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Abtract: This paper presents the development of an obstacle detection system for
autonomous train operation (ATO) using a night vision system. The focus is on the
development of the ATO for freight transport that operates in low light and night
conditions. An experimental setup featuring an Intensified Charge-Coupled Device (ICCD)
camera was employed to acquire images under low-light conditions. A novel computer
vision algorithm was developed to ensure robust and reliable obstacle detection. The
methodology begins with the detection of rail tracks, which are subsequently used to define
a Region of Interest (ROI). Within the ROI, the rail tracks are analyzed for interruptions
indicative of obstacles. Obstacle detection is achieved through image segmentation
techniques, while the distance between the setup and the detected obstacles is estimated
using a homography-based approach. The proposed algorithm was evaluated on a
comprehensive dataset comprising images from three representative scenarios.
Experimental results demonstrate the system's effectiveness in reliably detecting obstacles
under nighttime conditions and accurately estimating distances.
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1 Introduction

Railways represent one of the most vital modes of transportation, and their
modernization is crucial for increasing safety, efficiency, and capacity. A number
recent works addressed various aspects of modern railways, including adequate
engineering solutions for railways infrastructure [1, 2], analysis of acting
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mechanical and thermal loads in railways [3, 4, 5, 6], environmental protection
through reduction of emitted noise [7, 8], investigation of the efficiency of rail
freight transport [9] — to name but a few. A key aspect of railway modernization is
the development of ATO systems, which aim to enhance railway operations by
reducing human intervention and improving reliability. ATO has already been
widely adopted in public transportation, including metro systems, light rail transit
(LRT), and automated guided transit (AGT) [10]. The core principle of ATO
involves transferring operational tasks from human operators to automated control
systems, such as the European Rail Traffic Management System (ERTMS),
ensuring safe and efficient train movement.

One of the fundamental challenges in ATO is the implementation of an Obstacle
Detection System (ODS), which is responsible for identifying and classifying
obstacles on or near the rail tracks and estimating their distance from the train.
The primary objective of the ODS is to enable timely braking and accident
prevention, a crucial requirement given that freight trains have significantly longer
break distances compared to automobiles—ranging from 500 meters to over 2
kilometers, depending on weight, speed, and braking system efficiency. Unlike
autonomous vehicles, where obstacle detection is limited to relatively short
distances, autonomous train systems must detect potential hazards much further
ahead to allow adequate response time.

A major challenge for ODS is ensuring reliable operation in diverse environmental
and lighting conditions. While traditional vision sensors provide effective
detection in good lighting, their performance significantly deteriorates in low-light
and adverse weather conditions such as fog, rain, and snow. To overcome these
limitations, thermal imaging and night vision systems have been increasingly
explored as viable solutions. Thermal imaging systems operate in the infrared
spectrum and do not rely on ambient light, making them particularly effective for
night-time and low-visibility conditions [11, 12, 13, 14]. Use of a night vision
system for obstacle detection in those specific conditions enables detection in
extremely low-light conditions and at night because this system needs a very small
amount of light for good operating.

The authors proposed an Al-powered method for estimating the distance between
a camera and objects on railway tracks using image-plane homography and neural
networks, with validation showing a 2% error margin in impaired visibility
scenarios [14]. Risti¢-Durrant et al. in [15] reviewed the state-of-the-art in
obstacle detection for railways and outlined the challenges in implementing
autonomous obstacle detection systems capable of operating effectively in various
environmental conditions. In [16] a two-step method for detection and tracking of
pedestrians with single night vision camera installed on a vehicle, is proposed.
The detection is performed using support vector machine (SVM) and tracking
with a combination of Kalman filter prediction and mean shift tracking. Two new
techniques for pedestrian detection using a stereo night-vision system installed on
the vehicle are introduced in [17]. Two-stage method for stereo correspondence
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and motion detection without explicit ego-motion calculation use of characteristics
of night-vision video data, in which humans appear.

In this paper, we present an approach to obstacle detection in autonomous train
operation using night vision imaging. The proposed method involves rail track
detection through image segmentation, followed by ROI analysis to identify track
interruptions where obstacles may be present. Detected obstacles are then marked,
and their distances from the train are estimated using a homography-based
method. The objective is to develop a robust vision-based ODS capable of
functioning in real-time across varying environmental conditions, thus ensuring
safe and reliable autonomous railway operations.

2 Literature Review

In the field of obstacle detection for autonomous train operations, several
approaches have been explored to enhance safety and reliability. One method for
long-distance obstacle detection involves using LiDAR to process point cloud
data, which offers reliable safety even in low-light and tunnel environments [18].
In addition, Xungu et al. developed a semi-autonomous rail survey inspection
device (SID) that travels ahead of trains to detect obstacles, allowing for early
hazard identification and significantly improving safety [19]. Assaf et al
introduced a cost-effective gimballing platform designed for long-range obstacle
detection using 1D-LiDAR, demonstrating precise targeting at distances beyond
1000 meters [20]. An approach proposed by Brucker et al., uses a shallow neural
network that incorporates both local and global information to segment railway
images and detect obstacles, outperforming baseline methods on a custom dataset
[21]. To improve detection accuracy and adaptability, Tang and Yang developed a
multi-sensor obstacle detection system that integrates point cloud data and visual
inputs, overcoming the limitations of single-sensor detection [22]. Khobragade et
al. also explored real-time track and anomaly detection using computer vision,
achieving consistent track continuity and reliable obstacle detection in complex
railway environments [23]. Lastly, Gasparini et al. proposed a vision-based
anomaly detection system for railway inspection, using RGB and thermal images
captured by a rail drone. Their approach proved effective during nighttime
operations, offering both computational efficiency and high accuracy [24].

Deep learning methods have been widely adopted in obstacle detection for railway
systems, offering improved accuracy and efficiency in challenging environments.
Jenefa et al. developed a Deep Convolutional Neural Network (DCNN) model to
detect obstacles on railway tracks, achieving an 98% accuracy. Their research
demonstrated the potential of DCNNs in real-world applications, though further
testing in varying environmental conditions is suggested [25]. Xu et al. proposed
another DCNN-based approach, integrating a Single Shot Multibox Detection
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method with a Residual Neural Network to improve real-time performance. This
model outperformed traditional methods with a mean average precision (mAP) of
91.61% and a detection speed of 26 frames per second (FPS) [26].

In complex environments, Qin et al. introduced a robust feature-aware network
(RFA-Net) that enhances the detection accuracy of small obstacles, achieving a
92.7% mAP. Their improved algorithm excels in both accuracy and lightweight
implementation, making it well-suited for rail transit [27]. Kapoor et al. applied
Faster R-CNN with thermal imaging to identify objects on railway tracks in night
conditions, showing 83% accuracy and demonstrating the potential of deep
learning in improving safety under low-visibility scenarios [28]. Raza et al.
developed a novel system for multiple pedestrian detection and tracking in night
vision surveillance systems using infrared (IR) images. Their machine learning-
based method achieved a 93% segmentation accuracy and 90% detection
accuracy, demonstrating high effectiveness in identifying pedestrians in low-light
environments. The system was also highly accurate in tracking and classifying
detected objects [29].

In nighttime imaging, Patel et al. developed a compact object detector using
Depthwise Convolutional Neural Networks (DDCNN), improving detection
accuracy while reducing computational complexity. Their model outperforms
state-of-the-art methods, with a mAP of 52.39% and 72.7% accuracy for car
detection in night-time situations, highlighting the applicability of DDCNNs in
real-time use cases [30].

In addition to deep learning methods, several papers have focused on using night
vision and sensor-based techniques for obstacle detection, especially in low-light
conditions. Yasin et al. leveraged bio-inspired event-based vision sensors for
night-time obstacle detection, utilizing the asynchronous adaptive collision
avoidance (AACA) algorithm to process high-frequency event data. Their method
showed improved detection performance in low-light conditions compared to
traditional cameras [31]. Patel et al. addressed the challenge of enhancing night-
time image quality by employing the Dark Channel Prior (DCP) filter. Their
approach improved visibility and object recognition in traffic surveillance during
low illumination, with real-time processing speed optimized through FPGA
implementation [32].

3 Night Vision System

Night vision systems use various technologies to enable users to see in complete
darkness or low-light conditions. The basic principle of these systems involves
collecting small amounts of ambient light, which may be imperceptible or
insufficient for the human eye, and amplifying it to a level where the image
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becomes visible. The night vision system used in this research is an ICCD
(Intensified CCD) camera, which consists of an optical lens system, an image
intensifier tube, and a CMOS camera sensor coupled to the output screen of the
image intensifier tube (Fig. 1). Unlike thermal camera, there is no significant
influence of varying ambient temperature on image acquired with ICCD camera.

Interface

Phosphor
screen
Fiber Optic
CCD Sensor

CCD Camera &

Image Processor

Figure 1
ICCD camera schematics [33]

The optical lens system in a night vision device is responsible for providing the
appropriate magnification of an object at specific distances, ensuring that the
image captured is clear and focused. This lens system plays a crucial role in
directing the incoming light onto the image intensifier, where the real
enhancement of the image occurs. The image intensifier's primary function is to
increase the intensity of the incoming light by multiplying the photons it receives.
This process of photon amplification enables the ICCD camera to capture images
even under extremely low-light conditions, where the available light is insufficient
for conventional imaging, or during very short exposure times, such as those as
brief as 200 ps. In such cases, the total photon flux collected over the short
exposure period is typically very low, but the image intensifier ensures that the
minimal light available is amplified to produce a visible image.

The image intensifier, as shown in Fig. 2, is composed of three integral
components that work in tandem to achieve this amplification [34]. These
components are mounted very close each other in order: photocathode,
microchannel plate, phosphor screen. The working principle is: photons from light
sources is absorbed into the system, then the photocathode (a) receives the
incoming light and converts the photons into photoelectrons. These photoelectrons
then pass through the microchannel plate (MCP) (b), which multiplies them by a
significant factor, enhancing the number of photoelectrons for further processing.
Finally, the amplified photoelectrons are directed onto the phosphor screen (c),
where they are converted back into photons, creating the intensified image that is
captured by the camera sensor. These three stages — photon conversion, electron
multiplication, and photon re-emission — are essential for enabling high-quality
imaging in low-light environments.
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Figure 2
Three functional units of an image intensifier: the photocathode (a), the microchannel plate (b) and the

phosphor screen (c) [35]

The functional components of the image intensifier are precisely aligned in close
proximity to each other to ensure optimal performance. The operational principle
of the image intensifier is as follows: photons incident on the photocathode from
the light source are converted into photoelectrons. These photoelectrons are then
subjected to significant amplification within the microchannel plate (MCP), after
which the phosphor screen re-emits the multiplied photoelectrons as photons. The
amplified photons are subsequently directed towards the CCD sensor through an
optical system for image acquisition. A critical feature of the image intensifier is
its gating capability, which serves as the shutter function for the ICCD camera.
When the camera is "gated on," the shutter is open, permitting the transmission of
amplified photons to the CCD sensor for image capture. When the camera is
"gated off," the shutter is closed, preventing any photon transmission to the CCD
sensor. This gating function is essential for enabling the ICCD camera to operate
effectively in environments with minimal or no ambient light, thereby facilitating
its use in various low-light and no-light imaging applications [34].

4 Obstacle Detection System

The primary objectives were to detect obstacles on or near rail tracks under no-
light and low-light conditions and to estimate the distance between the detected
obstacles and the system. To achieve this, after image acquisition using the night
vision system, rail tracks are identified through a region-based segmentation
approach. Specifically, thresholding and region growing techniques, using an
optimal threshold range, are employed [13, 36, 37, 38]. The comuter vision flow
chart used for obstacle detection and distance estimation is illustrated in Fig. 3.

The proposed obstacle detection and distance estimation system operates through
a vision-based algorithm that leverages rail track segmentation and dynamic
region of interest (ROI) definition to achieve accurate and efficient obstacle
localization.
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Figure 3

Obstacle detection and distance estimation flow chart

The system begins by continuously acquiring images from a mounted ICCD
camera or RGB, and applies image preprocessing techniques such as contrast
enhancement, noise filtering and histogram equalization to improve feature
visibility. Rail track segmentation is then performed using a threshold-based
method to isolate the distinctive linear features of the tracks. If successful, the
system defines a dynamic ROI surrounding the detected rails, with margins added
laterally and longitudinally to capture the spatial context where potential obstacles
are likely to occur. This targeted approach reduces the computational burden by
focusing only on relevant parts of the image. Within the ROI, the continuity of rail
tracks is analyzed. Discontinuity in the rail structure is interpreted as a potential
indication of an obstacle. If such a discontinuity is detected, a second
segmentation stage is initiated specifically for obstacle detection. This involves
applying an optimized thresholding method to extract non-rail features, followed
by blob analysis to identify and localize obstacle candidates. To accommodate
diverse lighting and environmental conditions, the algorithm can iteratively adjust
threshold values during both segmentation stages. Once an obstacle is confirmed,
it is marked within the image and its distance from the camera is estimated using a
homography-based transformation, which uses the geometric relationship between
the image plane and the real-world ground plane [38, 39].

The homography is also called projectivity, which is defined as invertible
mapping h from P to itself such that three points x;, x2 and x; lie on the same line
if and only if h(x;), h(x;) and h(x3) do [39]. On this way, projectivity is defined in
terms of geometry, and an equivalent algebraic definition of projectivity is that a
mapping h: P> —P? is a projectivity if and only if there exists a non-singular 3x3
matrix H such that for any point in P’ represented by a vector x it is true that
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h(x)=Hx. A planar projective transformation, which was used for estimation of
distance, represents linear transformation on homogeneous 3-vectors represented
by a non-singular 3x3 matrix:

This is an equation example:

'
X 1 hll h12 hl3 xl

x'y |= h21 hzz h23 Xy (1)
x'S h31 h32 h33 )C3

or shorter:

x'= Hx 2)

5 Results and Discussion

5.1 Experimental Setup

The experimental setup used in this research consists of three monocular RGB
cameras, one IR camera, one night vision system and one laser scanner. All
cameras are mounted in metal housing, especially designed for this purpose (Fig.
4). For an obstacle detection in no light and low-light conditions, IR camera and
night vision system are used and tested on field tests performed on rail tracks in
different times of the night. During tests, humans were imitating obstacles on the
rail tracks and next to them on different distances from |the experimental setup.
However, in the research presented in this paper only videos (images) acquired by
the CCD camera augmented with image intensifier were used and analyzed.

To obtain high quality videos during experiments in no light and lowlight
conditions, night vision system hardware has an optical system with 6x objective,
fixed 170 mm focal length and aperture f/1.7. Image intensifier is 3™ generation
with 64 Ip/mm and auto-gating function, with monochromatic camera resolution
2592x1944 pixels.

For the real time online processing ROS Noetic Ninjemys was used, while using
OpenCV library, CUDA 10.1 and working on Ubuntu 20.04 64-bit Qt 4.8.1. For
algorithm development, testing and evaluation, as well as data analysis
MathWorks MATLAB 2023b was also used.
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Figure 4

Experimental setup on field

To prepare needed data for development, testing and evaluation of the proposed
method for long-range object (obstacles) detection and distance estimation using
CCD camera with image intensifier, field tests were performed on various a
Serbian railway test-sites (on a railway Nis-Prokuplje) approved for the
experimental use by the Serbian Railway authorities.

5.2 Obstacle Detection

To achieve greater reliability and robustness, image processing algorithm for an
obstacle detection was implemented and tested on a large set of images. Those
images were continuously captured by experimental setup with a night vision
system during night conditions at two different locations. The first location was in
the village of Babin Potok, near the city of Prokuplje, Serbia. The chosen location
was a level crossing located in a rural and an uninhabited area, so there was no
facility or light source in the wider area (marked with a red circle in Fig. 5 (left)).
The level crossing was located at the intersection of the local unpaved road and
the Nis-Prokuplje-Merdare main railway line. The experiment was carried out on
a part of the Nis-Prokuplje railway, between the Recica and Babin Potok railway
stations, in the direction towards Prokuplje (marked with a blue line in Fig. 5
(left)). On that site, the railway line is a single-track and not electrified. The level
crossing is marked with vertical signs, it is not illuminated, and it is not equipped
with appropriate equipment. The experiment was carried out in night conditions,
in clear weather at a temperature of 18°C and the amount of illumination of 0 lux
over the whole location. Night vision system was set up at the center of railway
between the rail tracks (Fig. 5 (right)) at a height of 1.5 meters from the ground.
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:

Location of the first level crossing where experimental setup was placed (left) and schematics of the

Figure 5

camera orientation (right)

In this experiment, there were three specific cases for obstacle detection. In the
first case, one object was between the rail tracks (Fig. 6 (left)). Rail tracks were
detected and based on that and the ROI was defined (marked with a purple color
in Fig. 6 (right)). Although the object was not directly on rail tracks, its position
was in ROI and affected the occurrence of interruption on the rail tracks. In a
further image processing, the obstacle was detected in ROI between the rail tracks
and marked with a red rectangle (Fig. 6 (right)).

/

Figure 6
Object between rail tracks (left) and the detected ROI and obstacle (right)

In the second case, there were two objects, one next to the left rail track and
another on the right rail track (Fig. 7 (left)). First, rail tracks were detected, and
ROI is defined (marked with a purple color in Fig. 7 (right)). However, in this
case, there was interruption only on the right rail track, and in a further image
processing, the obstacle was detected in ROI and marked with a red rectangle (Fig
7 (right)). An object next to the left rail track was out of ROI, i.e., was not on the
rail tracks nor in close vicinity of the rail tracks, it did not affect interruption in
rail tracks, and was not detected.
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Figure 7
Objects next to left and on right rail track (left) and the detected ROI and obstacle (right)

In the third case, an object was on both rail tracks and far from the night vision
system (Fig. 8 (left)). First, rail tracks were detected, and ROI was defined
(marked with the purple color in Fig. 8 (right)). Considering that there were
interruptions on both rail tracks, in further image processing, othe bstacle was
detected in ROI and marked with a red rectangle (Fig. 8 right).

Figure 8
Object on both rail track (left) and the detected ROI and obstacle (right)

The second location was in village Zitorada, near city of Prokuplje, Serbia (Fig. 9
(left)). This location is in a rural uninhabited area, the level crossing is not
illuminated and without signs and equipment. There is a local road next to the
location and there are residential buildings at 820 meters from the level crossing.
Because of this, occasional and partial occurrence of indirect lighting was
expected. This location was chosen considering the real conditions of the mixed
environment and the safety aspects of the implementation of the experiments. The
experimental setup was mounted on a level crossing (marked with a red circle in
Fig. 9 (left)), while the night vision system was directed towards the village
Zitorada (marked with a blue line in Fig. 5 (left). The experiments were carried
out in night conditions, in clear weather at a temperature of 2°C and the amount of
illumination of 0 lux over thewhole location. The night vision system was placed
on the left side of the rail tracks (Fig. 9 right), at a height of 1.5 meters from the
ground and directed towards a habited place.
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Figure 9
Location of the second level crossing where experimental setup was placed (left) and schematics of the

camera orientation (right)

The purpose of this experiment was to inspect operating of the algorithm in the
process of object detection during their arbitrary movement on rail tracks and in
their vicinity. In the first case, the object was located between rail tracks.
Although the object was not on the rail track, its presence caused interruption on
the detected rail track, which can certainly indicate its potential presence. The
object, i.e., the part that was in the ROI, was successfully detected and marked
with a red rectangle. However, the whole object was not detected because the
position of night vision system was not set in front.

Figure 10
CCD image (left), CCD image with image intensifier (center) and the detected ROI and obstacle (right)

During experiments, the algorithm showed its robustness through successful
detection of obstacles or its parts at different locations, as well as in different
weather conditions. However, results showed that positioning of the night vision
system has influence on the quality of detection. According to that, the best results
of detection were obtained when axis of the night visions systems was
perpendicular to the rail tracks. In densely populated or heavily illuminated urban
railway scenarios, the use of an ICCD camera is not necessary due to sufficient
ambient light. In such conditions, the ICCD's image intensifier should be
protected by closing the shutter, and the system should rely on a standard RGB
camera instead. To maintain robust performance, algorithmic adjustments will be
required — particularly in the image preprocessing pipeline — to account for the
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different lighting conditions, reduce noise, and enhance feature extraction under
varying illumination and background complexity.

5.3 Estimation of Distance

In order to estimate the distance between the night vision system and the detected
objects, a homography method was used. At the first location — village Babin
Potok, four points — vertex of blue quadrilateral (Fig. 11 (upper left)) was used for
calculation of the homography matrix H. The coordinates obtained during the
experiments, in real world, were calculated based on known positions of people on
the rail tracks relative to the night vision system. The coordinates in image were
determined using of captured image. Calculated homography matrix H is given in
Eq. 3. An estimation of the distance between night vision system and the
previously detected objects was performed using an inverse matrix H.

11.3929 0.5302  592.1667
H=|-27321-10"" 04132 1935.667 (3)
-7.3347-10%  0.001377 1

Figure 11

Points for calculation of matrix H (upper left), estimated distance for the first case (upper right),
estimated distance for the second case (lower left) and estimated distance for the third case (lower
right)
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Also, at the second location — Zitorada, estimation of distance between night
vision system and the detected object was performed using the homography
method. The coordinates in real world were calculated as is in first location, while
the coordinates in image were determined using two captured images, that were
fused (Fig. 12). Calculated homography matrix H for the second location is given

in Eq. 4.

Figure 12

Points for calculation of matrix H

—24.2809 —0.5485 -684.0977
H=| -1.1670 -0.6427 -3008.4 4)
—-0.0049  -0.0025 1

In Fig. 13 estimated distances between night vision system and detected objects
for four scenarios at location Zitorada are shown.
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Figure 13

Obstacle detection and distance estimation for the various position of the objects on the rail tracks

In Table 1 estimated and measured distances for both locations are shown, as well
as estimation error. Maximum estimation error is 5.76%, and it is for the longest
measured distance. Furthermore, results showed that estimation error increases
with the increase of the distance. One of the possible causes for error in distance
estimation can be uncertainty in homography matrix H calculation and detection
of the exact point on the rail tracks where the obstacle was, while another can be
due to detection error because of the night vision system and object’s position.

Table 1
Comparison of Measured and Estimated distances from the ICCD camera to the obstacle
. Distan Distan
Location d?if::lscuer;’i ] dﬁj;liﬁ‘g;i 7 estlizt:lti(;c est;f:::ltif:;t
error [m] error [%]
I 65 63 2 3.08
I 330 311 19 5.76
I 235 224 11 4.68
II 89 84 5 5.62
II 76 72 4 5.26
II 74 70 4 5.41
II 70 66 4 5.71

The height of the mounted vision system has a significant influence on the
homography matrix and can, therefore, affect the reliability and accuracy of the
proposed method. However, since the ODS is intended to be mounted on a
locomotive, the height from the ground and railtracks remains constant and it can
not influence obstacle detection and distance estimation accuracy.

The accuracy of distance estimation was evaluated across a range of obstacle
positions. The minimum observed error was approximately 2 meters, while the
maximum error reached 20 meters, primarily at longer distances where small pixel
deviations result in larger real-world inaccuracies due to the limitations of
homography-based methods. In the critical operational range of 200 to 300 meters,
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relevant for low-speed railway scenarios, the system maintained an error below 20
meters, which is acceptable for early obstacle detection, warning and breaking.
Additionally, the experiments demonstrated that the accuracy improves
significantly when the ICCD camera is centrally aligned with the rail tracks,
reducing perspective distortion and improving the quality of homography-based
transformations.

Conclusions

The continuous development and modernization of railway transportation require
the integration of advanced and intelligent technologies, such as Autonomous
Train Operation (ATO), to improve operational efficiency, safety, and reliability.
One of the most critical components of ATO is an effective Obstacle Detection
System (ODS) capable of operating under diverse environmental conditions,
including low-light and nighttime scenarios. Traditional vision-based systems
often suffer from significant performance degradation in such conditions,
necessitating the development of alternative solutions.

In this paper, a novel obstacle detection system using a night vision-based imaging
approach was presented. The proposed system employs an advanced image
processing algorithm incorporating region-based segmentation techniques to
detect rail tracks, define a Region of Interest (ROI), and identify potential
obstacles. By analyzing track interruptions within the ROI, the system detects
objects in close proximity to the railway and estimates their distances using a
homography-based method. The algorithm was tested on a comprehensive dataset
consisting of images captured in nighttime conditions across three representative
railway scenarios. Experimental results demonstrated that the proposed approach
effectively detects obstacles with a high-level of accuracy, achieving a distance
estimation error of less than 6%.

These findings suggest that night vision-based ODS can serve as a reliable
solution for autonomous train operations, particularly in environments where
conventional vision systems struggle due to low-light conditions. The integration
of such technology can significantly enhance railway safety by providing real-
time, automated obstacle detection, thereby mitigating the risks associated with
delayed braking response in freight train operations. However, while the system
has demonstrated promising results, further research is needed to improve its
robustness and adaptability to extreme weather conditions such as fog, heavy rain,
and snow. The integration of additional sensor modalities, such as LiDAR and
thermal imaging, can significantly mitigate the limitations of the homography-
based distance estimation method, particularly under adverse weather conditions.
LiDAR provides accurate depth information independent of lighting, which
complements the vision-based system by improving distance estimation at longer
ranges. Thermal imaging can detect heat signatures, enhancing obstacle visibility
in low-visibility environments such as fog, rain, or darkness. Future work will
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focus on fusing these modalities to increase overall obstacle detection accuracy
and reliability, especially where homography alone may be less effective.

Additionally, optimizing the computational efficiency of the algorithm will be
crucial for ensuring real-time implementation in practical railway applications.

In conclusion, the proposed night vision-based ODS represents a significant step
toward achieving fully autonomous and safe railway operations. Its ability to
function effectively in low-light environments positions it as a viable solution for
modern railway systems, with the potential for further enhancements through
sensor fusion and deep learning-based methodologies.

Acknowledgement

This work has been accomplished with financial support by the European
Regional Development Fund within the Operational Programme “Bulgarian
national recovery plan”, procedure for direct provision of grants “Establishing of a
network of research higher education institutions in Bulgaria”, and under the
project BG-RRP 2.004-0005 “Improving the research capacity anD quality to
achieve intErnAtional recognition and reSilience of TU-Sofia (IDEAS)”.

List of Abbreviations

ATO: Autonomous Train Operation

ICCD: Intensified Charge Coupled Device

ROI: Region of Interest

AGT: Automated Guided Transit
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ODS: Obstacle Detection System

SVM: Support Vector Machine

LiDAR: Light Detection and Ranging

SID: Survey Inspection Device

RGB: Red Green Blue

DCNN: Deep Convolutional Neural Network

mAP: mean Average Precision

AACA: Asynchronous adaptive collision avoidance
DCP: Dark Channel Prior

FPGA: Field Programmable Gate Array

CMOS: Complementary Metal Oxide Semiconductor
MCP: Microchannel Plate

IR: Infrared

ROS: Robot Operating System
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