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1 Introduction 
Pruning techniques are well known in various places in science, technology and 
engineering, to accelerate the evaluation of some formulas or decision trees. This 
can be done in cases when the result is known with 100% certainty, without 
evaluating the subresults of each part of the computation. Under the name “short 
circuit evaluations” pruning techniques appear in programming languages, for 
instance, in C (see, e.g. [1]). These methods are based on well-known logical laws 
of propositional logic. This classical logic, also known as Boolean logic, is widely 
known and can be read from various sources, including articles and books on 
software engineering, (discrete) mathematics, computer sciences, hardware design, 
philosophical and mathematical logics, linguistics, etc., since Boolean logic is 
known as one of the foundations of electric engineering, computer sciences, 
mathematics, information technology, and other practical or research areas [2]. In 
addition to Boolean logic, several additional branches have been developed, for 
many different purposes. In predicate logic, quantifiers appear; with their help more 
advanced formulas can be used. In temporal and modal logics, new operations were 
introduced, e.g., operations involving the time dependence of truth and, for 
example, necessity and possibility, respectively. In many valued and fuzzy logics, 
another feature is extended: the used truth values are no more limited to only the 
classical crisp false and true values. In classical logic, there are many paradoxes. 
One may resolve some by using many-valued or fuzzy logics [3] [4]. The liar 
paradox is a very old and famous example [5]. The sentence “This sentence has a 
false value.” can be neither true nor false; and we do not have other possible truth 
value(s) in Boolean logic. The existence of at least one more truth value could lead 
to the solution of this paradox. Starting from the 1920s numerous fuzzy logics were 
investigated. The most known such fuzzy logic systems include the Gödel type 
logic, the Łukasiewicz type logic, and the product logic [4, 6-9]. Gödel logic is 
special in the sense that the law of double negation does not function as a logical 
law. [9]. The Gödel logic is modelling an optimistic world, for example, to achieve 
maximum profit in a cooperative environment. Product logic can be a good choice 
for modelling a realistic and tolerant environment with various sovereign partners. 
Our main focus, the Łukasiewicz logic can be considered in a pessimistic, 
unfriendly environment where partners aim for minimal losses in competition. [4]. 
Deductions in many-valued logics are translated to mixed integer programming 
problems in [10]. There are various applications of fuzzy logics and fuzzy sets [11] 
[12]. The connection between Łukasiewicz type logic and fuzzy sets is discussed, 
e.g., in [3], moreover, Łukasiewicz type predicate logic was also developed in the 
past decades to allow to use the nice properties of advantages of Łukasiewicz logic 
in first-order logics, see, e.g. [13] [14]. 

Logical expressions can be found everywhere, engineering and programming 
cannot be done without them. Therefore, their evaluation is an important task both 
in theory and practice. In this paper, a very popular and well-known fuzzy logic, the 
Łukasiewicz type logic is considered with infinitely many truth-values. First, some 
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preliminaries are recalled (see Section 2) including a brief description of 
Łukasiewicz logic and short circuit evaluation techniques used in Boolean logic, 
artificial intelligence, and game theory. Then, in Section 3, various pruning 
techniques are proven for the expressions in Łukasiewicz logic. Complex examples 
are also provided in Section 4 showing the efficiency (reduced size of the expression 
trees, much faster evaluations) of the proposed techniques. Finally, Section 5 
presents the conclusions for this work. 

2 Preliminaries 
We start the section by recalling the concepts of expression trees. Some notions of 
Boolean logic and some pruning techniques including the short circuit evaluation 
used in classical logic are also recalled. Finally, a brief description of Łukasiewicz 
logic is also given. 

2.1 Tree Representation of Expressions 
Expressions are used for formal description of mathematics, logic, and various 
sciences. There are simple expressions and various connectives/operators are used 
to build complex expressions. These connectives are usually unary and binary ones; 
thus, the expression can be drawn as a binary tree. The main connective is in the 
root of the tree, while other connectives are in the other non-leaf nodes. The leaf 
nodes represent those simple expressions that we used to build our complex 
expressions. Nodes representing unary connective have exactly one child, while 
nodes of binary connectives have two children. Every node of the tree represents a 
subformula that is represented by the maximal subtree rooted in the given node. By 
definition, the expression is evaluated in a bottom-up manner. We start with the 
leaves, their values are used to evaluate the subformulas represented by their 
parents, etc. When all subformulas, i.e., all nodes, but the root are evaluated, in the 
final step the result for the whole formula is obtained. 

2.2 Boolean Logic 
The two-valued classical propositional (crisp) logic is widely known and used in 
theoretical and applied sciences. It was formalized by Boole in the XIX century; 
hence it is also called Boolean logic (and Boolean algebra). There are two (truth) 
values: they are interpreted as true (T, 1) and false (F, 0). Since this logic is used in 
electrical switching circuits, it serves as the foundation for all of our digital 
machines, including digital calculators or computing devices. The textbook [2] is 
recommended for those who are unfamiliar with classical logic. 
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The syntax of propositional logic is as follows. There are infinitely many 
propositional (also called Boolean) variables. They, together with T and F are the 
atomic formulas. As usual in Boolean logic, we use the conjunction (“logical and”, 
shortly L-and), disjunction (“logical or”, L-or), implication, and negation operators. 
This latter operator is unary, all others are binary. If A and B are two logical 
formulas (maybe atomic, maybe not), then their L-and (A ∧ B), L-or  
(A ∨ B), and implication (A → B) are also logical formulas. The formulas A and B 
are referred to as the original formula's main subformulas. The negation ¬A of a 
logical formula A is also a logical formula. Finally, all logical formulas are made 
up from atomic formulas by applying finitely many connectives. A formula tree can 
be used to represent the logical formula. 

The semantic rules can be seen in Table 1; with their help any logical formula can 
be evaluated if the truth-values of the present propositional variables are fixed.  
T has the value 1, while F has the value 0, variables may have either value. 

In Boolean logic, the value of the formula is always 0 or 1. However, there are 
various cases where the truth-value of one of the two main subformulas is sufficient 
to determine the value of the main formula. Therefore, in many cases, we may not 
need a full evaluation, but short circuit evaluation works: some nodes in the formula 
tree can be omitted because the final value of the formula is not influenced by their 
values. In the next subsection, we start with the two trivial cases of these shortcut 
techniques. 

Table 1 
The semantics of classical logic. (The first columns show the possible values of variable A;  

the possible values of variable B are shown in the first row at binary operators.) 

A ¬A  A∧B 0 1  A∨B 0 1  A→B 0 1 
0 1  0 0 0  0 0 1  0 1 1 
1 0  1 0 1  1 1 1  1 0 1 

2.3 Short Circuit Evaluations and other Cut off Methods 
Short circuit evaluation is used for various purposes: it saves time, but it is also used 
because of safety considerations [15]. In the C programming language, the symbols 
&& and || mean “L-and” and “L-or”, respectively. By evaluating these operations 
short circuit is applied as follows: 

At L-and, if one of the conditions/arguments is already known to be false, then value 
0 can be assigned to the L-and node without checking the other child(ren). 

At L-or, if it is known that one of the conditions/arguments is true, then the L-or 
node has the value 1 without checking the value of the other child(ren). 

Pruning techniques are also frequently used in artificial intelligence and game 
theory when a decision is computed based on a game tree (or its part). These 
methods are called alpha-beta pruning, see, e.g., [15] [16]. Game trees, theoretically, 
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that are comprising all possible instances (matches) and outcomes, are used to 
represent combinatorial, two-player, zero-sum, full information, finite, and 
deterministic games with possible moves of the players. The minimax algorithm 
gives the value (solution) of the game by evaluating the game tree, and 
subsequently, it provides the optimal strategies and best-guaranteed payoffs for both 
players. The alpha-beta pruning, similar to the short circuit evaluation methods, cuts 
off some branches of the game tree that has no influence on the final result. Alpha-
beta pruning works on trees where the values are not necessarily restricted to be in 
{0,1}. Figure 1 shows an example in a small game tree, for every vertex in a tree 
when α becomes greater than or equal to β, we can stop expanding its children. 
These algorithms are presented in detail in [15-18]. 

 
Figure 1 

An example of alpha-beta pruning 

2.4 Łukasiewicz Logics 
Among others, Łukasiewicz was pioneering to extend the classical logic by 
introducing intermediate truth-values violating Aristotle’s law of excluded middle. 
Łukasiewicz defined logics for arbitrary many (n ≥ 2) and even for infinitely many 
truth values [7, 8, 19]. His infinite-valued logic is still one of the most attractive 
candidates of fuzzy logic [20]. Every real number of the closed interval [0,1] is a 
possible truth-value. The logical connectives connected to his logic are the 
Łukasiewicz implication (→), the negation (¬), the Łukasiewicz conjunction (⊗), 
and the Łukasiewicz disjunction (⊕). The syntax of his logic is exactly the same as 
the syntax of the classical logic as we have already described, but every element of 
[0,1] plays the role of a constant (not only T and F, i.e., 1 and 0). 

The semantics of Łukasiewicz logic are as follows. The variables can have values 
from the real interval [0,1] inclusive of the two classical values, also each element 
of [0,1] could play the role of a constant. The truth-values of complex formulas are 
calculated from the value of their main subformulas according to the main operator 
[8, 19, 20] as shown in equations (1)-(4): 
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|¬A| = 1 − |A| (1) 

|A→B| = �1 − |A| + |B|, if |A| > |B|
                   1, otherwise  (2) 

|A⊗B| = �|A| + |B| − 1, if |A| + |B| > 1
            0, otherwise  (3) 

|A⊕B| = �|A| + |B|, if 1 > |A| + |B|
    1, otherwise  (4) 

When a formula is evaluated, the leaf nodes of the expression trees have values from 
the [0,1] interval. Again, the (truth) value of the main formula (i.e., the tree) is 
computed by the bottom-up strategy. As in the case of classical logic, some branches 
(some subformula) could be needless to compute. This is the main task of this paper. 
Before turning to the pruning techniques, we note that the finite k-valued variants 
(where k > 1 is any integer) of Łukasiewicz logic work with the values 
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 Case k = 2 is exactly the classical logic.  

The conjunction and disjunction in the Łukasiewicz logic are also called “bounded 
product” and “bounded sum”, respectively. 

3 Pruning Techniques For Formula Trees In 
Łukasiewicz Logic 

This section proposes several techniques for improving the evaluation of expression 
trees in Łukasiewicz logic using the aforementioned logical connectives. Thus, we 
deal with trees with a bounded set of truth values: the real numbers from the [0,1] 
interval can be used at the tree's vertices. They are given at the tree's leaves at the 
start of the evaluation, and the task is to calculate the value for the root node. The 
restriction in the layout of these trees is that vertices with negation must have 
exactly one child, whereas vertices assigned to any other connectives must have two 
children, referred to as left and right child, respectively. 

In the next subsections, we describe in detail the proposed pruning techniques to 
accelerate the evaluation method which can be used for such trees. 

3.1 Disjunction (⊕)and Conjunction (⊗) Pruning 
Evaluation of L-or (⊕) and L-and (⊗) nodes may be accelerated in various ways, 
which depend on the left and right children of these nodes. Although the next two 
results are evident expansions of the well-known short circuit evaluation techniques 
mentioned earlier, for the sake of completeness, we present them here. 
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Theorem 1. For a conjunction vertex Γ, a shortcut can be applied if it has a child 
having value 0. The value 0 can be assigned to Γ independently of the value of the 
vertex that is connected to the other side. 

Proof. Knowing that one of the children is evaluated to 0, it follows that the 
result of equation (3) equals to 0 (the minimum value) whatever the value of the 
vertex that is the child on the other side of Γ. This is based on the logical law A 
⊗ 0 has value 0.                     □ 

Remark 1. The evaluation of a node could go faster if it starts by getting the value 
of a leaf child if it exists. 

Figure 2 shows an example of such a case where this cut can be applied. We have 
an analogous result about nodes associated with a disjunction. 

Theorem 2. For a disjunction vertex ∆, if one of its children is evaluated to 1, then 
a cut can be applied assigning value 1 to ∆ independently of the value of the other 
child. 

Proof. A child (maybe a leaf) with value 1 makes the result of equation (4) equal 
to 1 (possible maximum value), based on the law: A ⊕ 1 is always 1.    □ 

 
Figure 2 

A cut is used at a L-and (⊗) vertex if one child (the left or right) has a value of 0. Only 3 operator 
nodes plus 2 leaves (altogether of 5 nodes) are explored and evaluated out of 5 operator nodes plus 5 

leaves (altogether of 10 nodes) to obtain the final value at the root. 

To optimize the evaluation, the same process can be used here as for the L-and 
vertices. For an example see Figure 3. 

Beyond the preceding techniques which can be applied when the minimal/ 
maximal value is reached, a more advanced method can also be effective with 
respect to conjunction and disjunction nodes. In these techniques we go deeper in 
the formula tree and visit some grandchildren of the chosen node as well. 
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Figure 3 

A cut is used when a L-or (⊕) vertex has one child with a truth value 1. Only 4 operator nodes plus 2 
leaves (a total of 6 vertices) are explored and evaluated from the 6 operator nodes plus 6 vertices which 

are leaves (a total of 12 vertices) to obtain the final value in the root. 

Theorem 3. Let a disjunction node ∆ have both children (X1 and X2) among the 
following types, i.e., Xi ∈ {Φi, Πi, ∆i}  (i=1,2), where: 

• Φi  is a negation vertex with a conjunction child Γi 

• Πi  is an implication vertex 

• ∆i  is a disjunction vertex 

Let Y1 and Y2 denote the children of the vertex Γ1, Π1 or ∆1 depending on the cases 
above; and let Y3 and Y4 denote the children of the vertex Γ2, Π2 or ∆2. Then, after 
knowing some of the values of the vertices Yi we may apply a cut. For vertex ∆1 
(∆2) let their children’s value be denoted by y1 and y2 (y3 and y4, respectively). In 
the case of vertex Π1 (Π2) let y2 (y4, respectively) denote the value of its right child 
and let y1 (y3, respectively) denote the difference of 1 and the value of its left child. 
For vertex Γ1 (Γ2) let denote y1 and y2 (y3 and y4, respectively) the difference of 1 
and its children’s values. Then, at any phase of the evaluation, if the sum of the 
already evaluated values yi is at least 1, a cut can be used to assign the value 1 to ∆, 
independently of the values of the remaining (not yet evaluated) vertices Yi.  

Proof. The proposed method is based on equations (2), (3) and (4) depending on 
the connectives at the children nodes. In the case of disjunction child(ren), by 
equation (4), we can see that its value can be at most 1, and the expression has 
a final value which is always larger or equal to both |A| and |B|. When the sum 
of the values of the given successors (e.g., A and B in this case) is larger or equal 
to 1, the disjunction has its maximal value, 1. In case of implication child(ren), 
Π1 and/or Π2, observing equation (2), the value is always at least the value of 
the second (i.e., right) child: | A → B | ≥ | B |. Thus, for Yi that is a child of a 
disjunction or right child of an implication, its own value is used in yi. 
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Obviously, the result of the expression in (2) cannot be less than the negation of 
its left child (Y1 and/or Y3), let us say, represented by formula A, which is equal 
to 1 – |A|. In the case of conjunction descendants (Γ1 and/or Γ2), their minimum 
value, by the expression in (3), i.e., 0, is obtained when the sum of the values of 
the two connected successors (let us say, formulas A and B) is less than 1; and 
the value of the expression cannot be larger than |A| and also than |B|. However, 
here we use their negations, thus, the value of the corresponding vertex Xi = Φi 
is 1 – max(| A | + | B | – 1, 0) = min( 1 – (| A |  
+ | B | – 1), 1 – 0) = min((1 – | A |) + (1 – | B |)), 1). Hence, we use the difference 
of 1 and the children’s values in these cases. When some of the values in yi are 
already known, and their sum is already at least 1, then the value of ∆ cannot be 
less than 1.      □ 

We note here that the technique described above can be used in many ways in 
practice, e.g., by evaluating the left successors of both X1 and X2 first, as we explain 
in the following examples. Here, the evaluation of the connected vertices can be 
started in parallel (e.g., by the left child of both of these vertices), starting by getting 
the value of the connected leaf if such a child exists. After evaluating or getting the 
value of the first (left) successors of both connected children vertices, we may make 
a cut-off, as it is shown in the examples of Figure 4 having L-or at both children 
and Figure 5 having an implication and an L-or as children. 

Now we show an analogous theorem for conjunction vertices. 

Theorem 4. Let a conjunction node Γ have both children (X1 and X2) among the 
following types, i.e., Xi ∈ {Φi, Γi}  (i=1,2), where: 

• Φi  is a negation vertex, with disjunction child ∆i or implication child Πi  

• Γi  is a conjunction vertex 

Let Y1 and Y2 denote the children of the vertex Γ1 (∆1 or Π1, resp.) depending on 
the cases above; and let Y3 and Y4 denote the children of the vertex Γ2 (∆2 or Π2). 
For vertex Γ1 (Γ2) let their children’s value be denoted by y1 and y2 (y3 and y4, 
respectively). In the case of vertex ∆1 (∆2), let denote y1 and y2 (y3 and y4, 
respectively) the difference of 1 and its children's values. In the case of Π1 (Π2), let 
denote y1 (y3) the value of its left child and y2 (y4) the difference between 1 and the 
value of its right child. Then, at any phase of the evaluation, if the sum of the already 
evaluated values yi is at most their number – 1, then a cut can be applied assigning 
value 0 to Γ, independently of the values of the remaining (not yet evaluated) 
vertices Yi. 

Proof. In this theorem, a cut is made by obtaining the minimal value at a 
conjunction vertex Γ similar to in Theorem 1. However, here we go more deeply 
into the formula tree. In the case of conjunction child(ren) Γi the values 
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Figure 4 

A pruning example at an L-or node that has two L-or children and their sum is not less than 1. Only 4 
operator nodes plus 3 leaves (altogether 7 nodes) out of 6 operator nodes plus 6 leaves (altogether 12 

nodes) are checked and evaluated in the entire computation. 

 
Figure 5 

A pruning example applied at an L-or node having an implication node (left child) and an L-or node 
(right child) such that their sum is larger than or equal to 1. 5 operator nodes plus 3 leaves (altogether 8 

nodes) out of 7 operator nodes plus 6 leaves (altogether 13 nodes) are checked and evaluated in the 
entire computation. 

yj of their children Yj are used, i.e., it is computed as max(| A | + | B | – 1, 0)  
= max(y2i-1 + y2i – 1, 0). At negation child(ren) Φi the values based on the values 
of the grandchildren are used, i.e., the difference between 1 and its children's 
values (let them be |A| and |B| here) in case of negated disjunction. This is due 
to the formula 1 – |min(| A | + | B |, 1)| = max(1 – (| A | + | B |),  
1 – 1) = max((1 – | A |) + (1 – | B |) – 1, 0) = max(y2i-1 + y2i – 1, 0)  which has a 
similar structure as formula (3). In the case of negated implication nodes, by 
comparing equations (2) and (4), the right child plays a similar role as a child of 
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a disjunction node, while for the left child 1 – its value should be used (in 
contrast with the left child of a disjunction node). In this latter case, therefore  
1 – (1 – its value) = its value is used. In this way, node Γ gets its value as max(y1 
+ y2 + y3 + y4 – 3, 0). However, each yi could have a value at most 1, which 
directly implies the cut condition given in the theorem.                 □ 

 
Figure 6 

A pruning example applied at an L-and vertex having two L-and nodes children and their sum is not 
larger than 1. 5 operator nodes plus 3 leaves (altogether 8 nodes) out of 7 operator nodes plus 6 leaves 

(altogether 13 nodes) are explored and evaluated in the entire computation. 

In special cases, the cut can be applied after evaluating two of the vertices Yi having 
the sum of their value not more than 1. Figure 6 shows an example, where, actually, 
Y1 and Y3 are evaluated. 

3.2 Implication Pruning 
Consider that the root or the root of a subtree is an implication vertex. Various cuts 
can also be applied at these vertices. Let us start with the obvious ones. 

Theorem 5. Let Π be an implication vertex. If its first (left) child has a value of 0 
or its second (right) child is evaluated to have a value 1, then one can apply a lazy 
evaluation to assign a value of 1 to Π without checking and evaluating its other 
child. 

Proof. From equation (2), the value of Π is at least 1 – | A |, where | A | is the 
value of its left child. This proves the first type of cut described by the theorem, 
substituting the value | A | = 0. From (2), it is also clear that the value of the 
implication Π cannot be less than the value of its right child | B |. Having | B | = 
1 leads to the second cut technique described in the theorem.    □ 
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An example is depicted in Figure 7. It is shown that the evaluation of the left child 
resulted in a 0; it follows that the right child cannot have a lower value than this. 
Thus, the right child with all its subtrees can be pruned, and the value 1 can be 
returned to the root (implication) node without needing the value of the pruned 
subtree. 

 
Figure 7 

A pruning example for an implication node with the left child as a negation node. 4 operator nodes plus 
3 leaves (altogether 7 nodes) out of 8 operator nodes plus 7 leaves (altogether 15 nodes) are explored 

and checked in the entire computation. 

The next possible cut technique is more complex; the children of the implication 
vertex also play an important role. 

Theorem 6. Let Π be an implication vertex such that its left child is either a 

• negation vertex Φ1 with a  

 L-or child ∆1 or with an  

 implication child Π1 or a 

• L-and vertex Γ1 

and its right child is either a 

• negation vertex Φ2 with a L-and child Γ2; an 

• implication vertex Π2 or a 

• L-or vertex ∆2. 

Let Y1 and Y2 denote the children of the vertex Γ1, Π1 or ∆1 depending on the cases 
above; and let Z1 and Z2 denote the children of the vertex Γ2, Π2 or ∆2. Then, after 
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knowing the value of one of the Yi and of the Zj nodes, we may apply a cut as 
follows. For vertex Γ1 let denote y1 and y2 the values of its children Y1 and Y2, 
respectively. For vertex ∆1, let denote y1 and y2 the difference of 1 and its children’s 
values. For Π1, let y1 denote the value of its left child Y1 and let y2 denote the 
difference of 1 and the value of its right child Y2. Further, let z1 and z2 be the values 
of the children Z1 and Z2 of node ∆2, respectively. In the case of node Γ2, let denote 
z1 and z2 the difference of 1 and its children’s, Z1’s and Z2’s, values. For Π2, let z2 
denote the value of its right child Z2 and let z1 denote the difference between 1 and 
the value of its left child Z1. If there is a value yi which is not more than a value of 
a zj (i,j ∈ {1,2}), then the value of Π is 1 and does not depend on the values of the 
other children's, i.e., on y(3-i) and z(3-j). Without evaluating these unnecessary parts, 
a cut can be applied. 

Proof. Evaluating the implication expression (2), having the value of its children 
A and B, it has always an output which is not less than the value  
1 – | A | and also than | B |, moreover it gets value 1 if and only if | A | ≤ | B |. 
Let us consider the L-and node Γ1 as a kind of MINIMUM node, and the L-or 
vertex ∆2 as a kind of MAXIMUM node, while the opposite is true for them in 
the negated case, i.e., for nodes Γ2 and ∆1, respectively. Also in the negated case, 
instead of the values of the children, their ‘opposite value’, i.e., 1 – their values 
are used. Similarly, implication node Π2 can be seen as a MAXIMUM node, but 
here for the left child ‘opposite value’ is used (and correspondingly Π1 is like a 
MINIMUM node, and the ‘opposite value’ of the right child is used since it is a 
negated case). Thus, in each case listed in the theorem, the implication vertex Π 
has a left MINIMUM and a right MAXIMUM children. At a MINIMUM node 
X1, if the value of one of the children is known, i.e., y1 or y2, the value of the X1 
cannot be larger than this value. For a MAXIMUM vertex X2, its value cannot 
be less than any of the values z1 and z2 coming from its children. Let us see how 
we can combine this information at node Π. Then, the evaluation could start in 
parallel for one of the children of X1 and one of the children of X2, (e.g., for their 
left children, Y1 and Z1). While evaluating one of the successors of the left and 
right children, if the value at the right child has a larger or equal value to the 
value found at the left child, we can make a cut: we can assign value 1 to Π and 
we can stop evaluating and exploring the remaining parts of the subtree rooted 
at Π.                 □ 

We illustrate some of the cases of the possible cut described above by examples. 
Figure 8 depicts an implication node with a negated L-or vertex as its left child and 
another L-or as its right child. When we evaluate the children of both L-or nodes 
simultaneously after we saw the value of their left children, we got the information 
that the negated L-or (at the negation node) connected to the left is not larger than 
0.4, while the L-or vertex connected to the right is not less than 0.7. So, it follows 
that the right child is already larger than the left one. To investigate and assess the 
right child of these L-or nodes is needless. The pruning is done and value 1 is 
returned at the root, i.e., at the implication vertex. For an example of implication 
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pruning in case the left child is an L-and and the right child is a negated L-and, see 
Figure 9. 

 
Figure 8 

Example of an implication pruning with negated L-or (left child) and L-or (right child). 6 operator 
nodes plus 3 leaves (altogether 9 vertices) out of 8 operator nodes plus 7 leaves (altogether 15 vertices) 

are explored and evaluated in the entire computation. 

 
Figure 9 

Example of an implication pruning with L-and and negated L-and. 5 operator nodes plus 3 leaves 
(altogether 8 vertices) out of 8 operator nodes plus 7 leaves (altogether 15 vertices) are explored and 

evaluated in the entire computation. 

In our next example, it is shown how an implication node with an L-and vertex on 
the left and an L-or on the right is evaluated. The value of the L-or vertex becomes 
not less than the value of the L-and vertex, therefore we prune the rest, and return 
value 1 to the root (the implication node). Figure 10 shows a specific example. 
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Figure 10 

Evaluating implication with pruning (L-and is on the left and L-or is on the right). 7 operator nodes 
plus 4 leaves (altogether 11 nodes) out of 11 operator nodes plus 9 leaves (altogether 20 nodes) are 

explored and evaluated in the entire computation. 

 
Figure 11 

Evaluating implication vertex with pruning when one child is an L-or and the other child is an 
implication. 4 operator nodes plus 5 leaves (9 vertices in total) from the 20 vertices can be left out from 

the evaluation to compute the result 

The last pruning example of this section has an implication child on the right side. 
When the first successors of the left and right children are evaluated, and we have 
found that the value at the right child has a larger or equal value to the value found 
at the left child, the pruning can be applied, thus, we can stop exploring and 
evaluating the rest of the nodes and the result 1 can be assigned to the root. Figure 
11 presents the example. 
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4 Complex Examples 
In this section, we see how the proposed pruning techniques can speed up the 
evaluation of complex examples in Łukasiewicz logic. The first example is shown 
in Figure 12, to evaluate this expression, without any pruning, twenty-eight vertices 
(leaves and operator nodes) are explored and evaluated to have the final result of 
the root. 

 
Figure 12 

An example of a complex Łukasiewicz logic expression tree. 14 operator nodes plus 14 leaves 
(altogether 28 vertices) are explored and evaluated in the entire computation. 

In contrast, after applying the proposed pruning techniques, only eleven vertices are 
explored and evaluated to get the same result at the root. See Figure 13 for the details 
about the cuts. 

 
Figure 13 

The expression tree of Figure 12 is evaluated by applying proposed pruning techniques. Only 7 
operator nodes plus 4 leaves (altogether 11 nodes) out of 14 operator nodes plus 14 leaves (altogether 

28 nodes) are explored and evaluated in the entire computation. 
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Figure 14 shows another example where forty-five nodes are explored and evaluated 
in the computation, without any pruning. Figure 15 shows that after applying 
our proposed cut methods, only twenty nodes are explored and evaluated to obtain 
the same result and assign it to the root. 

As we have shown, the pruning techniques presented here can be applied very 
efficiently to reduce the cost of the evaluation. In a large formula, usually, a larger 
percentage of the formula can be cut. 

 
Figure 14 

A complex Łukasiewicz logic expression tree. 24 operator nodes plus 21 leaves (altogether 45 vertices) 
are explored and evaluated in the entire computation. 

Conclusions, Related and Future Work 

Evaluation of logical formulas has many practical applications. If classical logic is 
considered, it is used in the hardware industry in logic gates, and it is used in the 
software industry and compiler techniques: programming languages apply short 
circuit evaluations. Fuzzy logics and fuzzy technology are very popular in various 
engineering solutions. Herein, we have proven pruning techniques for Łukasiewicz 
logic. Some other pruning techniques are also proposed for the other two fuzzy 
systems, for the Gödel and the product logics in our earlier papers [21] [22]. 
Although the general idea is similar for these techniques, different logical systems 
have different pruning methods. 

As an important difference, let us compare the definitions of conjunction and 
disjunction of Gödel logic, the product logic, and the Łukasiewicz logic [21] [22]. 
Evaluating the same formula with only conjunctions and with the same values at 
each leaf, at Gödel logic and at product logic, one can apply a cut only if a leaf with 
value 0 is found (similarly to the Boolean case and also to the case of Theorem 1).  



R. Basbous et al. Pruning Techniques in Łukasiewicz Logics 

‒ 118 ‒ 

 
Figure 15 

The tree of the formula of Figure 14 is evaluated by our proposed pruning techniques. Only 13 operator 
nodes plus 7 leaves (total 20 vertices) out of 24 operator nodes plus 21 leaves (altogether 45 vertices) 

are explored and evaluated in the entire computation. 

Contrastingly, as we have seen it, e.g., in Theorem 4, in Łukasiewicz logic we can 
make a cut even if the above condition does not hold (e.g., by checking two leaves, 
let us say with values 0.3 and 0.65). When formulas having only disjunction 
operations are considered, at Gödel and product logics, to make a cut one needs to 
find a leaf with value 1 (similarly as we have stated in Theorem 2). However, in 
Łukasiewicz logic, (based on Theorem 3) cut can be applied without this condition, 
e.g., by checking leaves with values 0.4, 0.5, and 0.3. In [23], based on the 
theoretical results shown and proven here, a recursive algorithm has been presented 
that, similarly to the alpha-beta pruning for games, evaluates formula trees with 
arbitrary height. Also, a large number of simulations are presented there to prove 
the efficiency of the cut techniques; in practice, the method was tested on expression 
trees up to 100000 nodes. 

Based on those facts, we believe that the presented pruning techniques yield very 
efficient tools for scientists, programmers, etc., working with fuzzy (Łukasiewicz) 
logic to make decisions faster and compute results with less effort. As future work, 
we may recall that fuzzy logic systems are generalized by using interval-values in 
[19] [24]. Efficient evaluation techniques in this interval-valued logic should also 
be investigated. There is also an interesting task to work with some kinds of 
generalizations of decisions and games, e.g., [17, 25, 26], as well as, extending the 
set of logical connectives in a programming language [27] and work on various 
evaluation techniques connected to other types of trees. 
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