
Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

‒ 65 ‒

Extending SOC Capabilities to LoRaWAN: A
Cloud-Integrated Intrusion Detection
Framework for IoT Networks

Zsolt Bringye1, Rita Fleiner1, Balázs Umhauser1, Márk Aradi1,
Eszter Kail1,2

1Obuda University, Bécsi út 96/b, 1034 Budapest, Hungary
2 HUN-REN Institute for Computer Science and Control (HUN-REN SZTAKI),
Hungarian Research Network, Kende utca 13-17, H-1111 Budapest, Hungary

bringye.zsolt@nik.uni-obuda.hu, fleiner.rita@nik.uni-obuda.hu,
w7ysen@stud.uni-obuda.hu, mark@rowra.org, kail.eszter@nik.uni-obuda.hu

Abstract: The rapid expansion of LoRaWAN-based IoT deployments in critical
infrastructure, industrial environments, and smart city applications introduces novel
cybersecurity challenges that traditional IT security architectures are neither optimized for
nor capable of fully addressing. In this paper, we present a stateful, protocol-aware intrusion
detection architecture specifically tailored for LoRaWAN communication, with seamless
integration into existing Security Operations Center (SOC) frameworks. Our approach
identifies key monitoring points along the communication chain and implements a multi-
stage telemetry pipeline that supports protocol-level analysis ‒ even for encrypted traffic.
The system successfully detects complex attack scenarios, including man-in-the-middle
payload tampering and decryption attacks, validating the framework’s effectiveness in
practical conditions. The proposed methodology bridges a crucial gap between IoT-specific
anomaly detection and enterprise-grade SOC capabilities, offering a scalable and
transferable solution for extending cybersecurity visibility into low-power, protocol-
constrained networks. Our results highlight both the feasibility and the strategic importance
of integrating LoRaWAN telemetry into unified threat detection pipelines.

Keywords: IoT; vulnerability analysis; anomaly detection; SIEM; LoRaWAN security

1 Introduction
The rapid proliferation of Internet of Things (IoT) networks across critical
infrastructure, industrial automation, smart cities, and healthcare [1] has
significantly expanded the cyberthreat surface. Unlike traditional IT environments,
IoT networks are composed of resource-constrained and often unattended devices

mailto:bringye.zsolt@nik.uni-obuda.hu
mailto:fleiner.rita@nik.uni-obuda.hu
mailto:mark@rowra.org
mailto:kail.eszter@nik.uni-obuda.hu

Zs. Bringye et al. Extending SOC Capabilities to LoRaWAN: A Cloud-Integrated
 Intrusion Detection Framework for IoT Networks

‒ 66 ‒

that communicate over lightweight, application-specific protocols such as
LoRaWAN. Their wireless and distributed nature introduces unique challenges in
securing them against increasingly sophisticated cyberattacks.

Conventional security mechanisms such as firewalls, intrusion detection systems
(IDS), and endpoint protection solutions remain essential but are no longer
sufficient in isolation. Especially in low-power, lossy environments, IDS systems
must rely on metadata-driven methods due to limited access to packet content or
computational resources. While many lightweight IoT anomaly detectors exist, they
rarely support SOC-level integration or enable cross-layer event correlation.

To bridge this critical gap, we built a dedicated LoRaWAN test environment,
demonstrated in Fig. 1, within our university’s infrastructure, leveraging the OTC
(Open Telekom Cloud) cloud platform to simulate real-world deployment
scenarios. This novel testbed enabled us to rigorously explore the feasibility of
extending stateful, multi-layer monitoring into the LoRaWAN ecosystem, not only
detecting generic anomalies, but also decoding and analyzing even encrypted or
protocol-level interactions indicative of sophisticated IoT-specific threats by
correlating metadata across the LoRaWAN pipeline.

Our work represents a strategic shift in IoT cybersecurity, moving beyond
lightweight anomaly detectors limited to edge nodes. Instead, we propose a unified,
SOC-integrated intrusion detection system (IDS) that identifies and correlates threat
signals from multiples sources, across the entire LoRaWAN communication
pipeline ‒ from end-devices to gateways to network servers. By pinpointing key
monitoring junctures in the communication flow, we were able to implement
targeted capture mechanisms, which feed into a pre-configured, ELK-based SIEM
environment. This allows real-time, structured, and context-aware alerting within a
familiar SOC interface.

In this article, we outline the technical underpinnings of our system and detail how
our pipeline enables deep, protocol-specific analysis. We also demonstrate the
framework’s efficacy through the detection of real-time man-in-the-middle
(MITM) attacks on LoRaWAN traffic, including payload manipulation and
decryption, thereby validating the practicality of our method in a cloud-hosted SOC
context.

Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

‒ 67 ‒

Figure 1

Main components of LoRaWAN Test Environment at Obuda University

The key contributions of our research include the following:

• Design and deployment of a LoRaWAN testbed with cloud-native infrastructure
support: We established a fully functional, university-hosted LoRaWAN test
environment in conjunction with the OTC cloud platform. This infrastructure
enabled controlled experimentation with real traffic flows and realistic attack
scenarios, serving as a foundation for validating IDS performance in a production-
like setting.

• A stateful, multi-point monitoring architecture for LoRaWAN networks: By
identifying and instrumenting critical points across the communication chain (e.g.,
end-devices, gateways, and network servers), we implemented a fine-grained
monitoring pipeline that allows deep inspection and event correlation even for
encrypted or protocol-obscured traffic patterns.

• Seamless integration into existing SOC environments using ELK-based SIEM
tools: Our system is designed for compatibility with enterprise-grade SOC
operations. Through the use of ELK stack components, we provide an extensible
and maintainable way to define LoRaWAN-specific alert rules, visualize
telemetry data, and cross-reference IoT events with conventional IT security logs.

• Demonstrated effectiveness in detecting real-world attack scenarios: We validated
the practical value of the proposed system by simulating two types of man-in-the-
middle (MITM) attacks: a payload modification and a denial-of-service attempt,
and successfully generating actionable alerts within the SIEM. These scenarios
illustrate the framework’s ability to surface subtle, protocol-level anomalies that
are typically invisible to generic IDS tools.

• Blueprint for extending SOC visibility into IoT ecosystems: Beyond the technical
implementation, our work presents a transferable architecture for organizations
aiming to extend their existing security monitoring infrastructure to cover IoT
deployments. The framework provides a scalable, adaptable model for
incorporating low-power, low-data-rate IoT networks into broader threat
detection and response strategies.

Zs. Bringye et al. Extending SOC Capabilities to LoRaWAN: A Cloud-Integrated
 Intrusion Detection Framework for IoT Networks

‒ 68 ‒

The structure of the paper is as follows: Section 2 provides an overview of related
work on anomaly detection and intrusion detection, with a focus on both traditional
and IoT-specific approaches. In Section 3 a brief overview of the LoRaWAN
protocol and operation is presented. Section 4 outlines the experimental setup and
Section 5 presents the attack scenarios and detection results. Finally, the Conclusion
summarizes our work and highlights possible future directions.

2 Related Work
Anomaly detection methods in LoRaWAN differ significantly from those used in
traditional networks, due to fundamental differences in architecture, energy
constraints, and communication characteristics. LoRaWAN devices are typically
low-power and resource-constrained, which makes the use of lightweight, energy-
efficient detection techniques essential. Moreover, LoRaWAN’s long-range and
low-bandwidth communication model results in frequent packet loss and limited
data rates, further complicating the application of traditional anomaly detection
approaches. In contrast, conventional networks benefit from high data throughput
and ample computational capacity, enabling the deployment of resource-intensive
methods such as deep learning and advanced traffic analysis. These disparities
render many traditional detection techniques ineffective in LoRaWAN
environments, prompting the development of specialized anomaly detection
strategies tailored to low-power, high-latency, and lossy communication contexts.

In response to these challenges, a growing body of research has focused on
developing tailored anomaly and intrusion detection solutions for LoRaWAN
networks. The following paragraphs review relevant literature in this domain.

IoT networks characterized by heterogeneous systems and often changing
environments has led to new attack vectors, thus enabling artifcial intelligence
based tools to serve promising detection techniques. Also, the emergence of Egde
and fog computing in IoT networks has introduced new IDS or anomaly detection
methods.

Despite these promising approaches, several studies rely heavily on synthetic
datasets or simulated environments, which may not reflect the complexities of real-
world LoRaWAN deployments. Esteves et al. [2] highlight that many existing
intrusion detection methods lack validation against realistic traffic and fail to
address deployment challenges in constrained environments. Their work proposes
a lightweight, edge-native intrusion detection framework specifically tailored for
LoRaWAN, capable of analyzing traffic directly at the gateway level without
requiring centralized processing. Their system combines signature-based rules (via
Suricata) with behavioral anomaly detection using a K-Nearest Neighbors classifier
and analyzes packet metadata (RSSI, SNR, payload size, SF, etc.) to detect
intrusions without inspecting encrypted payloads, making it privacy-preserving and

Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

‒ 69 ‒

efficient. Designed for deployment in both centralized and distributed (edge)
scenarios, the IDS demonstrates high accuracy in detecting anomalies and malicious
behavior, including replay attacks, misconfigurations, and potential network
disruptions. The approach is validated on real-world data and adapted to dynamic
environments like mobile gateways in railways and search-and-rescue missions.
The authors emphasize the importance of real-world evaluation and demonstrate the
effectiveness of their solution using actual LoRaWAN gateway traffic. Similarly,
Milani et al. [3] underline the necessity of deploying intrusion detection as close to
the data source as possible, preferably at the edge, to improve responsiveness and
reduce backhaul overhead. They introduced EdgeLora, an architecture enabling on-
gateway data processing to reduce latency and bandwidth usage while preserving
protocol security and scalability. Spadaccino et al. [4] also support this perspective,
noting that edge-based IDS solutions, by operating near the data source, can deliver
faster detection and reaction times—especially important in time-critical IoT
scenarios.

Proto et al. [5] propose LADE, a lightweight intrusion detection architecture for
LoRaWAN sensors that identifies energy depletion attacks (EDAs) based on local
energy consumption analysis. Their system deploys both learning and detection
modules directly on constrained IoT devices, using statistical distance metrics
(Sibson divergence) to compare real-time energy profiles. LADE effectively detects
both active jamming and silent firmware-level attacks that drain batteries without
generating network traffic. While LADE does not monitor protocol-level anomalies
(e.g., MIC tampering or join message abuse), it uniquely enables autonomous
detection of hardware- and firmware-induced EDAs without reliance on network
traffic analysis.

Authors in [6] presents LoRaLOFT, a novel intrusion detection method on MAC
layer in LoRaWAN networks. The study targets two major attack types; greedy
behavior where compromised devices selfishly violate MAC constraints like duty
cyle and an attack behavior, where malicious nodes intentionally flood the network
with traffic to disrupt legitimate communication. LoRaLOFT, combines a rule-
based threshold system with an unsupervised machine learning model ‒ Local
Outlier Factor (LOF) with a dyanmic detection metric ‒ the number of packet, or
energy consumption to detect unexpected behaviour. The authors managed to detect
the above-mentioned anomalies with high accuracy and low false-positive rates.
This solution enables the identification of malicious nodes behaviour using
computationally lightweight metrics, eliminating the need for deep packet
inspection or centralized analysis, and thereby enabling deployment in resource-
constrained environments such as gateways or fog-level processing nodes.

Babazadeh et al. in [7] also proposes a LoRa-based anomaly detection framework
that operates on both the sensor (edge) and center (cloud) sides, aiming to minimize
data transmission and energy consumption while maintaining high detection
reliability. Unlike traditional IDS approaches, this system does not rely on machine
learning or traffic analysis but instead uses data compressibility as an indicator of

Zs. Bringye et al. Extending SOC Capabilities to LoRaWAN: A Cloud-Integrated
 Intrusion Detection Framework for IoT Networks

‒ 70 ‒

anomalous behavior. Each sensor locally monitors its collected data and calculates
a compression rate; significant drops in compressibility signal a potential anomaly.
Only the most suspicious event in each cycle is reported to the center via lightweight
alert messages. Upon receiving an alert, the central node requests and reconstructs
the compressed data for in-depth analysis. This method is optimized for low-power,
bandwidth-constrained LoRa environments, offering an efficient alternative for
anomaly detection without needing continuous payload transmission or complex
computation on the sensor.

Kurniawan and Kyas in their work [8] also base their detection methods on
metadata. They present a machine learning-based anomaly detection system
tailored for LoRaWAN gateways. Their approach focuses on monitoring
communication metadata ‒ such as RSSI, SNR, and packet timing ‒ to detect
potential anomalies without analyzing encrypted payloads. By collecting real-world
LoRaWAN traffic data and evaluating it using eleven different outlier detection
algorithms (e.g., LOF, KNN, CBLOF, PCA), they demonstrate that lightweight
anomaly detection is feasible even on constrained devices like Raspberry Pi.
The study shows promising accuracy and performance across multiple anomaly
types, including replay attacks and flooding, making it a strong candidate for
gateway-level intrusion monitoring.

Table 1
Cryptographic Keys Used for Message Protection in LoRaWAN 1.0.3

Study Methodology Monitoring
location

Evaluation Key findings Limitation

[2] KNN-based
anomaly
detection

Gateway
(edge) and
centralized
SOC

Quantitative
(real network
data, >90%
accuracy)

Edge-based
IDS using real
network traffic

Focused on
statistical traffic
anomalies, not
protocol logic

[3] Group-key
encryption and
local processing
(Edge2LoRa)

Gateway
and edge

Experimental
demo

Reduces
latency and
network load

No
intrusion/anomaly
detection logic

[4] Conceptual
comparison

Edge/cloud Conceptual Highlights need
for lightweight
ML at edge

No
implementation
for LoRaWAN

[5] Sensor side
energy
consumption
pattern based

Sensor
level

Quantitative
(F1 ≈ 0.93)

Detects silent
energy
depletion
attacks

Limited to Energy
Depletion Attacks

[6] Threshold-
based

Network
server

Simulation Detects
greedy/flooding
behavior

Focuses on MAC
layer anomalies

[7] Data
compressibility-

Sensor
level

Prototype
with alerts

energy-efficient
local filtering

Anomaly
detection at
sensor side

Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

‒ 71 ‒

based anomaly
detection

[8] Metadata-based
anomaly
detection

Gateway
level

Quantitative detection is
feasible on
constrained
devices

No protocol state
modelling

To summarize, while the reviewed literature offers a diverse set of anomaly
detection approaches for LoRaWAN, most solutions remain limited either to
localized heuristics or operate without explicit protocol-awareness. Notably, none
of these studies model protocol states formally or support cross-layer, SOC-
integrated monitoring.

To clearly illustrate these differences, Table 1 presents a qualitative comparison of
the most relevant LoRaWAN IDS approaches discussed above, detailing their
methodology, monitoring location, evaluation type, along with key findings and
limitations compared to our proposed solution. As shown, our work is, to the best
of our knowledge, the first to combine both IoT and legacy network environments
into SOC-integrated intrusion detection framework with multi-point protocol-level
telemetry enabling anomaly detection based on well-defined state transitions in the
LoRaWAN protocol.

3 LoRaWAN Communication

3.1 Overview
LoRaWAN (Long Range Wide Area Network) [9] is a low-power, wide-area
networking protocol designed for wireless communication with IoT devices. It
operates on top of LoRa (Long Range), a chirp spread spectrum modulation
technique, which is ideal for IoT devices that require extensive coverage and
prolonged battery life.

LoRaWAN defines the communication protocol and system architecture for the
network. It specifies how devices communicate with gateways, which then connect
to network servers. The architecture includes End Devices with sensors or
actuators, equipped with LoRa modules to collect information from its
surroundings, Gateways to relay messages between end devices and network
servers and servers:

Network Server for managing the network, handling MAC layer operations, and
performing message deduplication. They also manage the routing of the messages,
keeps track of the devices in the network, and ensures secure communication.

Zs. Bringye et al. Extending SOC Capabilities to LoRaWAN: A Cloud-Integrated
 Intrusion Detection Framework for IoT Networks

‒ 72 ‒

Join Server primarily responsible for device authentication, session key generation,
distribution and storage. It is a newly introduced architecture element in LoRaWAN
1.1.

Application Servers for processing application data and providing interfaces for
end-users.

LoRaWAN has evolved through several specification versions, with LoRaWAN
1.0.x forming the foundation for basic functionality and wide adoption, while
LoRaWAN 1.1 [10] introduced significant enhancements such as improved
roaming support, finer-grained security mechanisms, and the formal separation of
the Join Server. These developments reflect the protocol’s maturation toward
supporting more robust and scalable IoT deployments.

3.1.1 Device Classes

LoRaWAN defines three classes of end devices: Class A, B and C.

Class A: Provides bidirectional communication. It is the most energy-efficient
class, where devices open two short receive windows after transmitting uplink data.
This class is suitable for applications where uplink communication predominates,
and downlink messages are not time-critical.

Class B: Adds scheduled receive windows, allowing devices to receive downlink
messages at predetermined times. The support for Class B devices were introudced
in LoRaWAN 1.0.3.

Class C: Keeps receive windows open almost continuously, except when
transmitting, making it ideal for applications requiring frequent downlink
communication.

According to the LoRaWAN standard [9], all implemented modules are required to
adhere to Class A specifications. Classes B and C are optional and may be used for
specific design scenarios, to accommodate different application needs.

3.1.2 LoRaWAN Packet Structure, and Message Types

In the LoRaWAN protocol, the structure of the payload depends on the purpose of
the message, which may be a Join Request (used during Over-The-Air Activation –
OTAA), Join Accept (response from the network to a Join Request), or a Data
Frame (used for application-level data and MAC commands). The structure of the
payload in the case of a Data Frame is depicted in Fig. 2, which illustrates the
internal composition of a LoRaWAN Data Frame. The payload consists of a MAC
header (MHDR), a MAC payload ‒ which includes the Frame Header (FHDR), an
optional FPort field, and the actual FRMPayload ‒ and finally the Message Integrity
Code (MIC). The Frame Header itself contains addressing and control information
such as the DevAddr, Frame Control (FCtrl), Frame Counter (FCnt), and optional
MAC commands. The FRMPayload may contain either application data or MAC

Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

‒ 73 ‒

commands, depending on the value of the FPort. This layered structure enables both
application communication and control signaling within a single, secure frame.

Figure 2

Structure of the payload of a Data Frame

LoRa radio packets can follow either an explicit or implicit format. In this work, we
focus on the explicit format, as it is used in the communication scenarios we
examined. The key difference between uplink and downlink transmissions is that
downlink packets omit the trailing CRC (Cyclic Redundancy Check) field in order
to reduce channel occupancy.

Figure 3

Structure of the LoRa physical layer frame

Fig. 3 shows the format of the LoRa physical layer frame. The application-relevant
data mandated by the LoRaWAN protocol resides in the PHYPayload field,
whose maximum size depends on the regional parameters.

3.2 Device Activation and Key Management in LoRaWAN
Secure communication is a fundamental requirement in LoRaWAN-based IoT
networks, where devices often operate unattended in untrusted environments. To
ensure both confidentiality and integrity of data, LoRaWAN employs symmetric
cryptographic mechanisms based on session keys. These keys are used to encrypt
the application payload and to generate Message Integrity Codes (MICs), which
authenticate the origin and content of each message.

The Message Integrity Code (MIC) is used to verify the authenticity and integrity
of the message. The MIC is calculated based on specific fields of the message and
is appended to the end of the PHYPayload. It allows the receiving network
components to detect any unauthorized modifications to the message during
transmission. The exact fields included in the MIC calculation depend on the
message type (e.g., Join Request, Data Frame, etc.).

Zs. Bringye et al. Extending SOC Capabilities to LoRaWAN: A Cloud-Integrated
 Intrusion Detection Framework for IoT Networks

‒ 74 ‒

3.1.3 Device Activation in LoRaWAN

The LoRaWAN specification defines two methods for activating end devices: Over-
the-Air Activation (OTAA) and Activation by Personalization (ABP).

The details of the join procedure differ from version to version. In our
implementation, we focus on the LoRaWAN 1.0.3 join procedure because this is
the version currently used in our testbed environment. Despite the release of newer
specifications such as LoRaWAN 1.1, version 1.0.3 remains widely adopted in
many real-world production deployments due to its relative simplicity,
compatibility with legacy devices, and maturity in terms of vendor support.
Importantly, the widely used open-source ChirpStack network server, which serves
as the backbone for numerous academic and industrial LoRaWAN installations,
continues to use 1.0.3 as its default implementation target. As a result, analyzing
version 1.0.3 offers both practical relevance and technical clarity for real-world
applications. The following section describes the procedure based on the
LoRaWAN 1.0.3 [9] specification, which is a slightly simpler method for generating
session keys and uses fewer keys to secure communication than in specification 1.1
[10].

In OTAA, which is the preferred and more secure method, devices perform a join
procedure at the beginning of their operation. The end device sends a Join Request
message containing its DevEUI, AppEUI, and a randomly generated DevNonce.
The Network Server responds with a Join Accept message that includes a JoinNonce
(a server-generated random number), NetID, a dynamic device address (DevAddr),
and other parameters such as RXDelay and DLSettings. Both the Join Request and
Join Accept messages are protected using a pre-shared AppKey, which is known to
both the end device and the network server.

Using the AppKey and values from the join exchange (DevNonce, JoinNonce), the
end device derives two session keys: The NwkSKey (Network Session Key), used
to ensure message integrity and authenticate MAC-level communication, and the
AppSKey (Application Session Key), used to encrypt and decrypt the application
payload. These session keys are unique and valid per session and ensure
confidentiality and authenticity of LoRaWAN communications in dynamic
environments.

In contrast, ABP assigns the DevAddr, NwkSKey, and AppSKey directly to the end
device during provisioning. No join exchange is performed during runtime. While
ABP simplifies deployment, especially in networks with no reliable downlink, it
provides lower security. The keys remain static and may be reused across devices
or sessions, making the system more vulnerable to key compromise or cloning.

3.1.4 Key Usage in Message Protection

Without access to the AppKey and the Join procedure, session keys cannot be
reconstructed. Consequently, neither the application payload nor the MIC can be

Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

‒ 75 ‒

properly decrypted, validated, or regenerated. This limitation prevents attackers or
analysts without access to keys from meaningfully modifying or verifying
LoRaWAN messages. Table 1 summarizes the cryptographic keys used for
encrypting and validating messages, depending on the message type.

Table 1
Cryptographic Keys Used for Message Protection in LoRaWAN 1.0.3

Msg type Encryption key Msg integrity key
MACPayload NwkSKey1 (MAC

commands)
NwkSKey

MACPayload AppSKey NwkSKey
Join-Request no encryption AppKey
Join-Accept AppKey AppKey

1In case of MAC commands, however, MAC commands can also be transmitted in the unencrypted
FOpts field

Without access to the AppKey and the Join procedure, session keys cannot be
derived, and neither the application payload nor the MIC can be properly interpreted
or regenerated. Table 2 outlines what can or cannot be accessed or modified without
the necessary keys.

Table 2
Decryption and modification possibilities without keys

Data type Readable without key Modifiable without detection
Payload No No
MIC Partially* No

*Only metadata-level observables; integrity verification not possible

3.1.5 Data Enrichment in LoRaWAN Communication

In addition to the payload data directly transmitted by end devices, LoRaWAN
communication is enriched with multiple layers of metadata during transmission.
At the physical (radio) layer, the gateway captures additional contextual
information such as RSSI, SNR, frequency, channel, and timestamp, which are
appended to each received RF packet and may be leveraged for anomaly detection
or forensic analysis.

Fig. 4 illustrates the key metadata fields and gateway status parameters associated
with each received packet. Beyond the base64-encoded payload, the gateway
contributes radio-level attributes and periodically broadcasts its own status,
including GPS coordinates, system time, and statistics on packet reception,
forwarding, and emission. These enriched data fields serve as valuable inputs for
protocol-level monitoring and detection of suspicious behavior.

Zs. Bringye et al. Extending SOC Capabilities to LoRaWAN: A Cloud-Integrated
 Intrusion Detection Framework for IoT Networks

‒ 76 ‒

Moreover, network servers, such as ChirpStack, can further enhance the data
context by linking messages to registered device names, identifiers, and session
state. If the Join procedure can be observed and the AppKey is known (or
discoverable), session keys can be derived, allowing decryption of the payload and
deeper inspection of the application-layer data. This multi-layer enrichment process
significantly expands the analytical potential of LoRaWAN communication and
provides a rich foundation for cross-layer anomaly detection strategies.

Figure 4

Metadata and status information added by the LoRaWAN gateway to each RF packet

4 The LoRaWAN Security Testing Environment
The constructed test environment consists of a physical LoRaWAN network
operated locally at our institute, complemented by additional components deployed
in a cloud infrastructure to support traffic observation and data collection.

4.1 Elements of Our LoRaWAN Network
The core of the LoRaWAN setup includes two RAK Wireless gateways
(RAK7246G WisGate Developer D0) and an open-source ChirpStack [11]
LoRaWAN server hosted in the T-Systems OTC public cloud. Both gateways are
implemented as Raspberry Pi HAT modules and thus require Raspberry Pi hardware
to operate.

The first gateway is based on a Raspberry Pi 4 and connects directly to the internet
via the institutional firewall, forwarding packets to the ChirpStack server via
MQTT. The second gateway uses a Pi Zero 2 and communicates locally with a
Raspberry Pi 3 running the ChirpStack MQTT Forwarder. This forwarder receives
UDP-formatted packets from the gateway and relays them to the cloud-based
ChirpStack server using MQTT. This dual-gateway architecture enables the parallel
monitoring of both MQTT and UDP-based communication paths.

Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

‒ 77 ‒

The virtual machines running the ChirpStack server and the ELK stack
(Elasticsearch, Logstash, Kibana) are deployed within the T-Systems OTC cloud.
The MQTT broker (Eclipse Mosquitto), along with PostgreSQL and Redis services
required by ChirpStack, are also hosted in this cloud environment. The structure of
our test environment is depicted in Fig. 5.

Periodic data transmission is provided by COST sensors (Seeed Studio SenseCAP
S2101 and S2102), which transmit measured values over the LoRaWAN network.
The S2101 sensor sends ambient temperature and humidity, while the S2102
transmits light intensity. Additionally, both sensors include the battery level every
20 measurements.

The environment also includes Seed Studio Wio-E5 mini LoRaWAN clients
connected to Raspberry Pi boards via serial interface. Controlled via AT commands,
these devices support a variety of test scenarios, including invalid keys and
unregistered device attempts. However, the AT interface does not support sending
protocol-level malformed packets (e.g., with CRC errors), as such functionality is
not exposed by the command set.

Figure 5

Overview of LoRaWAN test environment, showing monitoring points, indicated with blue triangles
across the LoRaWAN communication pipeline. Uplink messages from LoRaWAN end devices are

received by gateways (GW#1, GW#2) and forwarded to the ChirpStack network server. The
ChirpStack stack includes components such as Redis, PostgreSQL, and an MQTT broker for handling
telemetry and device data. All collected data is processed by the LoRaWAN packet preprocessor and

forwarded to the SIEM for correlation, visualization, and real-time alerting.

Zs. Bringye et al. Extending SOC Capabilities to LoRaWAN: A Cloud-Integrated
 Intrusion Detection Framework for IoT Networks

‒ 78 ‒

4.2 Monitoring and Collection of LoRaWAN Communication
In order to create a comprehensive IDS (Intrusion Detection System)
implementation, we aimed to monitor LoRaWAN communication at every possible
point where modification or interference could potentially occur. Based on an
analysis of the communication pipeline, we identified five distinct locations where
traffic can be captured and analyzed.

LoRaWAN communication is observed and collected through five different
methods, two of which have already been implemented and tested beyond proof-of-
concept (PoC) level. The remaining three are currently operational in PoC form.
Table 3 summarizes the different monitoring possibilities in our test
environment.The monitoring solutions are as follows:

Software-defined radio (SDR)-based signal reception, with fully software-based
decoding and analysis of raw LoRa signals.

Reception and analysis using two RAK7246G WisGate Developer D0 Gateways
and custom Raspberry Pi-based software. A similar solution was described in [12],
and our system is functional at the PoC level. However, further configuration is still
required for the Semtech SX1308 radios. The implementation was based on
Semtech's publicly available sample code [13].

Interception of UDP traffic between the LoRaWAN gateway and the MQTT
forwarder, using widely adopted packet sniffing tools [14]. This method is still in
the PoC phase, and integration with the ELK stack for data forwarding has yet to be
completed.

Monitoring MQTT communication between the gateway's MQTT forwarder and
the ChirpStack server. By subscribing to the appropriate MQTT topics, LoRaWAN
packet data can be captured without interfering with live system operation. In
production environments, these MQTT messages are typically encoded using
Protobuf. The Protobuf schema is available from the ChirpStack GitHub repository
[10], [11], which allows custom decoders to be developed. Decoded messages are
transformed into JSON format and forwarded to the ELK stack.

Accessing dynamic data stored by ChirpStack in Redis, such as LoRaWAN frame
logs. Using the appropriate API key (which can be generated from the ChirpStack
admin interface), these Protobuf-formatted messages can be retrieved and decoded
into JSON. The processed messages are then forwarded to the ELK stack for further
analysis.

4.3 SIEM-Based Telemetry Pipeline for LoRaWAN Security
Monitoring

To support structured monitoring of LoRaWAN communications, we implemented
a Security Information and Event Management (SIEM) pipeline based on the open-
source ELK stack (Elasticsearch, Logstash, Kibana) [15]. The pipeline is designed

Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

‒ 79 ‒

to ingest, process, enrich, and store LoRaWAN traffic data from multiple sources,
enabling real-time visualization, correlation, and anomaly detection within a SOC
environment. The system relies on a LoraWAN packet preprocessor with two
independent middleware components, each responsible for processing LoRaWAN
messages from distinct sources:

Table 3
Comparison of the monitoring approaches

Method Readiness Required Access Level
Radio signal capture (SDR) PoC Physical proximity within the LoRa radio

range (potentially up to several hundred
meters)

Radio signal capture (LoRa
radio)

PoC Physical proximity within the LoRa radio
range (potentially up to several hundred
meters)

UDP traffic interception PoC Access to the local network (LAN). If
using Wi-Fi, no physical connection is
needed, but joining the network is
required

MQTT packet monitoring Ready Network access and connection to the
MQTT broker; depending on its security
configuration, this can range from simple
(no security) to complex (certificate-
based access)

Redis data access Ready Network access and a valid Redis API
key, which requires ChirpStack
administrative privileges

Frame Log Middleware – Redis-Based Source

The first component retrieves LoRaWAN frame logs directly from the ChirpStack
network server’s Redis stream, decoding Protobuf [16] messages into JSON using
ChirpStack’s API bindings, and enriching the entries with contextual metadata such
as device name and profile. This enrichment is achieved through a preloaded in-
memory dictionary generated via ChirpStack’s API calls. Newly detected devices
are dynamically registered into this dictionary based on their Join Request data.

Payload Decoder Middleware – MQTT-Based Source

The second middleware supports payload decryption, where available, through an
external decoder module [17] integrated into the workflow. The decoder derives
session keys (AppSKey and NwkSKey) by using stored AppKeys, retrieved from
the ChirpStack database, and by observing Join Request and Join Accept messages.

Although payloads and MICs are inaccessible without keys, our system leverages
observable non-payload fields, such as frame type, DevEUI, DevNonce, timing
metadata, RSSI, and SNR, to detect anomalies even in encrypted traffic. Behavioral
inconsistencies like repeated join attempts, DevNonce reuse, invalid message

Zs. Bringye et al. Extending SOC Capabilities to LoRaWAN: A Cloud-Integrated
 Intrusion Detection Framework for IoT Networks

‒ 80 ‒

sequences, denial-of-service conditions, or other protocol misuse patterns can be
identified through protocol-conformant state tracking and metadata correlation.
When decryption succeeds, the application-layer payload is parsed into structured
JSON and forwarded to Logstash.

5 Case Study: Application of the Monitoring
Framework

To evaluate the effectiveness of our proposed multi-layer detection architecture, we
implemented a real-world man-in-the-middle (MITM) attack targeting the
LoRaWAN communication chain between the gateway and the ChirpStack network
server. The goal of the attack was twofold: (i) to manipulate location-related
metadata (specifically, GPS coordinates) in transit, and (ii) to escalate the attack by
decrypting encrypted payloads through session key extraction.

5.1 GPS Location Manipulation Attack and Detection
In the first phase, we intercepted and altered live LoRaWAN traffic using ARP
spoofing to redirect UDP packets (port 1700) through a Kali Linux-based attacker
node. The captured packets were parsed using tshark, transformed to JSON format,
and manipulated in real-time using a Python script built on the scapy library.
The script identified LoRaWAN packets and replaced legitimate gateway GPS
metadata (latitude, longitude, altitude) with randomly generated coordinates before
forwarding the modified packets to the original destination (ChirpStack). This
manipulation was repeated periodically every 15 minutes to simulate a mobile
gateway scenario, creating misleading geolocation data for the network.

The overall architecture of the interception and manipulation process, including the
attack point and data flow through the monitoring pipeline, is illustrated in Fig. 6.

To detect spoofing-based manipulation of GPS metadata in LoRaWAN
communication, we defined a custom SIEM rule within the Kibana interface. This
rule leverages our gps.loc enrichment field, created during preprocessing, which
captures the geolocation metadata associated with each received packet. Assuming
that legitimate devices remain geographically static, the system groups incoming
messages by devName and counts the number of distinct coordinate values
observed over a short time window. Any unexpected change in the unique gps.loc
value is treated as anomaly and triggers an alert. This threshold-based approach was
implemented using Kibana’s native detection engine and proved effective in
flagging anomalous mobility patterns caused by GPS spoofing.

To illustrate the impact of such GPS spoofing attacks, we visualized the
manipulated gateway coordinates on a geolocation map in Kibana. Leveraging the

Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

‒ 81 ‒

custom gps.loc field in our enriched logs, we configured a clustered map
visualization that aggregates device occurrences based on geographic location.

Figure 6

LoRaWAN security monitoring pipeline highlighting the UDP interception point between the gateway
and the network server. The red lightning symbol represents the point where man-in-the-middle attacks

are executed in our scenarios.

This allowed us to clearly observe artificial location shifts over time, reflecting the
simulated mobility caused by the cyclic injection of falsified coordinates.
The resulting visualization in Fig. 7 demonstrates the dynamic and inconsistent
geographic distribution of the gateway, which can serve as a strong indicator of
suspicious behavior in a real-world monitoring context.

The duplicated appearance of each manipulated location in the visualization
originates from the data processing architecture, where two independent
middleware components ingest overlapping sets of LoRaWAN frame logs from
different sources. One middleware captures frame data from the Redis-based
ChirpStack stream, while the other processes decoded payloads received via the
MQTT broker. As both pipelines forward enriched entries to the SIEM system
independently, the same logical transmission event may appear twice in the final
dataset. This effect leads to duplicated GPS coordinates in the Kibana map, even
though only a single gateway transmission occurred in the physical environment.

5.2 Payload Decryption
In the second phase, we extended the attack to decrypt uplink payloads by exploiting
LoRaWAN session key derivation. Using the Loracrack toolset [17] developed by
Applied Risk, the attacker captured Join Request and Join Accept messages and
performed a dictionary-based attack to retrieve the AppKey. Provided that the key
was known or weak, session keys were derived and subsequently used to decrypt
encrypted Unconfirmed Data Up or Confirmed Data Up payloads.

Zs. Bringye et al. Extending SOC Capabilities to LoRaWAN: A Cloud-Integrated
 Intrusion Detection Framework for IoT Networks

‒ 82 ‒

Figure 7

Clustered map visualization of manipulated gateway GPS positions in Kibana

The map shows LoRaWAN gateway positions reported in enriched logs under simulated GPS spoofing
conditions. Each green dot represents a unique falsified location, while the number inside the dot

indicates how many times that specific coordinate appeared in the telemetry logs

The attack was successfully executed in a mixed physical and virtual environment.
It demonstrated that under certain conditions, (e.g., weak or known AppKeys) an
adversary cannot only inject falsified metadata but also gain access to sensitive
sensor information transmitted within encrypted LoRaWAN payloads. Our system
was able to detect both aspects of the attack: the geolocation manipulation (via
payload field validation and cross-layer inconsistency detection), and the abnormal
session behavior (via MIC validation and correlation of Join messages within the
SOC environment). Fig. 8 shows how decoded environmental sensor data from a
LoRaWAN device is displayed in the SIEM, including temperature, humidity, CO₂,
etc.

Figure 8

Decoded sensor data displayed in the SIEM system

Conclusions

In this paper, we presented a practical and scalable approach for integrating
LoRaWAN-based anomaly detection into centralized SOC environments. By
establishing a full-featured testbed built on OTC cloud infrastructure and focusing
on the widely adopted LoRaWAN 1.0.3 specification, we demonstrated how multi-
layer monitoring can be applied across the LoRaWAN communication pipeline.
Our system identifies strategic observation points, along the communication
pipeline, where protocol-aware telemetry was used to feed meaningful data into an

Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

‒ 83 ‒

ELK-based SIEM platform. We showed that even without decrypting payloads,
valuable insights can be extracted from metadata and message structure, enabling
real-time detection of critical attack scenarios such as payload manipulation and
denial-of-service. Moreover, our framework bridges the visibility gap between
traditional IT infrastructure and low-power, IoT-specific communication, laying the
groundwork for unified security monitoring.

While the current study focuses on a small-scale testbed and a specific LoRaWAN
version (1.0.3), this choice reflects the version's widespread use in production
systems, particularly in Central Europe, and allows for reproducible
experimentation in a controlled environment. Despite this scope, the proposed
framework is not tightly coupled to a specific protocol version. On the contrary, its
modular design and emphasis on protocol-conformant telemetry make it highly
adaptable to newer LoRaWAN specifications or even to other IoT communication
protocols. Therefore, we consider our implementation a blueprint for extending
SOC-based visibility into constrained IoT networks. Future work will include
broader protocol coverage, real-world deployment at larger scale, and the
integration of advanced machine learning-based detection capabilities, which
together will further enhance the effectiveness and applicability of our approach in
securing next-generation IoT environments.

Acknowledgement

This research was supported with access to the Open Telekom Cloud, provided by
Deutsche Telekom TSI Hungary Ltd. We gratefully acknowledge the infrastructure
support, which contributed to the results presented in this publication and helped
promote the T-Systems Open Telekom Cloud both nationally and internationally.

References

[1] T. E. Ali, F. I. Ali, P. Dakić, and A. D. Zoltan, “Trends, prospects,
challenges, and security in the healthcare internet of things,” Computing,
Vol. 107, No. 1, p. 28, Dec. 2024, doi: 10.1007/s00607-024-01352-4

[2] G. Esteves, F. Fidalgo, N. Cruz, and J. Simão, “Long-Range Wide Area
Network Intrusion Detection at the Edge,” IoT, Vol. 5, No. 4, Art. No. 4,
Dec. 2024, doi: 10.3390/iot5040040

[3] S. Milani, I. Chatzigiannakis, D. Garlisi, M. D. Fraia, and P. Pisani,
“Enabling Edge processing on LoRaWAN architecture,” in Proceedings of
the 29th Annual International Conference on Mobile Computing and
Networking, Oct. 2023, pp. 1-3, doi: 10.1145/3570361.3614074

[4] P. Spadaccino and F. Cuomo, “Intrusion Detection Systems for IoT:
opportunities and challenges offered by Edge Computing and Machine
Learning,” Apr. 14, 2022, arXiv: arXiv:2012.01174, doi:
10.48550/arXiv.2012.01174

Zs. Bringye et al. Extending SOC Capabilities to LoRaWAN: A Cloud-Integrated
 Intrusion Detection Framework for IoT Networks

‒ 84 ‒

[5] A. Proto, C. Miers, and T. Carvalho, “An Intrusion Detection Architecture
Based on the Energy Consumption of Sensors Against Energy Depletion
Attacks in LoRaWAN:,” in Proceedings of the 9th International Conference
on Internet of Things, Big Data and Security, Angers, France: SCITEPRESS
- Science and Technology Publications, 2024, pp. 268-275, doi:
10.5220/0012703400003705

[6] M. Chen, L. Mokdad, J. B. Othman, and J.-M. Fourneau, “LoRaLOFT-A
Local Outlier Factor-based Malicious Nodes detection Method on MAC
Layer for LoRaWAN,” in GLOBECOM 2022 - 2022 IEEE Global
Communications Conference, 2022, pp. 2026-2031, doi:
10.1109/GLOBECOM48099.2022.10000852

[7] M. Babazadeh, “LoRa-Based Anomaly Detection Platform: Center and
Sensor-Side,” IEEE Sens. J., Vol. 20, No. 12, pp. 6677-6684, June 2020, doi:
10.1109/JSEN.2020.2976650

[8] A. Kurniawan and M. Kyas, “Machine Learning Models for LoRa Wan IoT
Anomaly Detection,” in 2022 International Conference on Advanced
Computer Science and Information Systems (ICACSIS), 2022, pp. 193-198
doi: 10.1109/ICACSIS56558.2022.9923439

[9] “LoRaWAN® Specification v1.0.3,” LoRa Alliance®. Accessed: May 20,
2025 [Online] Available: https://hz1.37b.myftpupload.com/resource_hub/
lorawan-specification-v1-0-3/

[10] “LoRaWAN® Specification v1.1.” Accessed: May 20, 2025 [Online]
Available: https://resources.lora-alliance.org/technical-specifications/
lorawan-specification-v1-1

[11] “ChirpStack open-source LoRaWAN Network Server.” Accessed: May 26,
2025 [Online] Available: https://www.chirpstack.io/

[12] A. Povalac, J. Kral, H. Arthaber, O. Kolar, and M. Novak, “Exploring
LoRaWAN Traffic: In-Depth Analysis of IoT Network Communications,”
Sensors, Vol. 23, No. 17, Art. No. 17, Jan. 2023, doi: 10.3390/s23177333

[13] Lora-net/picoGW_hal. (Aug. 22, 2024) C. LoRa®. Accessed: June 02, 2025.
[Online]. Available: https://github.com/Lora-net/picoGW_hal

[14] “Scapy.” Accessed: June 02, 2025 [Online] Available: https://scapy.net/

[15] “Elastic Stack: (ELK) Elasticsearch, Kibana & Logstash,” Elastic. Accessed:
May 26, 2025 [Online] Available: https://www.elastic.co/elastic-stack

[16] “Protocol Buffers.” Accessed: May 26, 2025 [Online] Available:
https://protobuf.dev/

[17] “Loracrack/loracrack_decrypt.c at master applied-risk/Loracrack,” GitHub.
Accessed: May 26, 2025 [Online] Available: https://github.com/applied-
risk/Loracrack/blob/master/loracrack_decrypt.c

	1 Introduction
	2 Related Work
	3 LoRaWAN Communication
	3.1 Overview
	3.1.1 Device Classes
	3.1.2 LoRaWAN Packet Structure, and Message Types

	3.2 Device Activation and Key Management in LoRaWAN
	3.1.3 Device Activation in LoRaWAN
	3.1.4 Key Usage in Message Protection
	3.1.5 Data Enrichment in LoRaWAN Communication

	4 The LoRaWAN Security Testing Environment
	4.1 Elements of Our LoRaWAN Network
	4.2 Monitoring and Collection of LoRaWAN Communication
	4.3 SIEM-Based Telemetry Pipeline for LoRaWAN Security Monitoring

	5 Case Study: Application of the Monitoring Framework
	5.1 GPS Location Manipulation Attack and Detection
	5.2 Payload Decryption

