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Abstract: In this work we propose, that the morphological dilation acts as fractal filters 

rebuilding white noise roughness surfaces into fractal 1/fm noise surfaces. The fractality 

indicates that the dilation does not have characteristic length scale, and the structuring 

element follows power-law distribution. Yashchuk's binary pseudo-random grating 

standard has been dilated with spherical and free form tips between 50 nm and 2000 nm 

and two scaling regions are referred to the tip diameter versus scaling exponent diagram. 

The first one in the smaller tip diameter region has a fast slope and the second one in the 

intermediate and larger tip diameter has a gradual slope. The results show that the dilated 

surfaces arise from the activity of at least two dynamical systems. 

Keywords: Roughness; Morphological Filtering; Fractals 

1 Introduction 

The roughness signal is constructed through the detection of an interaction 

between the tip apex and measurement surface features, thence the signal mainly 

affected by the tip-defined dynamical systems [1] [2] [3]. 

The real surface could be determined first by measuring the height distribution of 

the surface (tip convolution or morphological dilation) and second by 

deconvolving the tip effect with morphological erosion [4]. These processes 

provide the complete mathematical description of a fabrication procedure within 

the framework of the mathematical morphology [5]. However, an engineering 
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surface is an example of a specific structure in the sense that the profile of a 

surface is irregular, i.e. has no characteristic scale [6] [7]. 

The purpose of this work is to investigate the morphological dilation operation on 

the Yashchuk binary pseudo random grating white noise surface [8]. The inherent 

power spectral density of a white noise is an identical function, independent of 

spatial frequency. The fractal scaling behavior of the morphological dilation 

suggests that the operation is scale-free in the sense, that changing the lengthscale 

associated with dilation results also has a fractal scaling form. Comparing the 

power spectral densities of the dilated surface, shows how strong the dilation 

attenuates the surface on each length scales and additionally the structuring 

element can be characterized. 

2 Power Spectra 

Variations in the height of an engineering surface can be described with the 

periodogram, which is the square of the coefficients in a Fourier series 

representation and measures the average variation of the surface at different 

frequencies (Fig. 1). The periodogram can be computed for the entire surface at 

once, or segments of the surface can be averaged together to form the power 

spectral density (PSD). A widely used PSD is based on the covariance method 

[10]. 

If touching engineering surface points are uncorrelated, then the PSD will be 

constant as a function of wave number, i.e. white noise. If touching points are 

correlated relative to points far separated the PSD will be considerable at 

subordinate wavelengths and small short wavelengths [15] [16]. 

In this work we show, that the morphological dilation operation scales as fractal 

filter in which the white noise power spectrums are rebuilt into fractal 1/f
m

 

spectrums. In 1/f
m

 signal, the spectral power of fluctuations is reversely balanced 

to their frequency. Surfaces referenced any 1/f
m
 scaling therefore fulfil a 

multiscale relationship, because fluctuations at any wavelength are engaged in 

large fluctuations at longer wavelengths, and these, in turn, are engaged in larger 

fluctuations on longer lengthscales. 
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3 An Approximate Power Function for Tip 

Distribution 

We characterize the dilation with a 9 point’s spherical tip and free form tips (9 and 

12 points) (Fig. 1). The tip diameter is defined between the 0
th

 and the 9
th

 (12
th

) 

points. We used 21 tips, diameters between 50 nm – 2000 nm. 

 

Figure 1 

Spherical-, and 9-, 12 points free-form structuring elements (upper) and their distribution functions 

(F(l)) 

The dilated surface points reflect the tip around the point weighted by their 

fractional contribution to the unfiltered input. Mathematically this means that the 

dilated output (gdil(n)) at any value  Nn ,...1,0  is the convolution of the input 

ginput(n) and the tip gtip(l). (  vvl ,...0,...,  v is tip radius.) 
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where N is number of measured surface values. 
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From Eq (1) one can see, if the distribution of the tip is broad compared to the 

wavelength of the input surface, the filtering will be averaged but the fluctuations 

attenuated. The shorter the wavelength of the input compared to the tip 

distribution, the powerfuler this characterization by averaging processes. On the 

contrary, variations on length scales that are long related to the tip distribution will 

be transferred through the dilatation without meaningful extension. 

By the convolution theorem, Eq (1) indicates 

                            
222

)()()()()()( fCfCfCandfCfCfC inputtipdilinputtipdil   (2) 

 

Here )(),( fCfC tipdil , )( fCinput  are the Fourier spectrums of 

)(),( lglg tipdil and )( lnginput   and 
222

)(,)(,)( fCfCfC inputtipdil are 

their PSD. When the input surface is white noise, the 
2

)( fCinput is 

approximately constant, and the PSD of the tip is roughly balanced to the PSD of 

filtered surface: 
22

)()( fCfC tipdil  . 

The scaling behaviour, shown in (Fig. 2 right), is compatible with the assumption 

that the tip distribution power spectrum has a power decrease 
mtip

f
fC

1
)(

2

 . 

It is equally clear that this power decrease must break down for large l, because 

otherwise the tip distribution would become infinite. 

An approximate distribution function F(l) that is integrable at large l could be 

expressed with the gamma function ( () ): 









l

e
l

lF





)(
)(

1

                   (3) 

where   is a scale parameter and m1  is a shape parameter [12]. 

Eq. 3. indicates a power spectrum of the form: 

  )41()( 222
2

ffCtip        (4) 
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Figure 2 

Binary pseudo-random grating standard (Yashchuk surface) of 28 samples (normalized, left). 

Periodogram with least-squares fitting for the Yashchuk surface (middle), Periodogram with least-

squares fitting for the 400 nm spherical tip dilated Yashchuk surface (right). 

 

The PSD for the spherical-, and free-form 400 nm tips can be seen on Fig. 3. We 

used the exponential function fit (circle line) and Eq. (4) gamma function fit (star 

line) for the PSD signal (solid line). The PSD of the dilated surfaces with its 

fractal behavior could be better approximated by the gamma function. This is 

obviously the consequence of the localization of the gamma function, since the 

function “whiten” the surfaces. For the dilated surfaces at low frequencies the 

dilation operator behaves as a fractional differentiator. 
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Figure 3 

PSD of the dilated Yashchuk surface (solid line). Exponential function fit (circle line), gamma function 

fit (star line). The tip diameters are 400 nm. 

4 Effects of Tipsize 

It may be of interest to analyze the tip diameter corresponding the scaling 

parameter m. 

Figure 4 is a plot of the relationship corresponding the scaling exponent and the 

tip diameter for spherical (solid line), 9 points free form (dashed line), and 12 

points free form tips (dashdot line). 

One can see two parts (scaling regions I and II) where the sign and the value of the 

slope are different. The slope of the lower region (300-700 nm for free form tips 

and 500-800 nm for spherical tip) decreases and the gradient of the upper region 

(700-2000 nm and 800-2000 nm) decreases as the tip diameter increases. 
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Figure 4 

Scaling exponent vs. tip diameter relationship for spherical (solid line), 9 points free form (dotted line), 

and 12 points free form tips (dashdot line) 

The scaling regions are result from the secular relation between nearby points of 

the surface and the points of the tip and the scaling regions are related to internal 

variations of Yashchuk surface. 

In the Figure 5 the PSD of the two regimes are presented using covariance 

estimate. The similar scaling relations are observed for the free form tips. 

 

Figure 5 

Covariance PSD of the two regimes dilated by 21 different spherical tips 
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The scaling regions have also been appeared in analyzing the dynamic of the 

dilated system with Kolmogorov entropy K. (Figure 6). The K describes a degree 

of chaoticity of system and gives the mean property of information loss about a 

phase point. In the statistical physics K = 0 in an deterministic space, K is infinite 

in a random space, and 0 < K < 1 is in a chaotic space. (More detailed see in 

[13]). 

For the scaling region I the slope of Kolmogorov entropy vs. tip diameter diagram 

of the dilated surfaces are between 0.27±0.09 and 0.15±0.06, respectively. In the 

scaling region I is the system chaotic. 

 

Figure 6 

Kolmogorov Entropy for spherical (solid line), 9 points free form (dotted line), and 12 points free form 

tips (dashdot line) 

The scaling region II with the constant near 0 slope in the scaling exponent system 

are revealed in the ranges of larger tip diameter. The information loss of this 

region shows that the system is fixed (Table 1). 

Table 1 

Slope of the Kolmogorov entropy vs. tip diameter diagram for the different scaling regions 

 scaling region I scaling region II 

Sperical tip 0.27±0.09 0.05±0.001 

9 points free form tip  0.21±0.03 0.05±0.002 

12 points free form tip 0.15±0.06 0.04±0.002 
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Conclusions 

The affiliation between the PSD of the Yashchuk binary pseudo-random grating 

standard and the output dilated surfaces at each wavelength reflects how powerful 

the dilation changes the tip distribution space on each lengthscale. The power 

spectra of the dilated surfaces show fractal 1/f
m
 scaling; this indicates that dilation 

is acting as fractal filter, rebuilding the inputs into 1/f
m

 noise outputs with m 

scaling exponent. The scaling behaviour is directly related to the input standard 

lengthscale distribution. If the distribution is comprehensive to the wavelength of 

the tip distribution, then the fluctuation will be standardized and discouraged. 

The relationship between the dilated signal and its PSD can be extracted, and the 

tip distribution can be determined. The fractal 1/f
m
 scaling is consistent with the 

tip distribution (F(l)) using the gamma function. The dilated tip PSD can present 

both long-term character of scans and short-term character to scans consequently 

the gamma distribution is an appropriate categorizing of the scaling behaviour and 

the tip distribution seen at the dilatation of the Yashchuk surface. 

Analyzing the tip diameter versus scaling exponent diagram one can see two parts 

(scaling regions) where the sign and the value of the slope are different. 

The scaling regions are result from the secular relation between nearby points of 

the surface and the points of the tip and the scaling regions are related to internal 

variations of Yashchuk surface:for the scaling region I is the system chaotic and 

the information loss of the scaling region II shows that the system here is already 

fixed [14]. 
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