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Abtract: This paper presents the development of an obstacle detection system for 
autonomous train operation (ATO) using a night vision system. The focus is on the 
development of the ATO for freight transport that operates in low light and night 
conditions.  An experimental setup featuring an Intensified Charge-Coupled Device (ICCD) 
camera was employed to acquire images under low-light conditions. A novel computer 
vision algorithm was developed to ensure robust and reliable obstacle detection. The 
methodology begins with the detection of rail tracks, which are subsequently used to define 
a Region of Interest (ROI). Within the ROI, the rail tracks are analyzed for interruptions 
indicative of obstacles. Obstacle detection is achieved through image segmentation 
techniques, while the distance between the setup and the detected obstacles is estimated 
using a homography-based approach. The proposed algorithm was evaluated on a 
comprehensive dataset comprising images from three representative scenarios. 
Experimental results demonstrate the system's effectiveness in reliably detecting obstacles 
under nighttime conditions and accurately estimating distances. 

Keywords: night vision; obstacle detection; distance estimation; autonomous train 
operation; railway 

1 Introduction 

Railways represent one of the most vital modes of transportation, and their 
modernization is crucial for increasing safety, efficiency, and capacity. A number 
recent works addressed various aspects of modern railways, including adequate 
engineering solutions for railways infrastructure [1, 2], analysis of acting 
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mechanical and thermal loads in railways [3, 4, 5, 6], environmental protection 
through reduction of emitted noise [7, 8], investigation of the efficiency of rail 
freight transport [9] – to name but a few. A key aspect of railway modernization is 
the development of ATO systems, which aim to enhance railway operations by 
reducing human intervention and improving reliability. ATO has already been 
widely adopted in public transportation, including metro systems, light rail transit 
(LRT), and automated guided transit (AGT) [10]. The core principle of ATO 
involves transferring operational tasks from human operators to automated control 
systems, such as the European Rail Traffic Management System (ERTMS), 
ensuring safe and efficient train movement. 

One of the fundamental challenges in ATO is the implementation of an Obstacle 
Detection System (ODS), which is responsible for identifying and classifying 
obstacles on or near the rail tracks and estimating their distance from the train. 
The primary objective of the ODS is to enable timely braking and accident 
prevention, a crucial requirement given that freight trains have significantly longer 
break distances compared to automobiles—ranging from 500 meters to over 2 
kilometers, depending on weight, speed, and braking system efficiency. Unlike 
autonomous vehicles, where obstacle detection is limited to relatively short 
distances, autonomous train systems must detect potential hazards much further 
ahead to allow adequate response time. 

A major challenge for ODS is ensuring reliable operation in diverse environmental 
and lighting conditions. While traditional vision sensors provide effective 
detection in good lighting, their performance significantly deteriorates in low-light 
and adverse weather conditions such as fog, rain, and snow. To overcome these 
limitations, thermal imaging and night vision systems have been increasingly 
explored as viable solutions. Thermal imaging systems operate in the infrared 
spectrum and do not rely on ambient light, making them particularly effective for 
night-time and low-visibility conditions [11, 12, 13, 14]. Use of a night vision 
system for obstacle detection in those specific conditions enables detection in 
extremely low-light conditions and at night because this system needs a very small 
amount of light for good operating. 

The authors proposed an AI-powered method for estimating the distance between 
a camera and objects on railway tracks using image-plane homography and neural 
networks, with validation showing a 2% error margin in impaired visibility 
scenarios [14]. Ristić-Durrant et al. in [15] reviewed the state-of-the-art in 
obstacle detection for railways and outlined the challenges in implementing 
autonomous obstacle detection systems capable of operating effectively in various 
environmental conditions. In [16] a two-step method for detection and tracking of 
pedestrians with single night vision camera installed on a vehicle, is proposed. 
The detection is performed using support vector machine (SVM) and tracking 
with a combination of Kalman filter prediction and mean shift tracking. Two new 
techniques for pedestrian detection using a stereo night-vision system installed on 
the vehicle are introduced in [17]. Two-stage method for stereo correspondence 
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and motion detection without explicit ego-motion calculation use of characteristics 
of night-vision video data, in which humans appear. 

In this paper, we present an approach to obstacle detection in autonomous train 
operation using night vision imaging. The proposed method involves rail track 
detection through image segmentation, followed by ROI analysis to identify track 
interruptions where obstacles may be present. Detected obstacles are then marked, 
and their distances from the train are estimated using a homography-based 
method. The objective is to develop a robust vision-based ODS capable of 
functioning in real-time across varying environmental conditions, thus ensuring 
safe and reliable autonomous railway operations. 

2 Literature Review 

In the field of obstacle detection for autonomous train operations, several 
approaches have been explored to enhance safety and reliability. One method for 
long-distance obstacle detection involves using LiDAR to process point cloud 
data, which offers reliable safety even in low-light and tunnel environments [18]. 
In addition, Xungu et al. developed a semi-autonomous rail survey inspection 
device (SID) that travels ahead of trains to detect obstacles, allowing for early 
hazard identification and significantly improving safety [19]. Assaf et al. 
introduced a cost-effective gimballing platform designed for long-range obstacle 
detection using 1D-LiDAR, demonstrating precise targeting at distances beyond 
1000 meters [20]. An approach proposed by Brucker et al., uses a shallow neural 
network that incorporates both local and global information to segment railway 
images and detect obstacles, outperforming baseline methods on a custom dataset 
[21]. To improve detection accuracy and adaptability, Tang and Yang developed a 
multi-sensor obstacle detection system that integrates point cloud data and visual 
inputs, overcoming the limitations of single-sensor detection [22]. Khobragade et 
al. also explored real-time track and anomaly detection using computer vision, 
achieving consistent track continuity and reliable obstacle detection in complex 
railway environments [23]. Lastly, Gasparini et al. proposed a vision-based 
anomaly detection system for railway inspection, using RGB and thermal images 
captured by a rail drone. Their approach proved effective during nighttime 
operations, offering both computational efficiency and high accuracy [24]. 

Deep learning methods have been widely adopted in obstacle detection for railway 
systems, offering improved accuracy and efficiency in challenging environments. 
Jenefa et al. developed a Deep Convolutional Neural Network (DCNN) model to 
detect obstacles on railway tracks, achieving an 98% accuracy. Their research 
demonstrated the potential of DCNNs in real-world applications, though further 
testing in varying environmental conditions is suggested [25]. Xu et al. proposed 
another DCNN-based approach, integrating a Single Shot Multibox Detection 
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method with a Residual Neural Network to improve real-time performance. This 
model outperformed traditional methods with a mean average precision (mAP) of 
91.61% and a detection speed of 26 frames per second (FPS) [26]. 

In complex environments, Qin et al. introduced a robust feature-aware network 
(RFA-Net) that enhances the detection accuracy of small obstacles, achieving a 
92.7% mAP. Their improved algorithm excels in both accuracy and lightweight 
implementation, making it well-suited for rail transit [27]. Kapoor et al. applied 
Faster R-CNN with thermal imaging to identify objects on railway tracks in night 
conditions, showing 83% accuracy and demonstrating the potential of deep 
learning in improving safety under low-visibility scenarios [28]. Raza et al. 
developed a novel system for multiple pedestrian detection and tracking in night 
vision surveillance systems using infrared (IR) images. Their machine learning-
based method achieved a 93% segmentation accuracy and 90% detection 
accuracy, demonstrating high effectiveness in identifying pedestrians in low-light 
environments. The system was also highly accurate in tracking and classifying 
detected objects [29]. 

In nighttime imaging, Patel et al. developed a compact object detector using 
Depthwise Convolutional Neural Networks (DDCNN), improving detection 
accuracy while reducing computational complexity. Their model outperforms 
state-of-the-art methods, with a mAP of 52.39% and 72.7% accuracy for car 
detection in night-time situations, highlighting the applicability of DDCNNs in 
real-time use cases [30]. 

In addition to deep learning methods, several papers have focused on using night 
vision and sensor-based techniques for obstacle detection, especially in low-light 
conditions. Yasin et al. leveraged bio-inspired event-based vision sensors for 
night-time obstacle detection, utilizing the asynchronous adaptive collision 
avoidance (AACA) algorithm to process high-frequency event data. Their method 
showed improved detection performance in low-light conditions compared to 
traditional cameras [31]. Patel et al. addressed the challenge of enhancing night-
time image quality by employing the Dark Channel Prior (DCP) filter. Their 
approach improved visibility and object recognition in traffic surveillance during 
low illumination, with real-time processing speed optimized through FPGA 
implementation [32]. 

3 Night Vision System 

Night vision systems use various technologies to enable users to see in complete 
darkness or low-light conditions. The basic principle of these systems involves 
collecting small amounts of ambient light, which may be imperceptible or 
insufficient for the human eye, and amplifying it to a level where the image 
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becomes visible. The night vision system used in this research is an ICCD 
(Intensified CCD) camera, which consists of an optical lens system, an image 
intensifier tube, and a CMOS camera sensor coupled to the output screen of the 
image intensifier tube (Fig. 1). Unlike thermal camera, there is no significant 
influence of varying ambient temperature on image acquired with ICCD camera. 

 
Figure 1 

ICCD camera schematics [33] 

The optical lens system in a night vision device is responsible for providing the 
appropriate magnification of an object at specific distances, ensuring that the 
image captured is clear and focused. This lens system plays a crucial role in 
directing the incoming light onto the image intensifier, where the real 
enhancement of the image occurs. The image intensifier's primary function is to 
increase the intensity of the incoming light by multiplying the photons it receives. 
This process of photon amplification enables the ICCD camera to capture images 
even under extremely low-light conditions, where the available light is insufficient 
for conventional imaging, or during very short exposure times, such as those as 
brief as 200 ps. In such cases, the total photon flux collected over the short 
exposure period is typically very low, but the image intensifier ensures that the 
minimal light available is amplified to produce a visible image. 

The image intensifier, as shown in Fig. 2, is composed of three integral 
components that work in tandem to achieve this amplification [34]. These 
components are mounted very close each other in order: photocathode, 
microchannel plate, phosphor screen. The working principle is: photons from light 
sources is absorbed into the system, then the photocathode (a) receives the 
incoming light and converts the photons into photoelectrons. These photoelectrons 
then pass through the microchannel plate (MCP) (b), which multiplies them by a 
significant factor, enhancing the number of photoelectrons for further processing. 
Finally, the amplified photoelectrons are directed onto the phosphor screen (c), 
where they are converted back into photons, creating the intensified image that is 
captured by the camera sensor. These three stages ‒ photon conversion, electron 
multiplication, and photon re-emission ‒ are essential for enabling high-quality 
imaging in low-light environments. 
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Figure 2 

Three functional units of an image intensifier: the photocathode (a), the microchannel plate (b) and the 
phosphor screen (c) [35] 

The functional components of the image intensifier are precisely aligned in close 
proximity to each other to ensure optimal performance. The operational principle 
of the image intensifier is as follows: photons incident on the photocathode from 
the light source are converted into photoelectrons. These photoelectrons are then 
subjected to significant amplification within the microchannel plate (MCP), after 
which the phosphor screen re-emits the multiplied photoelectrons as photons. The 
amplified photons are subsequently directed towards the CCD sensor through an 
optical system for image acquisition. A critical feature of the image intensifier is 
its gating capability, which serves as the shutter function for the ICCD camera. 
When the camera is "gated on," the shutter is open, permitting the transmission of 
amplified photons to the CCD sensor for image capture. When the camera is 
"gated off," the shutter is closed, preventing any photon transmission to the CCD 
sensor. This gating function is essential for enabling the ICCD camera to operate 
effectively in environments with minimal or no ambient light, thereby facilitating 
its use in various low-light and no-light imaging applications [34]. 

4 Obstacle Detection System 

The primary objectives were to detect obstacles on or near rail tracks under no-
light and low-light conditions and to estimate the distance between the detected 
obstacles and the system. To achieve this, after image acquisition using the night 
vision system, rail tracks are identified through a region-based segmentation 
approach. Specifically, thresholding and region growing techniques, using an 
optimal threshold range, are employed [13, 36, 37, 38]. The comuter vision flow 
chart used for obstacle detection and distance estimation is illustrated in Fig. 3.  

The proposed obstacle detection and distance estimation system operates through 
a vision-based algorithm that leverages rail track segmentation and dynamic 
region of interest (ROI) definition to achieve accurate and efficient obstacle 
localization. 
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Figure 3 

Obstacle detection and distance estimation flow chart 

The system begins by continuously acquiring images from a mounted ICCD 
camera or RGB, and applies image preprocessing techniques such as contrast 
enhancement, noise filtering and histogram equalization to improve feature 
visibility. Rail track segmentation is then performed using a threshold-based 
method to isolate the distinctive linear features of the tracks. If successful, the 
system defines a dynamic ROI surrounding the detected rails, with margins added 
laterally and longitudinally to capture the spatial context where potential obstacles 
are likely to occur. This targeted approach reduces the computational burden by 
focusing only on relevant parts of the image. Within the ROI, the continuity of rail 
tracks is analyzed. Discontinuity in the rail structure is interpreted as a potential 
indication of an obstacle. If such a discontinuity is detected, a second 
segmentation stage is initiated specifically for obstacle detection. This involves 
applying an optimized thresholding method to extract non-rail features, followed 
by blob analysis to identify and localize obstacle candidates. To accommodate 
diverse lighting and environmental conditions, the algorithm can iteratively adjust 
threshold values during both segmentation stages. Once an obstacle is confirmed, 
it is marked within the image and its distance from the camera is estimated using a 
homography-based transformation, which uses the geometric relationship between 
the image plane and the real-world ground plane [38, 39]. 

The homography is also called projectivity, which is defined as invertible 
mapping h from P2 to itself such that three points x1, x2 and x3 lie on the same line 
if and only if h(x1), h(x2) and h(x3) do [39]. On this way, projectivity is defined in 
terms of geometry, and an equivalent algebraic definition of projectivity is that a 
mapping h: P2 →P2 is a projectivity if and only if there exists a non-singular 3×3 
matrix H such that for any point in P2 represented by a vector x it is true that 
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h(x)=Hx. A planar projective transformation, which was used for estimation of 
distance, represents linear transformation on homogeneous 3-vectors represented 
by a non-singular 3×3 matrix: 

This is an equation example: 
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 (1) 

or shorter: 

' =x Hx  (2) 

5 Results and Discussion 

5.1 Experimental Setup 

The experimental setup used in this research consists of three monocular RGB 
cameras, one IR camera, one night vision system and one laser scanner. All 
cameras are mounted in metal housing, especially designed for this purpose (Fig. 
4). For an obstacle detection in no light and low-light conditions, IR camera and 
night vision system are used and tested on field tests performed on rail tracks in 
different times of the night. During tests, humans were imitating obstacles on the 
rail tracks and next to them on different distances from |the experimental setup. 
However, in the research presented in this paper only videos (images) acquired by 
the CCD camera augmented with image intensifier were used and analyzed. 

To obtain high quality videos during experiments in no light and lowlight 
conditions, night vision system hardware has an optical system with 6x objective, 
fixed 170 mm focal length and aperture f/1.7. Image intensifier is 3rd generation 
with 64 lp/mm and auto-gating function, with monochromatic camera resolution 
2592x1944 pixels. 

For the real time online processing ROS Noetic Ninjemys was used, while using 
OpenCV library, CUDA 10.1 and working on Ubuntu 20.04 64-bit Qt 4.8.1. For 
algorithm development, testing and evaluation, as well as data analysis 
MathWorks MATLAB 2023b was also used. 
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Figure 4 

Experimental setup on field 

To prepare needed data for development, testing and evaluation of the proposed 
method for long-range object (obstacles) detection and distance estimation using 
CCD camera with image intensifier, field tests were performed on various a 
Serbian railway test-sites (on a railway Niš-Prokuplje) approved for the 
experimental use by the Serbian Railway authorities. 

5.2 Obstacle Detection 

To achieve greater reliability and robustness, image processing algorithm for an 
obstacle detection was implemented and tested on a large set of images. Those 
images were continuously captured by experimental setup with a night vision 
system during night conditions at two different locations. The first location was in 
the village of Babin Potok, near the city of Prokuplje, Serbia. The chosen location 
was a level crossing located in a rural and an uninhabited area, so there was no 
facility or light source in the wider area (marked with a red circle in Fig. 5 (left)). 
The level crossing was located at the intersection of the local unpaved road and 
the Niš-Prokuplje-Merdare main railway line. The experiment was carried out on 
a part of the Niš-Prokuplje railway, between the Rečica and Babin Potok railway 
stations, in the direction towards Prokuplje (marked with a blue line in Fig. 5 
(left)). On that site, the railway line is a single-track and not electrified. The level 
crossing is marked with vertical signs, it is not illuminated, and it is not equipped 
with appropriate equipment. The experiment was carried out in night conditions, 
in clear weather at a temperature of 18°C and the amount of illumination of 0 lux 
over the whole location. Night vision system was set up at the center of railway 
between the rail tracks (Fig. 5 (right)) at a height of 1.5 meters from the ground. 
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Figure 5 

Location of the first level crossing where experimental setup was placed (left) and schematics of the 
camera orientation (right) 

In this experiment, there were three specific cases for obstacle detection. In the 
first case, one object was between the rail tracks (Fig. 6 (left)). Rail tracks were 
detected and based on that and the ROI was defined (marked with a purple color 
in Fig. 6 (right)). Although the object was not directly on rail tracks, its position 
was in ROI and affected the occurrence of interruption on the rail tracks. In a 
further image processing, the obstacle was detected in ROI between the rail tracks 
and marked with a red rectangle (Fig. 6 (right)). 

  
Figure 6 

Object between rail tracks (left) and the detected ROI and obstacle (right) 

In the second case, there were two objects, one next to the left rail track and 
another on the right rail track (Fig. 7 (left)). First, rail tracks were detected, and 
ROI is defined (marked with a purple color in Fig. 7 (right)). However, in this 
case, there was interruption only on the right rail track, and in a further image 
processing, the obstacle was detected in ROI and marked with a red rectangle (Fig 
7 (right)). An object next to the left rail track was out of ROI, i.e., was not on the 
rail tracks nor in close vicinity of the rail tracks, it did not affect interruption in 
rail tracks, and was not detected. 
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Figure 7 

Objects next to left and on right rail track (left) and the detected ROI and obstacle (right) 

In the third case, an object was on both rail tracks and far from the night vision 
system (Fig. 8 (left)). First, rail tracks were detected, and ROI was defined 
(marked with the purple color in Fig. 8 (right)). Considering that there were 
interruptions on both rail tracks, in further image processing, othe bstacle was 
detected in ROI and marked with a red rectangle (Fig. 8 right). 

  
Figure 8 

Object on both rail track (left) and the detected ROI and obstacle (right) 

The second location was in village Žitorađa, near city of Prokuplje, Serbia (Fig. 9 
(left)). This location is in a rural uninhabited area, the level crossing is not 
illuminated and without signs and equipment. There is a local road next to the 
location and there are residential buildings at 820 meters from the level crossing. 
Because of this, occasional and partial occurrence of indirect lighting was 
expected. This location was chosen considering the real conditions of the mixed 
environment and the safety aspects of the implementation of the experiments. The 
experimental setup was mounted on a level crossing (marked with a red circle in 
Fig. 9 (left)), while the night vision system was directed towards the village 
Žitorađa (marked with a blue line in Fig. 5 (left). The experiments were carried 
out in night conditions, in clear weather at a temperature of 2°C and the amount of 
illumination of 0 lux over thewhole location. The night vision system was placed 
on the left side of the rail tracks (Fig. 9 right), at a height of 1.5 meters from the 
ground and directed towards a habited place. 
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Figure 9 

Location of the second level crossing where experimental setup was placed (left) and schematics of the 
camera orientation (right) 

The purpose of this experiment was to inspect operating of the algorithm in the 
process of object detection during their arbitrary movement on rail tracks and in 
their vicinity. In the first case, the object was located between rail tracks. 
Although the object was not on the rail track, its presence caused interruption on 
the detected rail track, which can certainly indicate its potential presence. The 
object, i.e., the part that was in the ROI, was successfully detected and marked 
with a red rectangle. However, the whole object was not detected because the 
position of night vision system was not set in front. 

   
Figure 10 

CCD image (left), CCD image with image intensifier (center) and the detected ROI and obstacle (right) 

During experiments, the algorithm showed its robustness through successful 
detection of obstacles or its parts at different locations, as well as in different 
weather conditions. However, results showed that positioning of the night vision 
system has influence on the quality of detection. According to that, the best results 
of detection were obtained when axis of the night visions systems was 
perpendicular to the rail tracks. In densely populated or heavily illuminated urban 
railway scenarios, the use of an ICCD camera is not necessary due to sufficient 
ambient light. In such conditions, the ICCD's image intensifier should be 
protected by closing the shutter, and the system should rely on a standard RGB 
camera instead. To maintain robust performance, algorithmic adjustments will be 
required ‒ particularly in the image preprocessing pipeline ‒ to account for the 
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different lighting conditions, reduce noise, and enhance feature extraction under 
varying illumination and background complexity. 

5.3 Estimation of Distance 

In order to estimate the distance between the night vision system and the detected 
objects, a homography method was used. At the first location – village Babin 
Potok, four points – vertex of blue quadrilateral (Fig. 11 (upper left)) was used for 
calculation of the homography matrix H. The coordinates obtained during the 
experiments, in real world, were calculated based on known positions of people on 
the rail tracks relative to the night vision system. The coordinates in image were 
determined using of captured image. Calculated homography matrix H is given in 
Eq. 3. An estimation of the distance between night vision system and the 
previously detected objects was performed using an inverse matrix H. 

12

15

11.3929 0.5302 592.1667
2.7321 10 0.4132 1935.667
7.3347 10 0.001377 1

−

−

 
 = − ⋅ 
 − ⋅ 

H  
(3) 

 
Figure 11 

Points for calculation of matrix H (upper left), estimated distance for the first case (upper right), 
estimated distance for the second case (lower left) and estimated distance for the third case (lower 

right) 
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Also, at the second location – Žitorađa, estimation of distance between night 
vision system and the detected object was performed using the homography 
method. The coordinates in real world were calculated as is in first location, while 
the coordinates in image were determined using two captured images, that were 
fused (Fig. 12). Calculated homography matrix H for the second location is given 
in Eq. 4. 

 
Figure 12 

Points for calculation of matrix H 

24.2809 0.5485 684.0977
1.1670 0.6427 3008.4
0.0049 0.0025 1

− − − 
 = − − − 
 − − 

H  (4) 

In Fig. 13 estimated distances between night vision system and detected objects 
for four scenarios at location Žitorađa are shown. 
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Figure 13 

Obstacle detection and distance estimation for the various position of the objects on the rail tracks 

In Table 1 estimated and measured distances for both locations are shown, as well 
as estimation error. Maximum estimation error is 5.76%, and it is for the longest 
measured distance. Furthermore, results showed that estimation error increases 
with the increase of the distance. One of the possible causes for error in distance 
estimation can be uncertainty in homography matrix H calculation and detection 
of the exact point on the rail tracks where the obstacle was, while another can be 
due to detection error because of the night vision system and object’s position. 

Table 1 
Comparison of Measured and Estimated distances from the ICCD camera to the obstacle 

Location Measured 
distance [m] 

Estimated 
distance [m] 

Distance 
estimation 
error [m] 

Distance 
estimation 
error [%] 

I 65 63 2 3.08 
I 330 311 19 5.76 
I 235 224 11 4.68 
II 89 84 5 5.62 
II 76 72 4 5.26 
II 74 70 4 5.41 
II 70 66 4 5.71 

The height of the mounted vision system has a significant influence on the 
homography matrix and can, therefore, affect the reliability and accuracy of the 
proposed method. However, since the ODS is intended to be mounted on a 
locomotive, the height from the ground and railtracks remains constant and it can 
not influence obstacle detection and distance estimation accuracy. 

The accuracy of distance estimation was evaluated across a range of obstacle 
positions. The minimum observed error was approximately 2 meters, while the 
maximum error reached 20 meters, primarily at longer distances where small pixel 
deviations result in larger real-world inaccuracies due to the limitations of 
homography-based methods. In the critical operational range of 200 to 300 meters, 
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relevant for low-speed railway scenarios, the system maintained an error below 20 
meters, which is acceptable for early obstacle detection, warning and breaking. 
Additionally, the experiments demonstrated that the accuracy improves 
significantly when the ICCD camera is centrally aligned with the rail tracks, 
reducing perspective distortion and improving the quality of homography-based 
transformations. 

Conclusions 

The continuous development and modernization of railway transportation require 
the integration of advanced and intelligent technologies, such as Autonomous 
Train Operation (ATO), to improve operational efficiency, safety, and reliability. 
One of the most critical components of ATO is an effective Obstacle Detection 
System (ODS) capable of operating under diverse environmental conditions, 
including low-light and nighttime scenarios. Traditional vision-based systems 
often suffer from significant performance degradation in such conditions, 
necessitating the development of alternative solutions. 

In this paper, a novel obstacle detection system using a night vision-based imaging 
approach was presented. The proposed system employs an advanced image 
processing algorithm incorporating region-based segmentation techniques to 
detect rail tracks, define a Region of Interest (ROI), and identify potential 
obstacles. By analyzing track interruptions within the ROI, the system detects 
objects in close proximity to the railway and estimates their distances using a 
homography-based method. The algorithm was tested on a comprehensive dataset 
consisting of images captured in nighttime conditions across three representative 
railway scenarios. Experimental results demonstrated that the proposed approach 
effectively detects obstacles with a high-level of accuracy, achieving a distance 
estimation error of less than 6%. 

These findings suggest that night vision-based ODS can serve as a reliable 
solution for autonomous train operations, particularly in environments where 
conventional vision systems struggle due to low-light conditions. The integration 
of such technology can significantly enhance railway safety by providing real-
time, automated obstacle detection, thereby mitigating the risks associated with 
delayed braking response in freight train operations. However, while the system 
has demonstrated promising results, further research is needed to improve its 
robustness and adaptability to extreme weather conditions such as fog, heavy rain, 
and snow. The integration of additional sensor modalities, such as LiDAR and 
thermal imaging, can significantly mitigate the limitations of the homography-
based distance estimation method, particularly under adverse weather conditions. 
LiDAR provides accurate depth information independent of lighting, which 
complements the vision-based system by improving distance estimation at longer 
ranges. Thermal imaging can detect heat signatures, enhancing obstacle visibility 
in low-visibility environments such as fog, rain, or darkness. Future work will 
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focus on fusing these modalities to increase overall obstacle detection accuracy 
and reliability, especially where homography alone may be less effective. 

Additionally, optimizing the computational efficiency of the algorithm will be 
crucial for ensuring real-time implementation in practical railway applications. 

In conclusion, the proposed night vision-based ODS represents a significant step 
toward achieving fully autonomous and safe railway operations. Its ability to 
function effectively in low-light environments positions it as a viable solution for 
modern railway systems, with the potential for further enhancements through 
sensor fusion and deep learning-based methodologies. 
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