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Abstract: Traffic congestion is a serious issue for cities and urban areas, owing to the 
increasing usage of vehicles. This phenomenon results in several negative consequences, 
such as high fuel consumption and loss of time. To address this problem, several countries 
have implemented optimal traffic signal control systems. However, these systems have some 
drawbacks, such as the need for expensive hardware and maintenance difficulties. Because 
the sensors are buried under the road surface, the system often cannot account for the full 
length of the vehicular queue. This, among several issues, inhibits the full potential of the 
technology’s effectiveness and sustainability. In addition, there is much uncertainty in traffic 
conditions, which points to the need for a model that includes vagueness in the control system. 
This study proposes a novel hierarchical structure for a three-stage fuzzy traffic control 
system. This new system assesses the vehicle queue, identifies heavy traffic, detects 
emergency cars, and adjusts the duration of traffic lights according to the traffic flow and 
waiting times of vehicles using fuzzy inference rules. This controller was evaluated and 
validated using a micro-simulation model of an isolated intersection. The obtained results 
revealed the increased adaptability and flexibility of the proposed system owing to its 
potential to differentiate a random number of traffic directions. It is also able to handle 
emergency vehicles and can decrease waiting times, stalling fewer cars, if there is a high 
traffic flow in the conflicting direction(s) and is a robust and scalable system with lower 
computational costs. 
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1 Introduction 
In urban areas, traffic control systems are a major requirement for the transportation 
infrastructure in day-to-day operations [1]. Traffic signal control is a mechanism 
used at intersections to manage conflicting movements by determining the right-of-
way between conflicting traffic flows [2]. Due to the increase in vehicle usage and 
limited transportation infrastructure (roads), it can be difficult for people and goods 
to arrive at their destination on time. Traffic congestion has several impacts on cities 
and urban areas, such as increased pollution, extreme fuel consumption, lost time in 
traffic, and car accidents [3, 4]. Traffic congestion occurs when the density of 
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vehicle flow creates a demand that is greater than the available transportation 
infrastructure. Enhancing the efficiency of traffic signal control systems has led to 
improved road safety and logistics, reduced traffic congestion, and fewer traffic 
accidents (severe injuries, crashes, etc.). To solve the problem encountered by 
traffic control systems, several new models have been introduced by researchers, 
and some optimal traffic controls have been used for decades in some developed 
countries. Since the 1960s, various approaches have been proposed to solve the 
problem of controlling traffic intersections and to create efficient control 
mechanisms [5]. One of the most commonly used traffic signal control systems is 
pre-timed traffic signal control, which is not based on current traffic demands and 
cannot handle unexpected traffic conditions. This method cannot predict traffic 
demands [6]. Since the 1970s, truly functional traffic control methods have 
emerged. These traffic-actuated control methods use inductive detectors that are 
buried in the pavement to observe actual traffic conditions [5]. Traffic conditions 
are dynamic and highly affected by time, weather, and unpredictable situations, and 
there are many other parameters [7]. Pretimed traffic control and actuated traffic 
control do not use a control policy, do not consider the parameters mentioned above, 
and do not utilize accumulated information to improve traffic signal control 
performance. Therefore, to overcome these problems traffic-adaptive control 
systems and many other optimal traffic control systems have been presented to 
improve these systems’ efficiency as seen in Yau et al., 2017 [6]. 

Although several approaches have been proposed, they all have disadvantages. 
According to [6, 8], these control methods usually have limitations, such as 
activating the green signal based only on the presence of vehicles in the lanes 
immediately before reaching the intersections and not considering longer vehicle 
queues when they are out of the range of the sensors. In addition, existing optimal 
control systems are often unfeasible in the city environment because of the 
expensive hardware requirements and high computational costs. The difficulty and 
vagueness of existing traffic systems can be resolved by using an intelligent traffic 
control system [9]. Hence, to solve the existing traffic system problem, 
computational intelligence methods have been proposed to develop an efficient and 
flexible traffic control system. Currently, computational intelligence (CI) control 
mechanisms are widely used to develop efficient traffic control systems to solve 
problems faced by pre-timed, actuated, and adaptive traffic control. The CI strategy 
may improve road safety, road capacity, and traffic control performance; predict 
traffic situations; reduce the waiting times of vehicles at intersections; and control 
the overall dynamicity of traffic situations. The most efficient and important CI 
traffic control systems are fuzzy systems, neural networks, and reinforcement 
learning. Each of these CI control methods has strengths and weaknesses [5, 10]. 
To realize the objective of this study, a fuzzy control model was proposed that is 
more intelligible because it imitates human perception using mappings for inputs 
and outputs, which are linguistic terms, such as “low,” “medium,” “high,” and “very 
high.” There are several reasons for using the fuzzy control approach to implement 
the proposed approach. One advantage is the ability to model the uncertainty and 
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ambiguity of traffic conditions, which transportation engineering experts often 
describe as subjective, ambiguous, or vague. Fuzzy control systems use imprecise 
input information, because the input of the control system may be inaccurate. Fuzzy 
inference rules can generate useful and accurate responses from vague input (as seen 
in [11]). Thus, fuzzy control approaches are better suited for modeling fluctuations 
in traffic conditions than other computational intelligence controllers or classical 
control methods. In addition, fuzzy control systems can capture the key factors in 
the control process without requiring complex mathematical formulas, making them 
an ideal choice for designing and implementing intelligent fuzzy traffic control 
systems that can efficiently manage increasing traffic saturation levels [12]. 

Fuzzy control systems use fuzzy sets and fuzzy rule-based inference to develop 
control systems in which no precise information exists and most of the previous 
information is available only in a qualitative form. The main idea behind the fuzzy 
control system is to use expert knowledge and experience to build a rule base with 
linguistic form. In contrast to the classical point-to-point control approach, fuzzy 
control systems work with range-to-point or range-to-range control [7, 13]. In the 
design of a controller system, the fuzzy system has evident advantages over other 
methods. For instance, many input and output linguistic variables can be managed 
concurrently, all knowledge rules in the fuzzy expert system can be applied 
simultaneously, and inferences can be easily mapped on a multiprocessor system. 
Additionally, in a fuzzy control system, if the user is not satisfied with the control 
action for certain combinations of system inputs, the active firing of this control 
action can be immediately identified and adjusted without essentially affecting the 
behavior of the controller for other inputs [9]. Fuzzy control approaches provide a 
formal methodology for representing and implementing heuristic knowledge 
regarding how to control a system [14]. The fuzzy controllers have four main 
components: the degree of matching unit, inference engine, fuzzy rule base, and 
defuzzification unit. The fuzzy rule base represents the knowledge of human experts 
and contains a fuzzy set-transformed quantification of the experts’ linguistic 
description of how to design and operate a more efficient controller. The inference 
engine evaluates which control rules are relevant in the current condition and 
provides a decision to the control system in the best possible manner. The Degree 
of Matching Unit evaluates the inputs in terms of the rules and transforms them into 
fuzzy degrees that determine which of the individual rules must fire, and to what 
extent. Thus, these inputs can be interpreted in the context of the rules in the rule 
base. The Defuzzification module interface converts the fuzzy (vague) conclusions 
calculated by the inference engine into crisp inputs for the controlled process [14]. 
In this study, a fuzzy control method was applied to model an intelligent fuzzy 
traffic control system with additional features, as compared to the results of other 
studies. 



T. D. Chala et al. A Novel, Three-Stage Intelligent Fuzzy Traffic Signal Control System 

‒ 192 ‒ 

2 Overview of Related Work 
Currently, to create a conducive environment for transportation, the traffic control 
system is becoming a more important area to create an intelligent system that 
reduces the waiting time of vehicles at intersections, increases the general safety of 
movement, and prioritizes emergency cars. In the following section, some research 
work in the field of traffic signal control systems using fuzzy control system 
approaches is reviewed. 

J. Niittymaki conducted research on the installation and field testing of a fuzzy 
signal controller. In that study, a fuzzy signal controller was installed at a real 
intersection and compared with a vehicle-actuated control system using field 
measurements and microscopic simulation. The obtained results prove that fuzzy 
control systems outperformed vehicle-actuated control systems in real signalized 
intersections [15]. 

M. E. M. Ali et al. used a SUMO traffic simulator to offer an adaptive technique for 
traffic signal control based on a fuzzy system with a Webster and modified Webster 
formula [16]. The proposed strategy was investigated and validated at an isolated 
traffic crossroads. The obtained results were compared with those of existing fuzzy-
based traffic control and fixed-time traffic control systems, and the SUMO traffic 
simulator was employed. In terms of vehicular delay, speed, and trip time, the 
simulation results showed that the suggested technique outperformed the fixed-time 
and earlier fuzzy-based traffic control systems [1]. 

V. M. M. Arteaga et al. proposed an adaptive traffic fuzzy system controller for 
isolated intersections. Their approach was based on a typical fuzzy system that only 
required operators to know the minimum and maximum expected values for arrival 
flows and cycle lengths to establish IF–THEN mappings (rules). Their system was 
composed of two modules, a fuzzy inference system, and an adaptive mechanism. 
The advanced Mamdani-type [17] fuzzy inference system was designed to compute 
based on the reasoning that the higher the flow, the longer the cycle length. Their 
approach was evaluated through a microsimulation model of a real intersection 
using SUMO as a platform, and the proposed model results showed better results 
when compared to other traffic control systems [2]. 

S. Akhter et al. proposed a SUMO-based simulation framework for an intelligent 
traffic management system with a deep neuro-fuzzy model. The Dijkstra algorithm 
was used to select an optimum path from the source to the destination based on the 
calculated road segment weights from a deep neuro-fuzzy framework. A deep 
neuro-fuzzy model was implemented and simulated in a SUMO traffic simulation 
environment. The simulation results of the three algorithms (A*, Dijkstra, and 
CHwrapper [18]) showed similar performance. However, the proposed model has 
not yet been implemented in real-time road networks [19]. 

I. Tunc et al. presented intelligent intersection management using a fuzzy system 
with a proportional integrated (PI) control mechanism. Fuzzy traffic control and PI-
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based traffic light controllers were designed and simulated in a SUMO traffic 
simulation environment. The simulation was carried out only for one incoming lane 
from North to South and West to East, and one outgoing lane. In their simulation, 
the CO2 emission outputs, and average speed values of vehicles were obtained 
directly from the SUMO program. The proposed approach yielded better results 
than the traditional methods [20]. 

J. Alam et al. proposed an intelligent traffic-light control system for isolated 
intersections using a Mamdani-style fuzzy system. They selected a four-way 
isolated junction with traffic coming from the north, south, west, and east directions. 
Vehicle queue and vehicle arrival were used as input variables, and the output 
variable was the extension of the green time. The simulation was carried out using 
MATLAB, and the obtained results outperformed those of the fixed-time controller 
and actuated traffic controller [21]. 

T. Mahmood et al. conducted research on a two-stage fuzzy adaptive traffic signal 
control for an isolated crossroads based on real data utilizing the SUMO platform. 
They implemented two-stage frameworks, with the first stage having two modules: 
the Next Phase Module and the Extension Time Module. The Next Phase Module 
chooses a candidate for the green phase from the red phases. The Extension Time 
Module observes the traffic situations in the green phase and produces a stop degree 
based on the observed results. The second stage is the Decision Module, which 
determines whether to change the green phase according to the outputs of the first 
stage of the system. The data were collected over 24 h from a genuine four-way 
crossing road found in urban areas in Kilis (Turkey). The simulation results revealed 
that the average time taken by a car to wait for transport dropped from 44 s to 17 s, 
with an improvement in the system performance relative to fixed-time control 
mechanisms [22]. 

A. Agrawal and R. Paulus proposed improving traffic and emergency vehicle 
clearance at congested intersections using a fuzzy-inference engine. They proposed 
a system for two parallel controllers that were used to select the appropriate lane for 
the green signal and to determine the appropriate green light time as per real-time 
traffic conditions. The proposed approach was assessed through a simulation, and 
the obtained results were compared with the pre-timed control system in changing 
traffic flow conditions. The simulation results showed improvement over the pre-
timed control in terms of waiting time for emergencies at intersections during heavy 
traffic [23]. 

The literature clearly shows that fuzzy traffic control is more effective than existing 
traffic control systems. However, in most of the reviewed research papers, the 
existing fuzzy traffic approach does not include unusual traffic situations such as 
approaching one or more emergency vehicles without affecting the time of other 
cars at the intersection, or does not consider the waiting time of short queues of 
vehicles when high traffic flow loading for a long time in the conflicting 
direction(s). 
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In this study, we propose a hierarchical (three-stage) decision system structure that 
combines the fuzzy inference rule with one or many classic production rules based 
on the Mamdani-style control system. This study is a continuation of our previous 
study [8]. In that study, a hierarchical two-stage fuzzy control system and only four 
isolated intersection traffic flows from the North, South, West, and East were 
examined using Python. However, in this study, we extended from four isolated 
intersections to 3 × 4 = 12 lanes for all outgoing combinations. Each incoming road 
has three lanes in each direction; going straight through, turning right, and turning 
left were implemented using a graphical user interface (GUI) simulation by SUMO. 
The proposed approach was implemented in a modular form, and new modules 
could be integrated at any time without affecting the main system. Therefore, we 
claim that the new approach is robust and scalable, and is a much more intelligent 
system than the existing optimal traffic control systems. 

3 Basic Models of Proposed Approach and Tools 
Predefined traffic-light control is used in most parts of the world in real systems to 
control traffic congestion. However, it does not provide an optimal solution for 
fluctuating traffic conditions and a limited transport infrastructure. Schematics of 
the simulation are shown in Figure 1. 

3.1 The Proposed Fuzzy Traffic Control System 
The proposed new fuzzy traffic signal controller is composed of four modules: 
Prioritize Emergency Car Module (PECM), Heavy Traffic Evaluation Module 
(HTEM), Calculation of Waiting Time Module (CWTM), and Extension Time 
Decision Module (ETDM). The PECM and HTEM are the first stages of the 
proposed hierarchical structure of a fuzzy traffic control system. The aim of PECM 
is to identify and count emergency cars approaching from the current red and green 
light directions, giving them a weighted priority. The HTEM is responsible for 
calculating the intensity of heavy traffic for the red-light phase and identifying the 
degree of traffic flow in the red phases. CWTM is the second stage decision module 
that makes decisions based on the waiting time of the vehicle(s) in the current green 
and red phases. It is particularly effective during continuous heavy traffic in one 
direction(s), but only a few vehicles want to pass in conflicting directions. This 
module switches the green light to red light whenever necessary. ETDM is a 
decision module that determines the extension time of the green light phase 
depending on the output of the PECM, HTEM, CWTM, and the current traffic 
situation of the green light phase. A detailed description of these four modules is 
provided in Section 4. An isolated traffic intersection is selected and simulated to 
demonstrate the efficiency of the new controller. This simulation was characterized 
by four incoming directions, each with three lanes. This provides 12 different lanes 
together and allows cars to go straight and turn left or right (see Figure 1).                
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The proposed method is, however, suitable for modeling and controlling an arbitrary 
intersection with the arbitrary numbers of incoming and outgoing roads and lanes. 
In the next, one of the most common types of isolated intersection will be presented 
as an example, namely, four incoming roads with three different direction lanes, and 
four outgoing road as well. The presented method is a suitable for modeling any 
single intersection with arbitrary incoming and outgoing roads and lanes. In our 
further research we intend to conduct multiple intersection systems, where the 
control of the individual intersection operates in agent-like way, and thus the time 
complexity may be kept relatively low, by applying parallelly running algorithms. 

 
Figure 1 

Simulated Isolated Traffic Intersections 

3.2 The Software Tools Used 
The selection of appropriate software tools is essential to design and develop 
intelligent traffic control systems that manage and provide optimal solutions for 
unpredictable traffic conditions. Traffic simulation frameworks provide a helpful 
tool for conducting research, evaluating, and simulating traffic flow [24]. To 
implement and simulate this new model, an open-source SUMO traffic simulation 
using the TraCi API was chosen. This package was also used to design a graphical 
user interface (GUI). SUMO also includes various support tools that can handle 
various tasks such as route finding and importing networks from open street maps. 
It can be further improved and adapted to a specific goal using self-defined models 
and provides various features to remotely control the simulation. The fuzzy traffic 
controller modules were implemented using Python. Communication between the 
GUI and the fuzzy traffic modules is performed using the Traffic Control Interface 
(TraCi) tool, which is included in the SUMO simulator package. The TraCi tool 
provides a TCP-based client/server architecture that allows the user to control and 
modify SUMO simulations using an external application [25]. 
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4 Implementation of the Proposed Approach 
To solve the task set, we proposed a three-stage structure constructed from the four 
modules mentioned above, as shown in Figure 2. A cascaded multiple Mamdani-
type fuzzy system composed of the aforementioned four modules was implemented 
in the simulation experiment. The first stage consists of two modules, namely 
PECM and HTEM; the second stage is CWTM, and the last stage is ETDM. For all 
modules, the input and output variables corresponded to the linguistic values 
modeled by triangular membership functions. Triangular membership functions are 
widely used in fuzzy-control approaches with acceptable efficiencies. Multiple 
investigations have shown that applying more complex membership function shapes 
(like Gaussian, etc.) do not lead to essential to different results whenever 
defuzzification or discreate values are obtained at the output. The actual parameters 
of the membership functions of the individual linguistic values should be adjusted 
to the concrete application of the system; the meaning of “heavy traffic” may be 
quite different in a central city area and a rural intersection. Here, the chosen 
parameters are the default values for the theoretical case study. The inference rules 
are determined and implemented. Here, the inference rules of stage-1 Modules 
(PECM and HTEM) are adopted by a slight modification of a previous paper [8].  
A detailed explanation of how this was performed is presented in the next 
subsection. 

 
Figure 2 

Architecture of three-stage fuzzy traffic control systems 

4.1 The Modules of the Novel Control System 
In the following paragraphs, all the four modules of the proposed control system are 
explained in detail. 

4.1.1 Prioritize Emergence Car Module (PECM) 

The role of this fuzzy control module is to detect emergency vehicles that may 
appear in any intersection lane and assign priority. It has two antecedents (inputs) 
and one consequent (output). The number of emergency cars detected from the 
direction of the red-light phase (Emr) and green-light phase (Emg) are the inputs. 
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Because emergency car(s) are occasional, the ranges of Er and Eg are set to [0,3) 
with triangular membership functions (for example, Figure 4). The output variable 
is an indicator of the potential priority of the emergency vehicles (Pem). Both the 
input and output variables can assume three linguistic values. For the input 
variables, the linguistic values were {none, few, many} (see Figure 4), and the 
possible linguistic values of the output variable were: no emergency car (none), an 
emergency car from the red-light phase (Emr), and an emergency car from the green 
light phase (Emg). The module also actively ensures optimal traffic flow when there 
are no emergency cars at the intersection. If the same number of emergency cars 
appears simultaneously in contradictory directions, priority is given to the 
emergency car(s) approaching the green phase. The system also prioritizes lanes 
with more emergency vehicles. However, if the number of emergency vehicles 
arriving on the red road is significantly higher than that arriving in the conflict 
direction(s), the green light will immediately turn red, which makes our system 
more reliable and intelligent. Nine (3 × 3) fuzzy inference rules were created for 
this module as a sample of fuzzy rules, as shown in Figure 3. The sample of fuzzy 
rules of this module depicted in Figure 3 can be described using natural language; 
for example, rules 3 and 9 are described respectively as follows: “IF emergency cars 
detected from the current green phase direction is “none” (no emergency cars) AND 
emergency cars detected from the current red phase are “many”, THEN “do” 
prioritize the emergency cars detected from the red phase.” 

“IF emergency car(s) detected from the current green phase direction are “many” 
AND emergency cars detected from the current red phase are also “many”, THEN 
“keep green light” for the current green light phase until appear emergency cars 
pass.” 

 
Figure 3 

Sample of fuzzy rules for PECM, Module I 

 
Figure 4 

Input membership functions for Emg 
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4.1.2 Heavy Traffic Evaluation Module (HTEM) 

This module is one of the first stages of the proposed system for identifying the 
level of heavy traffic in the red-light phase. It has two antecedent variables, namely, 
the vehicle queue length of the red-light phase (Qr) and the waiting time of cars in 
the red light (Wtr), and one consequent variable, which is the degree of heavy traffic 
(Dht). For all variables, there are five linguistic values; therefore, five membership 
functions are given for Qr and Dht. For simplification, the domains Qr and Dht are 
given equally [0,60). These linguistic values are {zero, small, medium, large, and 
very large}. The range of Wtr  is [0,300) and its linguistic values are defined as {zero, 
short, medium, long, very long}. Triangular membership functions were used, as 
shown in Figures 6, 9, and 11. Based on the linguistic values of the input 
variables,{5 × 5=25} inference rules are stated for this module. A subset of the fuzzy 
inference rules of HTEM is shown in Figure 5. For instance, “IF(Qr is {medium} 
AND Wtr is {medium}, and THEN Dht is {medium}”. This rule can be explained 
using natural language, as the “ IF vehicle of queues of the red phase is medium and 
the waiting time of vehicles is also medium THEN the degree of heavy traffic in the 
current red-light phase is medium”. 

 
Figure 5 

Sample of fuzzy rule base for HTEM, Module I 

 

 
Figure 6 

Membership functions for Qr 
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Figure 7 

Membership functions for Qg 

4.1.3 The Calculating Waiting Time Module (CWTM) 

This module represents the second stage of the proposed cascaded system hierarchy. 
The main function of this module is to calculate the waiting time of the short queues 
of vehicles. Therefore, because high traffic can continue in one direction for a long 
time, vehicles travelling in the opposite direction may have to wait for a long time 
to receive a green light. The CWTM is used to solve this problem by calculating the 
total waiting time of the individual car(s) and switching to a green light in the 
conflicting direction when this time exceeds a (fuzzy) limit. It has four inputs and 
one output variable. The inputs are the waiting time of car in the red light (Wtr) and 
the waiting time of car in the green light phase (Wtg), the degree of heavy traffic in 
the red phase (Dht), and the current traffic conditions of the green light phase (Qg). 
The output is the decision to switch off or maintain the green-light phase (Swr). The 
input variables Wtr and Wtg have five linguistic values to which five membership 
functions are assigned: {zero, short, medium, long, and very long} (for example, 
Figures 9). In the case of Dht and Qg inputs, two linguistic values were selected 
because the main aim of this module is to make a decision when sudden high traffic 
flow is loaded in one direction(s) continuously, while some individual car(s) coming 
from the conflicting direction are stuck waiting for a green light. Therefore, the 
linguistic values used for the inference rules were used to alleviate such 
occurrences. Accordingly, the input variable Dht was the output of the HTEM, and 
only two of the five linguistic values{zero, small} were used (see Figure 11). 
Similarly, Qg also has only two out of five linguistic values, namely, {large, very 
large} (see Figure 7). The output variable also has two linguistic values: (keeping 
the green light) {keepg} and (switching to the red phase if necessary) {switchr}. 
Therefore, 5 × 5 × 2 × 2 =100 inference rules were developed for this module; some 
examples are shown in Figure 8. One of the rule samples can be described as 
follows: “IF degree of heavy traffic in the red phase is small (may be one or two 
car(s) required to pass) OR vehicle queues of the current green phase are very large 
AND the waiting time of short vehicle queues in the red phase is very long AND 
the waiting time of vehicle queues in the conflicting direction(s) (current green 
phase) is very long, THEN keep the green light until very large vehicle queues are 
reduced from the current green phase.” 
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Figure 8 

Sample of fuzzy rule base for CWTM, Module II 

 
Figure 9 

Membership function for Wtr 

4.1.4 Extension Time Decision Module (ETDM) 

This is the third stage of the hierarchical (three-stage) fuzzy traffic control system. 
This module decides whether to extend the green light or switch to the red phase. 
The outputs of the PECM, HETM, and CWTM are used as input variables for this 
module. The current green-light phase traffic situation is also considered as the 
fourth input variable for decision-making, which is denoted by Qg. The Qg  range is 
[0,60) and its membership functions are shown in Figure 7. The linguistic values of 
the other input and output fuzzy variables are shown in Figures 10, 11, and 12.          
A set of  3 × 5 × 2 × 5=150 fuzzy inference rules were implemented to perform 
appropriate actions based on the linguistic values of the input. The Fuzzy rule base 
of this module was created using Python in the same fashion as illustrated in Figures 
3, 5, and 8. 

 
Figure 10 

Membership function for Pem 
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Figure 11 

Membership function for Dht 

 
Figure 12 

Membership function for Ge (extension time of green light) 

5 Simulation and Discussion 
The intelligent fuzzy traffic control system (IFTCS), including its four modules, 
was created using the scikit-fuzzy system library package in Python and integrated 
with the SUMO graphical user interface traffic simulator using TraCi. The simulated 
vehicular data were adjusted for SUMO using a text editor, and 12 routes were 
defined, together with incoming and outgoing lanes (see Figure 1). Various vehicle 
types were created (emergency cars, trucks, etc.), along with information on the 
number of vehicles and the probability of their trips for each route, as shown in the 
segment code in Figure 13. 

 
Figure 13 

Segment code of vehicular data created using SUMO 
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To measure the effectiveness of the proposed system, indicators such as the average 
waiting time of the vehicle at the intersection, number of stopped vehicles caused 
by the red light, and average extension of the green light duration were used. To 
evaluate the performance of the developed system, the results were compared to the 
graphical user interface of a pre-timed (fixed) traffic control (PTC) system that was 
implemented and simulated in the same fashion and in the same software (SUMO 
and Python) without a fuzzy system module. The PTC used for comparison was 
implemented based on traditional and non-intelligent algorithms. Both systems 
count the number of vehicles in both the green-light and red-light phases while 
distinguishing emergency vehicles from all others. Similarly, both calculate the 
waiting times of the vehicles in the red and green phases. For proper comparison, 
two experimental simulation scenarios were conducted using SUMO, which 
operates in one second. Scenario-1 was an 8,000-step run simulation, whereas 
Scenario-2 consisted of 32,000 steps. Four cases of experimental simulations were 
conducted for both scenarios, each categorized based on the distribution of the 
vehicle arrivals. These cases were as follows. (a) In Case 1, the number of vehicle 
arrivals in the East to West or West to East directions increased (i.e., high traffic 
conditions in specific directions). There are six routes in this case: east-to-west, east-
to-south, east-to-north, west-to-east, west-to-north, and west-to-south. However, 
there were a low number of vehicles arriving from conflicting directions (i.e., low 
traffic conditions in conflicting directions). (b) Case 2 involved an increasing 
number of vehicle arrivals in the north–south and south–north directions. This case 
also includes the North to East, North to West, South to North, South to West, and 
South to East directions. However, a few vehicles exist in contradictory directions. 
(c) Case 3 had an equal distribution of vehicle arrivals in all 12 directions in terms 
of both the number of vehicles and their probability. (d) Case 4 had an arbitrary 
distribution of the number of vehicle arrivals and their probabilities for all the 12 
routes. For these simulations, only five types of vehicles were used: one emergency 
car(s) and four non-emergency vehicle types. In Cases 1 and 2, the probability of 
each car type was the same, and only the number of vehicles was increased or 
decreased. For instance, the probability of emergency cars was 0.03 for both Cases 
1 and 2, and the total probability of non-emergency vehicles was 0.62 for all routes 
(directions). Both Scenarios were simulated for all cases. 

Table 1 
Performance of the Proposed System Compared with PTC for Scenario 1 

Case   Average 
waiting time 
of non-
emergency 
vehicles 
for PTC 

Average 
waiting 
time of non-
emergency 
vehicles for 
IFTCS 

Improvement 
(%)  

Average 
waiting 
time of 
emergency 
cars for 
PTC 

Average 
waiting 
time of 
emergency 
cars for 
IFTCS 

Improvement 
(%)  

1 477024.1 208529.1 56.3 15118.7 10946 27.6 
2 472267.8 185550.6 60.8 15838.3 6897.8 56.4 
3  614290.0 395811.9 35.6 18109.4 11733.3 35.2 
4  547395.2 292848.3 46.5 13178.8 7105.7 46.1 
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Table 2 
Performance of Proposed System Compared with PTC for Scenario 2 

Case   Average 
waiting time 
of non-
emergency 
vehicles for 
PTC 

Average 
waiting 
time of 
non-
emergency 
vehicles 
for IFTCS 

Improvement 
(%)  

Average 
waiting 
time of 
emergency 
cars of  
PTC 

Average 
waiting 
time of 
emergency 
cars of  
IFTCS 

Improvement 
(%)  

1 1422055.3 291081.3 79.5 15118.7 10946 27.6 
2 1342283.0 259974.3 80.6 118198.8 6897.8 94.2 
3 14608725.0 609783.8 95.8 18163.4 11733.3 35.4 
4 1181666.0 450159.4 61.9 13576.7 7124.0 47.5 

Table 3 
The number of cars that stopped in the heavy scenario was caused by the red phase 

 Scenario  Cases  TCP IFTCS Improvement (%) 
1 
  
  

1 105775.00 74573.00 29.5 
2 105431.00 70694.00 32.9 
3  138810.00 108444.00 21.9 
4 128781.00 96730.00 24.9 

  
2 
  

1 309581.00 139950.00 54.8 
2 302089.00 134393.00 55.5 
3  269689.00 165947.00 38.5 
4 277301.00 160002.00 42.3 

As shown in Tables 1 and 2, the proposed fuzzy traffic control system outperformed 
the pre-timed traffic control system in both scenarios and situations. In Scenario 1, 
in Case 1, the average waiting times for non-emergency vehicles decreased by 
56.3% compared to PTC, and the average waiting times for emergency cars were 
reduced by 27.6%. In Scenario 1 (Case 2), the average waiting time for non-
emergency vehicles was reduced by 60.8%, which was nearly the same as Case 1's 
average waiting time for non-emergency vehicles. However, the average waiting 
time for emergency cars was reduced by 56.4%, which was better than Case 1's 
average waiting time for emergency cars. Furthermore, when the number of 
simulation steps or the intensity of heavy traffic increases, the average waiting times 
of non-emergency vehicles are reduced by 79.5% and 80.6% for Cases 1 and 2, 
respectively, which are more comparable (Table 2). However, the average waiting 
time for the emergency car(s) in Scenario 2 (Case 2) was reduced by 94.2, whereas 
that of Case 1 was the same as that in Scenario 1 (27.6%). The rationale behind Case 
2 is more advantageous in terms of prioritizing emergency car(s) in both scenarios 
1 and 2 and needs further investigation. However, in both Scenarios and in all Cases, 
the proposed system prioritized emergency car(s) without significantly affecting the 
time of non-emergency vehicles at intersections. Here, the proposed approach has 
more flexibility and driver-friendly features that prioritize emergency car(s) without 
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essentially affecting other vehicles. Similarly, as shown in Table 3, the intensity of 
heavy traffic (number of stopped vehicles) was calculated, and the proposed fuzzy 
traffic control reduced the amount of heavy traffic flow stopping in the red phase in 
all cases compared to the traditional traffic signal control system (see Table 3). 
Another intelligent feature of this system is that it provides a more equitable 
distribution of waiting times in the case of a heavy traffic load in a conflicting 
direction for a long time. To assess the performance of the new three-stage fuzzy 
traffic control system relative to the two-stage fuzzy traffic control system with 
regard to the equitable distribution of the green time duration in situations where 
long vehicle queues are consistently present in only one direction for extended 
periods, whereas only short vehicle queues are necessary to pass through the 
conflicting direction. A two-stage fuzzy traffic signal control system was developed 
without a CWTM module, as presented in [8] and depicted in Figure 14. To execute 
this experimental simulation, the data were organized based on linguistic values that 
demonstrated heavy traffic during the current green-light phase, which signifies that 
Qg falls within the range of {large, very large} and Wtg ranges from {zero, short}. 
In contrast, during the current red phase, the light traffic conditions (characterized 
by short vehicle queues) necessary to satisfy the Qr linguistic values are situated 
within the range of {zero, small}, whereas the range of Wtr linguistic values spans 
{long, very long}. Finally, a comparison was made in terms of the average extension 
of the green light duration for shorter queues facing heavy traffic from conflicting 
directions (s). The result proved to be more equitable towards short queues, as 
shown in Tables 4 and 5. Both control systems were evaluated using the same data, 
with the absence of emergency cars and heavy traffic loads in the current green light 
phase. As shown in Table 6 and Figure 15, the three-stage fuzzy system 
outperformed the two-stage system in terms of the average extension of the green-
light duration to provide an equitable green-light time for short vehicle queues. 

PECM

HTEM

ETDM 

 
Figure 14 

Architecture of two-stage fuzzy traffic-control systems [8] 

Table 4 
Three-stage fuzzy traffic control (no emergency vehicles) 

Antecedents Consequent 
Qr Qg Er Eg Wtr Wtg Ge 
10 25 0 0 130 50 22.13 
20 80 0 0 225 75 29.23 
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5 100 0 0 250 25 29.23 
2 200 0 0 250 45 31.16 
1 150 0 0 115 55 28.88 

Table 5 
Two-stage fuzzy traffic control without CWTM (no emergency vehicles) 

Antecedents Consequent 
Qr Qg Er Eg Wtr Ge 
10 25 0 0 130 22.50 
20 80 0 0 225 54.83 
5 100 0 0 250 55.15 
2 200 0 0 250 55.47 
1 150 0 0 115 54.00 

Table 6 
Average extension green time of the cars in shorter queues 

Number of 
simulations 

Extension Time for green 
light for three-stage (second) 

Extension Time for green light two-
stage without CWTM (second) 

1 22.13 22.5 
2 29.23 54.83 
3 29.23 55.15 
4 31.16 55.47 
5 28.88 54 
Average 28.39 48.39 
Improvement (%) 41.3% 

 

 
Figure 15 

Average extension green time for shorter vehicle queue 
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Another advantage of the newly proposed system is that it is capable of switching 
or extending the green light phase in the case of two or more emergency cars 
appearing simultaneously. Regarding the technical requirements for the setup, the 
Mamdani-style fuzzy system structure simplifies scalability and maintenance 
because it is easy to expand various modules without affecting the main system. 
Therefore, scalability and robustness are other benefits of our method compared 
with other optimal traffic control systems. 

Conclusions and Future Work 

With the rapid increase in vehicle usage and limitations in the transportation 
infrastructure, the development of traffic control systems is critical. Over the past 
few decades, the number of traffic accidents has surged globally owing to a constant 
increase in traffic jams. A novel approach to a hierarchically cascaded fuzzy traffic 
control system was proposed to overcome the problems encountered by the existing 
pre-timed and optimal traffic control systems. The new GUI software implements 
an intelligent system that reduces traffic congestion and at the same time, it 
prioritizes emergency cars without significantly affecting other vehicles in the same 
intersection. The proposed fuzzy traffic control system not only reduces delays at 
intersections but also enhances their overall efficiency and safety. The proposed 
system solves this problem, calculates the waiting time of the red phases, compares 
it with the current green-light phases, and then switches the green light to the red 
phase as necessary. This aspect improves driver friendliness, as it offers green lights 
toward stalled drivers when encountering heavy traffic from conflicting directions. 

Simulation experiments were conducted using a microscopic traffic simulator 
(SUMO), and the results clearly demonstrate that the new approach is more 
advanced and has more intelligent behavior than the current traffic control system. 
A Pre-timed Traffic Control system (PTC) was also simulated in the same manner 
as the proposed systems, and a comparison was made between the PTC and the new 
approach in terms of the average waiting times for vehicles, average waiting times 
for emergency cars, and number of vehicles stopped by the red phase.                        
The simulation results show that the proposed approach outperformed PTC in all 
scenarios. 

Future experiments may focus on expanding the isolated traffic intersection to two 
or more connected intersections or applying a more efficient inference engine, such 
as a fuzzy rule interpolation algorithm that can manage various traffic parameters. 
Similarly, it is possible to integrate fuzzy inference rules with deep neural networks 
and reinforcement learning, enabling the system to predict future traffic conditions 
and interact with the environment, to make better decisions. 
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