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Abstract: The rapid expansion of LoRaWAN-based IoT deployments in critical 
infrastructure, industrial environments, and smart city applications introduces novel 
cybersecurity challenges that traditional IT security architectures are neither optimized for 
nor capable of fully addressing. In this paper, we present a stateful, protocol-aware intrusion 
detection architecture specifically tailored for LoRaWAN communication, with seamless 
integration into existing Security Operations Center (SOC) frameworks. Our approach 
identifies key monitoring points along the communication chain and implements a multi-
stage telemetry pipeline that supports protocol-level analysis ‒ even for encrypted traffic. 
The system successfully detects complex attack scenarios, including man-in-the-middle 
payload tampering and decryption attacks, validating the framework’s effectiveness in 
practical conditions. The proposed methodology bridges a crucial gap between IoT-specific 
anomaly detection and enterprise-grade SOC capabilities, offering a scalable and 
transferable solution for extending cybersecurity visibility into low-power, protocol-
constrained networks. Our results highlight both the feasibility and the strategic importance 
of integrating LoRaWAN telemetry into unified threat detection pipelines. 
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1 Introduction 
The rapid proliferation of Internet of Things (IoT) networks across critical 
infrastructure, industrial automation, smart cities, and healthcare [1] has 
significantly expanded the cyberthreat surface. Unlike traditional IT environments, 
IoT networks are composed of resource-constrained and often unattended devices 
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that communicate over lightweight, application-specific protocols such as 
LoRaWAN. Their wireless and distributed nature introduces unique challenges in 
securing them against increasingly sophisticated cyberattacks. 

Conventional security mechanisms such as firewalls, intrusion detection systems 
(IDS), and endpoint protection solutions remain essential but are no longer 
sufficient in isolation. Especially in low-power, lossy environments, IDS systems 
must rely on metadata-driven methods due to limited access to packet content or 
computational resources. While many lightweight IoT anomaly detectors exist, they 
rarely support SOC-level integration or enable cross-layer event correlation. 

To bridge this critical gap, we built a dedicated LoRaWAN test environment, 
demonstrated in Fig. 1, within our university’s infrastructure, leveraging the OTC 
(Open Telekom Cloud) cloud platform to simulate real-world deployment 
scenarios. This novel testbed enabled us to rigorously explore the feasibility of 
extending stateful, multi-layer monitoring into the LoRaWAN ecosystem, not only 
detecting generic anomalies, but also decoding and analyzing even encrypted or 
protocol-level interactions indicative of sophisticated IoT-specific threats by 
correlating metadata across the LoRaWAN pipeline. 

Our work represents a strategic shift in IoT cybersecurity, moving beyond 
lightweight anomaly detectors limited to edge nodes. Instead, we propose a unified, 
SOC-integrated intrusion detection system (IDS) that identifies and correlates threat 
signals from multiples sources, across the entire LoRaWAN communication 
pipeline ‒ from end-devices to gateways to network servers. By pinpointing key 
monitoring junctures in the communication flow, we were able to implement 
targeted capture mechanisms, which feed into a pre-configured, ELK-based SIEM 
environment. This allows real-time, structured, and context-aware alerting within a 
familiar SOC interface. 

In this article, we outline the technical underpinnings of our system and detail how 
our pipeline enables deep, protocol-specific analysis. We also demonstrate the 
framework’s efficacy through the detection of real-time man-in-the-middle 
(MITM) attacks on LoRaWAN traffic, including payload manipulation and 
decryption, thereby validating the practicality of our method in a cloud-hosted SOC 
context. 
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Figure 1 

Main components of LoRaWAN Test Environment at Obuda University 

The key contributions of our research include the following: 

• Design and deployment of a LoRaWAN testbed with cloud-native infrastructure 
support: We established a fully functional, university-hosted LoRaWAN test 
environment in conjunction with the OTC cloud platform. This infrastructure 
enabled controlled experimentation with real traffic flows and realistic attack 
scenarios, serving as a foundation for validating IDS performance in a production-
like setting. 

• A stateful, multi-point monitoring architecture for LoRaWAN networks: By 
identifying and instrumenting critical points across the communication chain (e.g., 
end-devices, gateways, and network servers), we implemented a fine-grained 
monitoring pipeline that allows deep inspection and event correlation even for 
encrypted or protocol-obscured traffic patterns. 

• Seamless integration into existing SOC environments using ELK-based SIEM 
tools: Our system is designed for compatibility with enterprise-grade SOC 
operations. Through the use of ELK stack components, we provide an extensible 
and maintainable way to define LoRaWAN-specific alert rules, visualize 
telemetry data, and cross-reference IoT events with conventional IT security logs. 

• Demonstrated effectiveness in detecting real-world attack scenarios: We validated 
the practical value of the proposed system by simulating two types of man-in-the-
middle (MITM) attacks: a payload modification and a denial-of-service attempt, 
and successfully generating actionable alerts within the SIEM. These scenarios 
illustrate the framework’s ability to surface subtle, protocol-level anomalies that 
are typically invisible to generic IDS tools. 

• Blueprint for extending SOC visibility into IoT ecosystems: Beyond the technical 
implementation, our work presents a transferable architecture for organizations 
aiming to extend their existing security monitoring infrastructure to cover IoT 
deployments. The framework provides a scalable, adaptable model for 
incorporating low-power, low-data-rate IoT networks into broader threat 
detection and response strategies. 
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The structure of the paper is as follows: Section 2 provides an overview of related 
work on anomaly detection and intrusion detection, with a focus on both traditional 
and IoT-specific approaches. In Section 3 a brief overview of the LoRaWAN 
protocol and operation is presented. Section 4 outlines the experimental setup and 
Section 5 presents the attack scenarios and detection results. Finally, the Conclusion 
summarizes our work and highlights possible future directions. 

2 Related Work 
Anomaly detection methods in LoRaWAN differ significantly from those used in 
traditional networks, due to fundamental differences in architecture, energy 
constraints, and communication characteristics. LoRaWAN devices are typically 
low-power and resource-constrained, which makes the use of lightweight, energy-
efficient detection techniques essential. Moreover, LoRaWAN’s long-range and 
low-bandwidth communication model results in frequent packet loss and limited 
data rates, further complicating the application of traditional anomaly detection 
approaches. In contrast, conventional networks benefit from high data throughput 
and ample computational capacity, enabling the deployment of resource-intensive 
methods such as deep learning and advanced traffic analysis. These disparities 
render many traditional detection techniques ineffective in LoRaWAN 
environments, prompting the development of specialized anomaly detection 
strategies tailored to low-power, high-latency, and lossy communication contexts. 

In response to these challenges, a growing body of research has focused on 
developing tailored anomaly and intrusion detection solutions for LoRaWAN 
networks. The following paragraphs review relevant literature in this domain. 

IoT networks characterized by heterogeneous systems and often changing 
environments has led to new attack vectors, thus enabling artifcial intelligence 
based tools to serve promising detection techniques. Also, the emergence of Egde 
and fog computing in IoT networks has introduced new IDS or anomaly detection 
methods. 

Despite these promising approaches, several studies rely heavily on synthetic 
datasets or simulated environments, which may not reflect the complexities of real-
world LoRaWAN deployments. Esteves et al. [2] highlight that many existing 
intrusion detection methods lack validation against realistic traffic and fail to 
address deployment challenges in constrained environments. Their work proposes 
a lightweight, edge-native intrusion detection framework specifically tailored for 
LoRaWAN, capable of analyzing traffic directly at the gateway level without 
requiring centralized processing. Their system combines signature-based rules (via 
Suricata) with behavioral anomaly detection using a K-Nearest Neighbors classifier 
and analyzes packet metadata (RSSI, SNR, payload size, SF, etc.) to detect 
intrusions without inspecting encrypted payloads, making it privacy-preserving and 



Acta Polytechnica Hungarica Vol. 23, No. 2, 2026 

‒ 69 ‒ 

efficient. Designed for deployment in both centralized and distributed (edge) 
scenarios, the IDS demonstrates high accuracy in detecting anomalies and malicious 
behavior, including replay attacks, misconfigurations, and potential network 
disruptions. The approach is validated on real-world data and adapted to dynamic 
environments like mobile gateways in railways and search-and-rescue missions.  
The authors emphasize the importance of real-world evaluation and demonstrate the 
effectiveness of their solution using actual LoRaWAN gateway traffic. Similarly, 
Milani et al. [3] underline the necessity of deploying intrusion detection as close to 
the data source as possible, preferably at the edge, to improve responsiveness and 
reduce backhaul overhead. They introduced EdgeLora, an architecture enabling on-
gateway data processing to reduce latency and bandwidth usage while preserving 
protocol security and scalability. Spadaccino et al. [4] also support this perspective, 
noting that edge-based IDS solutions, by operating near the data source, can deliver 
faster detection and reaction times—especially important in time-critical IoT 
scenarios. 

Proto et al. [5]  propose LADE, a lightweight intrusion detection architecture for 
LoRaWAN sensors that identifies energy depletion attacks (EDAs) based on local 
energy consumption analysis. Their system deploys both learning and detection 
modules directly on constrained IoT devices, using statistical distance metrics 
(Sibson divergence) to compare real-time energy profiles. LADE effectively detects 
both active jamming and silent firmware-level attacks that drain batteries without 
generating network traffic. While LADE does not monitor protocol-level anomalies 
(e.g., MIC tampering or join message abuse), it uniquely enables autonomous 
detection of hardware- and firmware-induced EDAs without reliance on network 
traffic analysis. 

Authors in [6] presents LoRaLOFT, a novel intrusion detection method on MAC 
layer in LoRaWAN networks. The study targets two major attack types; greedy 
behavior where compromised devices selfishly violate MAC constraints like duty 
cyle and an attack behavior, where malicious nodes intentionally flood the network 
with traffic to disrupt legitimate communication. LoRaLOFT, combines a rule-
based threshold system with an unsupervised machine learning model ‒ Local 
Outlier Factor (LOF) with a dyanmic detection metric ‒ the number of packet, or 
energy consumption to detect unexpected behaviour. The authors managed to detect 
the above-mentioned anomalies with high accuracy and low false-positive rates. 
This solution enables the identification of malicious nodes behaviour using 
computationally lightweight metrics, eliminating the need for deep packet 
inspection or centralized analysis, and thereby enabling deployment in resource-
constrained environments such as gateways or fog-level processing nodes. 

Babazadeh et al. in [7] also proposes a LoRa-based anomaly detection framework 
that operates on both the sensor (edge) and center (cloud) sides, aiming to minimize 
data transmission and energy consumption while maintaining high detection 
reliability. Unlike traditional IDS approaches, this system does not rely on machine 
learning or traffic analysis but instead uses data compressibility as an indicator of 
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anomalous behavior. Each sensor locally monitors its collected data and calculates 
a compression rate; significant drops in compressibility signal a potential anomaly. 
Only the most suspicious event in each cycle is reported to the center via lightweight 
alert messages. Upon receiving an alert, the central node requests and reconstructs 
the compressed data for in-depth analysis. This method is optimized for low-power, 
bandwidth-constrained LoRa environments, offering an efficient alternative for 
anomaly detection without needing continuous payload transmission or complex 
computation on the sensor. 

Kurniawan and Kyas in their work [8] also base their detection methods on 
metadata. They present a machine learning-based anomaly detection system 
tailored for LoRaWAN gateways. Their approach focuses on monitoring 
communication metadata ‒ such as RSSI, SNR, and packet timing ‒ to detect 
potential anomalies without analyzing encrypted payloads. By collecting real-world 
LoRaWAN traffic data and evaluating it using eleven different outlier detection 
algorithms (e.g., LOF, KNN, CBLOF, PCA), they demonstrate that lightweight 
anomaly detection is feasible even on constrained devices like Raspberry Pi.  
The study shows promising accuracy and performance across multiple anomaly 
types, including replay attacks and flooding, making it a strong candidate for 
gateway-level intrusion monitoring. 

Table 1 
Cryptographic Keys Used for Message Protection in LoRaWAN 1.0.3 

Study Methodology  Monitoring 
location 

Evaluation  Key findings Limitation  

[2] KNN-based 
anomaly 
detection  

Gateway 
(edge) and 
centralized 
SOC 

Quantitative 
(real network 
data, >90% 
accuracy) 

Edge-based 
IDS using real 
network traffic 

Focused on 
statistical traffic 
anomalies, not 
protocol logic 

[3] Group-key 
encryption and 
local processing 
(Edge2LoRa) 

Gateway 
and edge 

Experimental 
demo  

Reduces 
latency and 
network load 

No 
intrusion/anomaly 
detection logic 

[4] Conceptual 
comparison 

Edge/cloud Conceptual Highlights need 
for lightweight 
ML at edge 

No 
implementation 
for LoRaWAN 

[5] Sensor side 
energy 
consumption 
pattern based 

Sensor 
level 

Quantitative 
(F1 ≈ 0.93) 

Detects silent 
energy 
depletion 
attacks 

Limited to Energy 
Depletion Attacks 

[6] Threshold-
based  

Network 
server  

Simulation  Detects 
greedy/flooding 
behavior 

Focuses on MAC 
layer anomalies 

[7] Data 
compressibility-

Sensor 
level 

Prototype 
with alerts 

energy-efficient 
local filtering 

Anomaly 
detection  at 
sensor side 
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based anomaly 
detection 

[8] Metadata-based 
anomaly 
detection 

Gateway 
level 

Quantitative detection is 
feasible on 
constrained 
devices 

No protocol state 
modelling 

To summarize, while the reviewed literature offers a diverse set of anomaly 
detection approaches for LoRaWAN, most solutions remain limited either to 
localized heuristics or operate without explicit protocol-awareness. Notably, none 
of these studies model protocol states formally or support cross-layer, SOC-
integrated monitoring. 

To clearly illustrate these differences, Table 1 presents a qualitative comparison of 
the most relevant LoRaWAN IDS approaches discussed above, detailing their 
methodology, monitoring location, evaluation type, along with key findings and 
limitations compared to our proposed solution. As shown, our work is, to the best 
of our knowledge, the first to combine both IoT and legacy network environments 
into SOC-integrated intrusion detection framework with multi-point protocol-level 
telemetry enabling anomaly detection based on well-defined state transitions in the 
LoRaWAN protocol. 

3 LoRaWAN Communication 

3.1 Overview 
LoRaWAN (Long Range Wide Area Network) [9] is a low-power, wide-area 
networking protocol designed for wireless communication with IoT devices. It 
operates on top of LoRa (Long Range), a chirp spread spectrum modulation 
technique, which is ideal for IoT devices that require extensive coverage and 
prolonged battery life. 

LoRaWAN defines the communication protocol and system architecture for the 
network. It specifies how devices communicate with gateways, which then connect 
to network servers. The architecture includes End Devices with sensors or 
actuators, equipped with LoRa modules to collect information from its 
surroundings, Gateways to relay messages between end devices and network 
servers and servers: 

Network Server for managing the network, handling MAC layer operations, and 
performing message deduplication. They also manage the routing of the messages, 
keeps track of the devices in the network, and ensures secure communication. 
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Join Server primarily responsible for device authentication, session key generation, 
distribution and storage. It is a newly introduced architecture element in LoRaWAN 
1.1. 

Application Servers for processing application data and providing interfaces for 
end-users. 

LoRaWAN has evolved through several specification versions, with LoRaWAN 
1.0.x forming the foundation for basic functionality and wide adoption, while 
LoRaWAN 1.1 [10] introduced significant enhancements such as improved 
roaming support, finer-grained security mechanisms, and the formal separation of 
the Join Server. These developments reflect the protocol’s maturation toward 
supporting more robust and scalable IoT deployments. 

3.1.1 Device Classes 

LoRaWAN defines three classes of end devices: Class A, B and C. 

Class A: Provides bidirectional communication. It is the most energy-efficient 
class, where devices open two short receive windows after transmitting uplink data. 
This class is suitable for applications where uplink communication predominates, 
and downlink messages are not time-critical. 

Class B: Adds scheduled receive windows, allowing devices to receive downlink 
messages at predetermined times. The support for Class B devices were introudced 
in LoRaWAN 1.0.3. 

Class C: Keeps receive windows open almost continuously, except when 
transmitting, making it ideal for applications requiring frequent downlink 
communication. 

According to the LoRaWAN standard [9], all implemented modules are required to 
adhere to Class A specifications. Classes B and C are optional and may be used for 
specific design scenarios, to accommodate different application needs. 

3.1.2 LoRaWAN Packet Structure, and Message Types 

In the LoRaWAN protocol, the structure of the payload depends on the purpose of 
the message, which may be a Join Request (used during Over-The-Air Activation – 
OTAA), Join Accept (response from the network to a Join Request), or a Data 
Frame (used for application-level data and MAC commands). The structure of the 
payload in the case of a Data Frame is depicted in Fig. 2, which illustrates the 
internal composition of a LoRaWAN Data Frame. The payload consists of a MAC 
header (MHDR), a MAC payload ‒ which includes the Frame Header (FHDR), an 
optional FPort field, and the actual FRMPayload ‒ and finally the Message Integrity 
Code (MIC). The Frame Header itself contains addressing and control information 
such as the DevAddr, Frame Control (FCtrl), Frame Counter (FCnt), and optional 
MAC commands. The FRMPayload may contain either application data or MAC 
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commands, depending on the value of the FPort. This layered structure enables both 
application communication and control signaling within a single, secure frame. 

 
Figure 2 

Structure of the payload of a Data Frame 

LoRa radio packets can follow either an explicit or implicit format. In this work, we 
focus on the explicit format, as it is used in the communication scenarios we 
examined. The key difference between uplink and downlink transmissions is that 
downlink packets omit the trailing CRC (Cyclic Redundancy Check) field in order 
to reduce channel occupancy. 

 
Figure 3 

Structure of the LoRa physical layer frame 

Fig. 3 shows the format of the LoRa physical layer frame. The application-relevant 
data mandated by the LoRaWAN protocol resides in the PHYPayload field, 
whose maximum size depends on the regional parameters. 

3.2 Device Activation and Key Management in LoRaWAN 
Secure communication is a fundamental requirement in LoRaWAN-based IoT 
networks, where devices often operate unattended in untrusted environments. To 
ensure both confidentiality and integrity of data, LoRaWAN employs symmetric 
cryptographic mechanisms based on session keys. These keys are used to encrypt 
the application payload and to generate Message Integrity Codes (MICs), which 
authenticate the origin and content of each message. 

The Message Integrity Code (MIC) is used to verify the authenticity and integrity 
of the message. The MIC is calculated based on specific fields of the message and 
is appended to the end of the PHYPayload. It allows the receiving network 
components to detect any unauthorized modifications to the message during 
transmission. The exact fields included in the MIC calculation depend on the 
message type (e.g., Join Request, Data Frame, etc.). 
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3.1.3 Device Activation in LoRaWAN 

The LoRaWAN specification defines two methods for activating end devices: Over-
the-Air Activation (OTAA) and Activation by Personalization (ABP). 

The details of the join procedure differ from version to version. In our 
implementation, we focus on the LoRaWAN 1.0.3 join procedure because this is 
the version currently used in our testbed environment. Despite the release of newer 
specifications such as LoRaWAN 1.1, version 1.0.3 remains widely adopted in 
many real-world production deployments due to its relative simplicity, 
compatibility with legacy devices, and maturity in terms of vendor support. 
Importantly, the widely used open-source ChirpStack network server, which serves 
as the backbone for numerous academic and industrial LoRaWAN installations, 
continues to use 1.0.3 as its default implementation target. As a result, analyzing 
version 1.0.3 offers both practical relevance and technical clarity for real-world 
applications. The following section describes the procedure based on the 
LoRaWAN 1.0.3 [9] specification, which is a slightly simpler method for generating 
session keys and uses fewer keys to secure communication than in specification 1.1 
[10]. 

In OTAA, which is the preferred and more secure method, devices perform a join 
procedure at the beginning of their operation. The end device sends a Join Request 
message containing its DevEUI, AppEUI, and a randomly generated DevNonce. 
The Network Server responds with a Join Accept message that includes a JoinNonce 
(a server-generated random number), NetID, a dynamic device address (DevAddr), 
and other parameters such as RXDelay and DLSettings. Both the Join Request and 
Join Accept messages are protected using a pre-shared AppKey, which is known to 
both the end device and the network server. 

Using the AppKey and values from the join exchange (DevNonce, JoinNonce), the 
end device derives two session keys: The NwkSKey (Network Session Key), used 
to ensure message integrity and authenticate MAC-level communication, and the 
AppSKey (Application Session Key), used to encrypt and decrypt the application 
payload. These session keys are unique and valid per session and ensure 
confidentiality and authenticity of LoRaWAN communications in dynamic 
environments. 

In contrast, ABP assigns the DevAddr, NwkSKey, and AppSKey directly to the end 
device during provisioning. No join exchange is performed during runtime. While 
ABP simplifies deployment, especially in networks with no reliable downlink, it 
provides lower security. The keys remain static and may be reused across devices 
or sessions, making the system more vulnerable to key compromise or cloning. 

3.1.4 Key Usage in Message Protection 

Without access to the AppKey and the Join procedure, session keys cannot be 
reconstructed. Consequently, neither the application payload nor the MIC can be 
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properly decrypted, validated, or regenerated. This limitation prevents attackers or 
analysts without access to keys from meaningfully modifying or verifying 
LoRaWAN messages. Table 1 summarizes the cryptographic keys used for 
encrypting and validating messages, depending on the message type. 

Table 1 
Cryptographic Keys Used for Message Protection in LoRaWAN 1.0.3 

Msg type  Encryption key  Msg integrity key 
MACPayload NwkSKey1 (MAC 

commands) 
NwkSKey 

MACPayload AppSKey NwkSKey 
Join-Request no encryption AppKey 
Join-Accept AppKey AppKey 

1In case of MAC commands, however, MAC commands can also be transmitted in the unencrypted 
FOpts field 

Without access to the AppKey and the Join procedure, session keys cannot be 
derived, and neither the application payload nor the MIC can be properly interpreted 
or regenerated. Table 2 outlines what can or cannot be accessed or modified without 
the necessary keys. 

Table 2 
Decryption and modification possibilities without keys 

Data type Readable without key Modifiable without detection 
Payload No No 
MIC Partially* No 

*Only metadata-level observables; integrity verification not possible 

3.1.5 Data Enrichment in LoRaWAN Communication 

In addition to the payload data directly transmitted by end devices, LoRaWAN 
communication is enriched with multiple layers of metadata during transmission. 
At the physical (radio) layer, the gateway captures additional contextual 
information such as RSSI, SNR, frequency, channel, and timestamp, which are 
appended to each received RF packet and may be leveraged for anomaly detection 
or forensic analysis. 

Fig. 4 illustrates the key metadata fields and gateway status parameters associated 
with each received packet. Beyond the base64-encoded payload, the gateway 
contributes radio-level attributes and periodically broadcasts its own status, 
including GPS coordinates, system time, and statistics on packet reception, 
forwarding, and emission. These enriched data fields serve as valuable inputs for 
protocol-level monitoring and detection of suspicious behavior. 
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Moreover, network servers, such as ChirpStack, can further enhance the data 
context by linking messages to registered device names, identifiers, and session 
state. If the Join procedure can be observed and the AppKey is known (or 
discoverable), session keys can be derived, allowing decryption of the payload and 
deeper inspection of the application-layer data. This multi-layer enrichment process 
significantly expands the analytical potential of LoRaWAN communication and 
provides a rich foundation for cross-layer anomaly detection strategies. 

 
Figure 4 

Metadata and status information added by the LoRaWAN gateway to each RF packet 

4 The LoRaWAN Security Testing Environment 
The constructed test environment consists of a physical LoRaWAN network 
operated locally at our institute, complemented by additional components deployed 
in a cloud infrastructure to support traffic observation and data collection. 

4.1 Elements of Our LoRaWAN Network 
The core of the LoRaWAN setup includes two RAK Wireless gateways 
(RAK7246G WisGate Developer D0) and an open-source ChirpStack [11] 
LoRaWAN server hosted in the T-Systems OTC public cloud. Both gateways are 
implemented as Raspberry Pi HAT modules and thus require Raspberry Pi hardware 
to operate. 

The first gateway is based on a Raspberry Pi 4 and connects directly to the internet 
via the institutional firewall, forwarding packets to the ChirpStack server via 
MQTT. The second gateway uses a Pi Zero 2 and communicates locally with a 
Raspberry Pi 3 running the ChirpStack MQTT Forwarder. This forwarder receives 
UDP-formatted packets from the gateway and relays them to the cloud-based 
ChirpStack server using MQTT. This dual-gateway architecture enables the parallel 
monitoring of both MQTT and UDP-based communication paths. 
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The virtual machines running the ChirpStack server and the ELK stack 
(Elasticsearch, Logstash, Kibana) are deployed within the T-Systems OTC cloud. 
The MQTT broker (Eclipse Mosquitto), along with PostgreSQL and Redis services 
required by ChirpStack, are also hosted in this cloud environment. The structure of 
our test environment is depicted in Fig. 5. 

Periodic data transmission is provided by COST sensors (Seeed Studio SenseCAP 
S2101 and S2102), which transmit measured values over the LoRaWAN network. 
The S2101 sensor sends ambient temperature and humidity, while the S2102 
transmits light intensity. Additionally, both sensors include the battery level every 
20 measurements. 

The environment also includes Seed Studio Wio-E5 mini LoRaWAN clients 
connected to Raspberry Pi boards via serial interface. Controlled via AT commands, 
these devices support a variety of test scenarios, including invalid keys and 
unregistered device attempts. However, the AT interface does not support sending 
protocol-level malformed packets (e.g., with CRC errors), as such functionality is 
not exposed by the command set. 

 
Figure 5 

Overview of LoRaWAN test environment, showing monitoring points, indicated with blue triangles 
across the LoRaWAN communication pipeline. Uplink messages from LoRaWAN end devices are 

received by gateways (GW#1, GW#2) and forwarded to the ChirpStack network server. The 
ChirpStack stack includes components such as Redis, PostgreSQL, and an MQTT broker for handling 
telemetry and device data. All collected data is processed by the LoRaWAN packet preprocessor and 

forwarded to the SIEM for correlation, visualization, and real-time alerting. 
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4.2 Monitoring and Collection of LoRaWAN Communication 
In order to create a comprehensive IDS (Intrusion Detection System) 
implementation, we aimed to monitor LoRaWAN communication at every possible 
point where modification or interference could potentially occur. Based on an 
analysis of the communication pipeline, we identified five distinct locations where 
traffic can be captured and analyzed. 

LoRaWAN communication is observed and collected through five different 
methods, two of which have already been implemented and tested beyond proof-of-
concept (PoC) level. The remaining three are currently operational in PoC form. 
Table 3 summarizes the different monitoring possibilities in our test 
environment.The monitoring solutions are as follows: 

Software-defined radio (SDR)-based signal reception, with fully software-based 
decoding and analysis of raw LoRa signals. 

Reception and analysis using two RAK7246G WisGate Developer D0 Gateways 
and custom Raspberry Pi-based software. A similar solution was described in [12], 
and our system is functional at the PoC level. However, further configuration is still 
required for the Semtech SX1308 radios. The implementation was based on 
Semtech's publicly available sample code [13]. 

Interception of UDP traffic between the LoRaWAN gateway and the MQTT 
forwarder, using widely adopted packet sniffing tools [14]. This method is still in 
the PoC phase, and integration with the ELK stack for data forwarding has yet to be 
completed. 

Monitoring MQTT communication between the gateway's MQTT forwarder and 
the ChirpStack server. By subscribing to the appropriate MQTT topics, LoRaWAN 
packet data can be captured without interfering with live system operation. In 
production environments, these MQTT messages are typically encoded using 
Protobuf. The Protobuf schema is available from the ChirpStack GitHub repository 
[10], [11], which allows custom decoders to be developed. Decoded messages are 
transformed into JSON format and forwarded to the ELK stack. 

Accessing dynamic data stored by ChirpStack in Redis, such as LoRaWAN frame 
logs. Using the appropriate API key (which can be generated from the ChirpStack 
admin interface), these Protobuf-formatted messages can be retrieved and decoded 
into JSON. The processed messages are then forwarded to the ELK stack for further 
analysis. 

4.3 SIEM-Based Telemetry Pipeline for LoRaWAN Security 
Monitoring 

To support structured monitoring of LoRaWAN communications, we implemented 
a Security Information and Event Management (SIEM) pipeline based on the open-
source ELK stack (Elasticsearch, Logstash, Kibana) [15]. The pipeline is designed 
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to ingest, process, enrich, and store LoRaWAN traffic data from multiple sources, 
enabling real-time visualization, correlation, and anomaly detection within a SOC 
environment. The system relies on a LoraWAN packet preprocessor with two 
independent middleware components, each responsible for processing LoRaWAN 
messages from distinct sources: 

Table 3 
Comparison of the monitoring approaches 

Method Readiness Required Access Level 
Radio signal capture (SDR) PoC Physical proximity within the LoRa radio 

range (potentially up to several hundred 
meters) 

Radio signal capture (LoRa 
radio) 

PoC Physical proximity within the LoRa radio 
range (potentially up to several hundred 
meters) 

UDP traffic interception PoC Access to the local network (LAN). If 
using Wi-Fi, no physical connection is 
needed, but joining the network is 
required 

MQTT packet monitoring Ready Network access and connection to the 
MQTT broker; depending on its security 
configuration, this can range from simple 
(no security) to complex (certificate-
based access) 

Redis data access Ready Network access and a valid Redis API 
key, which requires ChirpStack 
administrative privileges 

Frame Log Middleware – Redis-Based Source 

The first component retrieves LoRaWAN frame logs directly from the ChirpStack 
network server’s Redis stream, decoding Protobuf [16] messages into JSON using 
ChirpStack’s API bindings, and enriching the entries with contextual metadata such 
as device name and profile. This enrichment is achieved through a preloaded in-
memory dictionary generated via ChirpStack’s API calls. Newly detected devices 
are dynamically registered into this dictionary based on their Join Request data. 

Payload Decoder Middleware – MQTT-Based Source  

The second middleware supports payload decryption, where available, through an 
external decoder module [17] integrated into the workflow. The decoder derives 
session keys (AppSKey and NwkSKey) by using stored AppKeys, retrieved from 
the ChirpStack database, and by observing Join Request and Join Accept messages. 

Although payloads and MICs are inaccessible without keys, our system leverages 
observable non-payload fields, such as frame type, DevEUI, DevNonce, timing 
metadata, RSSI, and SNR, to detect anomalies even in encrypted traffic. Behavioral 
inconsistencies like repeated join attempts, DevNonce reuse, invalid message 
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sequences, denial-of-service conditions, or other protocol misuse patterns can be 
identified through protocol-conformant state tracking and metadata correlation. 
When decryption succeeds, the application-layer payload is parsed into structured 
JSON and forwarded to Logstash. 

5 Case Study: Application of the Monitoring 
Framework 

To evaluate the effectiveness of our proposed multi-layer detection architecture, we 
implemented a real-world man-in-the-middle (MITM) attack targeting the 
LoRaWAN communication chain between the gateway and the ChirpStack network 
server. The goal of the attack was twofold: (i) to manipulate location-related 
metadata (specifically, GPS coordinates) in transit, and (ii) to escalate the attack by 
decrypting encrypted payloads through session key extraction. 

5.1 GPS Location Manipulation Attack and Detection 
In the first phase, we intercepted and altered live LoRaWAN traffic using ARP 
spoofing to redirect UDP packets (port 1700) through a Kali Linux-based attacker 
node. The captured packets were parsed using tshark, transformed to JSON format, 
and manipulated in real-time using a Python script built on the scapy library.  
The script identified LoRaWAN packets and replaced legitimate gateway GPS 
metadata (latitude, longitude, altitude) with randomly generated coordinates before 
forwarding the modified packets to the original destination (ChirpStack). This 
manipulation was repeated periodically every 15 minutes to simulate a mobile 
gateway scenario, creating misleading geolocation data for the network. 

The overall architecture of the interception and manipulation process, including the 
attack point and data flow through the monitoring pipeline, is illustrated in Fig. 6. 

To detect spoofing-based manipulation of GPS metadata in LoRaWAN 
communication, we defined a custom SIEM rule within the Kibana interface. This 
rule leverages our gps.loc enrichment field, created during preprocessing, which 
captures the geolocation metadata associated with each received packet. Assuming 
that legitimate devices remain geographically static, the system groups incoming 
messages by devName and counts the number of distinct coordinate values 
observed over a short time window. Any unexpected change in the unique gps.loc 
value is treated as anomaly and triggers an alert. This threshold-based approach was 
implemented using Kibana’s native detection engine and proved effective in 
flagging anomalous mobility patterns caused by GPS spoofing. 

To illustrate the impact of such GPS spoofing attacks, we visualized the 
manipulated gateway coordinates on a geolocation map in Kibana. Leveraging the 
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custom gps.loc field in our enriched logs, we configured a clustered map 
visualization that aggregates device occurrences based on geographic location. 

 
Figure 6 

LoRaWAN security monitoring pipeline highlighting the UDP interception point between the gateway 
and the network server. The red lightning symbol represents the point where man-in-the-middle attacks 

are executed in our scenarios. 

This allowed us to clearly observe artificial location shifts over time, reflecting the 
simulated mobility caused by the cyclic injection of falsified coordinates.  
The resulting visualization in Fig. 7 demonstrates the dynamic and inconsistent 
geographic distribution of the gateway, which can serve as a strong indicator of 
suspicious behavior in a real-world monitoring context. 

The duplicated appearance of each manipulated location in the visualization 
originates from the data processing architecture, where two independent 
middleware components ingest overlapping sets of LoRaWAN frame logs from 
different sources. One middleware captures frame data from the Redis-based 
ChirpStack stream, while the other processes decoded payloads received via the 
MQTT broker. As both pipelines forward enriched entries to the SIEM system 
independently, the same logical transmission event may appear twice in the final 
dataset. This effect leads to duplicated GPS coordinates in the Kibana map, even 
though only a single gateway transmission occurred in the physical environment. 

5.2 Payload Decryption 
In the second phase, we extended the attack to decrypt uplink payloads by exploiting 
LoRaWAN session key derivation. Using the Loracrack toolset [17] developed by 
Applied Risk, the attacker captured Join Request and Join Accept messages and 
performed a dictionary-based attack to retrieve the AppKey. Provided that the key 
was known or weak, session keys were derived and subsequently used to decrypt 
encrypted Unconfirmed Data Up or Confirmed Data Up payloads. 
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Figure 7 

Clustered map visualization of manipulated gateway GPS positions in Kibana 

The map shows LoRaWAN gateway positions reported in enriched logs under simulated GPS spoofing 
conditions. Each green dot represents a unique falsified location, while the number inside the dot 

indicates how many times that specific coordinate appeared in the telemetry logs 

The attack was successfully executed in a mixed physical and virtual environment. 
It demonstrated that under certain conditions, (e.g., weak or known AppKeys) an 
adversary cannot only inject falsified metadata but also gain access to sensitive 
sensor information transmitted within encrypted LoRaWAN payloads. Our system 
was able to detect both aspects of the attack: the geolocation manipulation (via 
payload field validation and cross-layer inconsistency detection), and the abnormal 
session behavior (via MIC validation and correlation of Join messages within the 
SOC environment). Fig. 8 shows how decoded environmental sensor data from a 
LoRaWAN device is displayed in the SIEM, including temperature, humidity, CO₂, 
etc. 

 
Figure 8 

Decoded sensor data displayed in the SIEM system 

Conclusions 

In this paper, we presented a practical and scalable approach for integrating 
LoRaWAN-based anomaly detection into centralized SOC environments. By 
establishing a full-featured testbed built on OTC cloud infrastructure and focusing 
on the widely adopted LoRaWAN 1.0.3 specification, we demonstrated how multi-
layer monitoring can be applied across the LoRaWAN communication pipeline. 
Our system identifies strategic observation points, along the communication 
pipeline, where  protocol-aware telemetry was used to feed meaningful data into an 
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ELK-based SIEM platform. We showed that even without decrypting payloads, 
valuable insights can be extracted from metadata and message structure, enabling 
real-time detection of critical attack scenarios such as payload manipulation and 
denial-of-service. Moreover, our framework bridges the visibility gap between 
traditional IT infrastructure and low-power, IoT-specific communication, laying the 
groundwork for unified security monitoring. 

While the current study focuses on a small-scale testbed and a specific LoRaWAN 
version (1.0.3), this choice reflects the version's widespread use in production 
systems, particularly in Central Europe, and allows for reproducible 
experimentation in a controlled environment. Despite this scope, the proposed 
framework is not tightly coupled to a specific protocol version. On the contrary, its 
modular design and emphasis on protocol-conformant telemetry make it highly 
adaptable to newer LoRaWAN specifications or even to other IoT communication 
protocols. Therefore, we consider our implementation a blueprint for extending 
SOC-based visibility into constrained IoT networks. Future work will include 
broader protocol coverage, real-world deployment at larger scale, and the 
integration of advanced machine learning-based detection capabilities, which 
together will further enhance the effectiveness and applicability of our approach in 
securing next-generation IoT environments. 
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