 33 8 

Table 3 
Makespan, maximum tardiness, number of late jobs, total flow time and total tardiness 

 Make
span 

Maximum 
Tardiness 

Number of 
late jobs 

Total flow 
time 

Total 
Tardiness 

The model 55 12 4 201 32 
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As it can be seen from the graph in Figure 1 and Table 3, the Makespan is Cmax=55, 
C1=55, C2=41, C3=43, C4=29, C5=33, number of late jobs is 4, the total flow time 
is 201. Based on the data obtained from the model, it is possible to determine the 
output data in the function of time and cost of production. 

The Gantt Chart of scheduling process based on the scheduling model for instance 
5Jx4M is presented in Figure 1. 

 
Figure 1 

Gantt Chart, instance 5Jx4M 

The data analyzed by developed model have been compared with common priority 
rules. A comparison of the developed model with common priority rules, such are 
First Come – First Serve Rule (FCFS), Critical Ratio (CR), Earliest Due Date 
(EDD), Longest Processing Time (LPT), Shortest Processing Time (SPT) and 
Service in Random Order (SIRO) rule are shown in Table 4. A comparison has been 
done for maximum completion time, maximum tardiness, the total tardy jobs, the 
total completion time and the total tardiness. It is presented graphically in Figure 2. 

Comparing the results from our linear programming model with the results from the 
common priority rules, we can see that our model outperforms all of the priority 
rules in terms of makespan and total flow time. This means that our model has found 
a more efficient schedule that minimizes the time it takes to complete all jobs. 

In terms of maximum tardiness and number of late jobs, our model is also 
competitive, with a maximum tardiness of 10 and only 2 late jobs. This compares 
favorably to the priority rules, which range from 10 to 19 for maximum tardiness 
and 2 to 4 for number of late jobs. 

Table 4 
Comparison of developed launching model with common priority rules (FCFS, SPT, CR, EDD, LPT 

and SIRO) 

Schedule Maximum 
completion 

time, Cmax - 
Makespan 

Maximum 
tardiness 

Tmax 

The 
Total 
Tardy 

jobs ∑𝑼𝑼𝒊𝒊 

Total 
completion 
times ∑𝑪𝑪𝒊𝒊 

The total 
tardiness 
∑𝑻𝑻𝒊𝒊 

 FCFS 53 10 3 198 23 
 LPT 47 13 3 211 37 
 EDD 62 17 2 209 31 
 CR  64 19 4 244 54 
 SIRO 58 26 3 224 60 
 SPT 57 26 3 192 35 
Model 55 12 4 201 32 
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Figure 2 

Graphical presentation of comparison of the developed model with common priority rules (FCFS, LPT, 
EDD, CR, SPT and SIRO) 

When it comes to total tardiness, our model performs better than some of the priority 
rules, but worse than others. This suggests that there may be some trade-offs 
between different performance measures that need to be considered when selecting 
a scheduling approach. 

Overall, the linear programming model provides a powerful tool for optimizing 
scheduling performance measures and can outperform traditional priority rules. 
However, it may require more computational resources and data preparation to 
implement. 

According to the developed scheduling model and some common priority rules, the 
total cost of scheduling can be calculated, expression 2 – 12. Graphically are 
presented in Figure 3. 

Examining the graph closely, it's evident that our developed model's scheduling cost 
aligns closely with various priority rules. In comparison to alternative rules, our 
model surpasses most but falls short of a few. This evaluation, however, lacks 
consideration for the transformative impact of 5G technologies. 

Upon introducing 5G advancements, especially in areas such as inventory cost, 
machine, and labor idle time and cost of penalty, we anticipate a substantial boost 
in the performance of our developed model. This integration has the potential to 
catapult our model to the forefront of scheduling efficiency, producing significantly 
more positive outcomes. 
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Figure 3 

Total cost of scheduling for own developed model and common priority rules 

The synergy of our meticulously crafted scheduling model with the cutting-edge 
capabilities of 5G opens up a realm of possibilities for unparalleled optimization. 
As we delve deeper into the application of 5G, the potential benefits in terms of cost 
reduction, enhanced productivity, and streamlined operations become even more 
promising, positioning our model as an important solution in the dynamic landscape 
of scheduling and planning. 

Conclusions 

The integration of 5G technology into scheduling models for manufacturing 
processes, presents a transformative opportunity for enterprises. Our analysis 
indicates that the conventional scheduling operations in Kosovo's enterprises are 
currently hindered by the use of low-level software applications and a limited 
adoption of Information and Communication Technology. 

Recognizing the potential benefits of 5G, we have extended our scheduling model 
to incorporate the advantages brought about by this advanced technology.  
The integration of 5G, aims to address the existing inefficiencies in resource 
utilization, fostering improvements in productivity, profitability and overall 
manufacturing system performance. 

Our enhanced scheduling model, leverages linear programming to optimize 
objectives, such as total flow time and makespan, has been specifically designed to 
accommodate the capabilities of 5G technology. The model provides optimal start 
and end times for job processing, contributing to the reduction of overall processing 
times. 

Comparing the outcomes of our model with those of common priority rules, such 
as FCFS, CR, EDD, LPT, SPT and SIRO, it is evident that the integration of 5G 
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technology has significantly outperformed traditional methods. The optimized 
schedules generated by our model, minimizes the time required to complete all jobs, 
showcasing the efficiency gains, facilitated by 5G technology. 

Looking ahead, future research could explore the application of the 5G-enabled 
scheduling models across multiple instances of job shop scheduling environments. 
Additionally, the consideration of other techniques and their combinations could 
further enhance the scheduling process within production systems. Further 
investigation into the specific impacts of 5G on real-time data analytics, machine-
to-machine communication and adaptive scheduling would enhance the depth of 
our analysis. By exploring these areas, it could better demonstrate the 
transformative potential of 5G in optimizing manufacturing processes.  
The integration of 5G emerges as a pivotal factor in unlocking new possibilities for 
streamlined, efficient and technologically advanced manufacturing scheduling 
operations. not only in Kosovo, but other Countries, as well. 
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