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Abstract: In this paper, an optimization-based approach is proposed for finding parameter
values that guarantee a predefined qualitative behavior for a nonlinear nonnegative dynam-
ical system. Similarly to a model predictive control setup, we consider the model states and
parameters as free decision variables and incorporate the system dynamics as well as the
desired behavioral properties into the optimization constraints. To show the feasibility of our
idea, we carried out three case studies on models with increasing state dimension: the Brus-
sellator, a three-dimensional Lotka-Volterra, and a 4-dimensional epidemic model, where the
goal is to induce oscillatory behavior.
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1 Introduction
Nonnegative (also called positive) dynamical systems are widely applied in different
fields of science where the modeled quantities (e.g., mass, concentration, pressure,
population number or density, object count) are nonnegative [1]. In the essential
book [2], the authors write: “One is tempted to assert that positive systems are the most
often encountered systems in almost all areas of science and technology, except electro me-
chanics ... ”.

An important subset of nonnegative systems is the class of kinetic models (also
called chemical reaction networks) the dynamics of which can be formally repre-
sented by chemical reactions assuming certain reaction rates. The state variables of
such models are the (generalized) concentrations. Chemical reaction network the-
ory (CRNT) is mathematically well-founded and has been continuously developing
since the 1970s [3]. It is often possible to transform originally non-kinetic models
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into kinetic form, therefore, reaction networks form a really wide system class which
is sometimes called a “prototype of nonlinear science” [4]. This implies that it might
be beneficial to write non-chemical models into reaction network form [5], and apply
CRNT for analysis or control design [6]. One recent example for that is the kinetic
modeling of vehicle traffic flows, where the reacting ‘molecules’ are vehicles and
units of free space on highways [7].

The topic of oscillating (bio)chemical reactions has been an intensively studied field
since the discovery of the Belousov-Zhabotinsky reaction [8]. It is now known that
chemical oscillators together with other switching subsystems are widely present
in living organisms, regulating physiological processes and influencing important
cell decisions [9]. The possibility of complex dynamical behaviour is also a central
problem in CRNT, where there exist several strong mathematical conditions for this
(see, e.g. [10,11]) However, finding the parameter values that guarantee the desired
dynamic properties of the solutions of such a system still remains a complex prob-
lem. Numerous classical and novel computational approaches exist for solving these
kinds of problems. In [12] a mathematical and chemical approach is presented on the
Belousov-Zhabotinskii reaction, aiming to formalize the connection between oscil-
lating reactions and the properties of nonlinear differential equations, and promising
a systematic approach for synthesizing new chemical reactions showing oscillatory
behavior. Similarly, the authors of [13] study analytically and numerically the tran-
sition of two-variable chemical models from stable steady states to oscillatory states.

Due to the rapid development of complex and efficient numerical solvers, several re-
cent approaches for setting the behavior of biochemical systems have been oriented
toward simulations and optimizations. One of the most functionally rich solutions
is [14], where a multi-level optimization solution is proposed for the automated de-
sign of synthetic biological circuits from predefined components. Here, the model
parameters belong to the decision variables, and several simulation-based optimiza-
tion runs are needed to compute a feasible solution.

Another possibility is to introduce compact formalisms, such as different versions
of Temporal Logic (Linear Temporal Logic, Signal Temporal Logic, Computational
Tree Logic, etc.) for describing the required dynamical behavior. Such solutions
are mostly used for model checking, and not as part of the synthesis process itself
(see, e.g. [15–19]). There are even machine learning-based approaches for com-
pleting or correcting biological models semi-automatically starting from temporal
logic formulae [20]. Optimization, however, can be directly used for controller and
parameter synthesis as well. Derived manually or translated algorithmically from
temporal logic formulae [21], optimization constraints describing the desired model
behavior can be directly applied to find the correct parameter values. A temporal
logic-based model synthesis was shown for reaction-diffusion networks in [22, 23].

In this paper, we propose an optimization-based method for finding parameter val-
ues for nonlinear models that guarantee a predefined complex behavior on a finite
horizon. The structure of the paper is the following. In section 2, we give a step-by-
step description of this method, with special attention given to manually deriving a
constraint set prescribing the desired behavior. In section 3, we present three case
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studies, by trying out the algorithm on three models with biochemical backgrounds,
and reviewing its capabilities and boundaries as the model complexity increases.

2 Methodology
Our aim is to compute the parameters providing the desired qualitative dynamical
properties by creating an appropriate nonlinear optimization problem, having the
parameters as decision variables. To achieve this, we apply a strategy motivated by
model predictive control (MPC). Along the parameters, all future states of the time-
discretized system up to a predefined finite horizon of N steps are considered deci-
sion variables, while the system dynamics is introduced in the form of constraints
between these variables. The desired behavior is also described using appropriate
constraints on the state and input variables, either derived by hand or translated algo-
rithmically from Signal Temporal Logic (STL) formulae. Similarly to the classical
MPC framework, we can use the objective function of the optimization problem
(typically given in a quadratic form involving the decision variables) to choose the
preferred solution from the set of feasible solutions. However, we are mainly inter-
ested in finding a feasible solution.

To formalize the approach, let us consider a continuous dynamical system in the
form:

ẋ(t) = f(x(t), p) (1)

where the state function f has parameters collected into a vector p. We assume that
the parameters are constant in time, which leads to a time-invariant system.

2.1 Discretization
As the first step of the computations, we want to transform the system model into
discrete time with sampling time dt which gives the following difference equation:

xk+1 = F (xk, p) (2a)

xk = x(k · dt) (2b)

We consider two well-known classical methods for discretization: the Euler, and the
4-th order Runge-Kutta method.

The Euler method is known for its simplicity, using the first derivative at time instant
k to estimate the next state:

F (xk, p) = xk + dt · f(xk, p) (3)

While having the well-known drawback of quickly cumulating the error in case of
larger derivatives, an appropriately small dt can be sufficiently reliable for integrat-
ing the differential equation and ensuring that the behavioral constraints are satisfied.
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More importantly, due to its simplicity, the Euler discretization does not introduce
high-order terms of previous state variables and parameters in a single step.

The 4-th order Runge-Kutta method divides the computation of the next state xk+1

into four consecutive steps, averaging the estimated current and future derivatives
of state variables:

ak = f(xk, p) (4a)

bk = f(xk + 0.5 · dt · ak, p); (4b)

ck = f(xk + 0.5 · dt · bk, p); (4c)

dk = f(xk + dt · ck, p); (4d)

F (xk, p) = xk + dt · (ak + 2 · bk + 2 · ck + dk)/6; (4e)

While being amore precise approximation of the derivatives, and therefore generally
working with longer dt timesteps, this discretization might be substantially harder to
tackle by optimization solvers due to the increased number of dynamical constraints.

2.2 The optimization problem and its solution
To formalize the nonlinear optimization problem, we introduce the notation: x =

{x0,. . .,xN}, collecting the future state variables for N steps. Using this, we are
looking for the parameters p which satisfy:

p∗ = argmin
p

J(x, p) (5a)

w.r.t. xk+1 = F (xk, p), k = 0 . . . (N − 1) (5b)

Gx(x) ≤ hx, Gp(p) ≤ hp, (5c)

where J(x, p) = x⊺Pxx + p⊺Ppp is the quadratic cost function with positive definite
weighting matrices Px and Pp, (5b) are equality constraints for incorporating the
system dynamics. Moreover, (5c) are additional constraints for the states, inputs, and
parameters, respectively, including the nonnegativity constraint for the dynamics.
Due to the nonlinear dynamics encoded in (5b), and the generality of the constraints,
(5a) - (5c) is a nonlinear programming problem.

Behavioral constraints
There are several possibilities to encode the desired qualitative behavior into the
additional constraints (5c). For a simple required behavior, it can be straightforward
to manually define the constraints. For example, if the states should converge to 0
after a given finite time, we can define

Gx(x0, x1, . . . , xi, . . . xN ) = (0 0 . . . 0 xi . . . xN )⊺

hx = (0 0 . . . ε ε . . . ε)⊺

where ε is sufficiently small.
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For more complex behaviors, mathematical formalisms like Signal Temporal Logic
can be used. While STL is typically used for behavior checking and validation of
dynamical models, there exist algorithms and toolboxes for transforming STL for-
mulae into optimization constraints [21], and there exist applications of MPC-based
nonlinear system control using these constraints [24,25]. It must be noted, however,
that the use of these toolboxes is far from being routine: the automatically generated
constraint sets often have undue high dimensions, possibly resulting in a practically
non-manageable computational problem for the solver. Additionally, STL specifi-
cations generally bring integer variables into the optimization task (5a) - (5c), making
it a MINLP.

Enforcing oscillatory behavior
In this work, we chose to encode the oscillatory behavior we want to enforce for the
examined systems. For this, we introduce the following notations. Let the ith state
variable (xi) at time step k be denoted by xki. Let the desired oscillation period for xi

be ti, the oscillation threshold τi, and the constraint filling ratio be ri. We prescribe
that the system state variables go above and below the threshold at specific times,
and remain there for a time period corresponding to the filling ratio. This dynamic
constraint can be written as

l = r · t/4 (6a)

xki ≤ τi − ϵ ∀k : k · dt ∈ S1, 0 ≤ k ≤ N (6b)

S1 =
∪
j∈N

[t0i + j · ti − li; t0i + j · ti + li] (6c)

xki ≥ τi + ϵ ∀k : k · dt ∈ S2, 0 ≤ k ≤ N (6d)

S2 =
∪
j∈N

[
t0i +

(
j + 1

2

)
ti − li; t0i +

(
j + 1

2

)
ti + li

]
(6e)

Numerical solution
In our setup, we used MATLAB R2022b as the base computation environment, and as-
sembled the optimization problem using YALMIP (version 20210331 [26]), and solved
it with BARON 19.3.24 [27]. Baron is a proprietary MINLP solver which applies a
polyhedral branch and bound approach, and shows outstanding solution capabilities
and excellent performance in complex nonlinear optimization [28, 29]. The experi-
ments were carried out on a Lenovo Thinkpad T590 notebook with an i7-8568U (4
cores, 1.8-4.0 GHz) processor and 16GB RAM.

The obtained results were validated in continuous time using the built-in Ode45
solver of Matlab (using the 4th and 5th order Runge-Kutta method) with default
settings (except for the absolute tolerance AbsTol=10−10) for simulating the system
trajectory given the solver-computed values of the decision variables.

3 Computation results
In order to find the boundaries and illustrate the capabilities of the proposed ap-
proach, we carried out three case studies for models with increasing state space di-
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mension and number of parameters. Each of the presented nonnegative and kinetic
models is capable of showing some kind of oscillatory behavior, and our aim is to
find the approprite parameters for it.

3.1 Brussellator
The Brussellator is a classic two-dimensional model, proposed initially by Prigogine
and Lefever for describing chemical reaction networks capable of showing com-
plex behavioral patterns [30]. As a starting point, it is widely used for modeling
(bio)chemical systems with oscillatory behavior, e.g. the Belousov-Zhabotinsky re-
action, chemical reactions regulating circadian clocks, or certein neuron models.

Since many theoretical results are known on the oscillation conditions of general
two-dimensional models and specifically on the Brusselator, this case is intended to
be an introductory illustration and testing of our approach.

Model and nominal parameters
Themodel shows the trajectory of the concentrations of two reagents (B1,B2) present
in a chemical reaction (the concentration of the remaining materials being constant),
and is formally given by the following nonlinear ordinary differential equation (ODE)
system in dimensionless form:

Ḃ1 = k1 a−k2 bB1 +k3 B1
2 B2−k4 B1 (7a)

Ḃ2 = k2 bB1 −k3 B1
2 B2. (7b)

In our study, we use the Brussellator with the simplest nominal set of parameter val-
ues, choosing k1 = k2 = k3 = k4 = 1, and consider a and b as unknown parameters
to be determined.

Our goal is that the system produces sustained oscillations with predefined period
lengths, starting from initial state x0 = [1 1]⊺. We remark that the necessary and
sufficient condition of oscillations is well-known as

a2 + 1 ≤ b. (8)

However, we won’t use this condition among the constraints.

Optimization parameters and results
In our first experiment, we chose the oscillatory period to be t = 8 time units. We
discretized the system using the Euler method using dt = 0.2 units and chose a time
horizon of T = 40 units resulting in N = 200 steps. We introduced the following
periodicity constraints (see, eq. (6)): t1 = t2 = 8, t01 = 4, t02 = 8, ϵ = 0.1, r1 =

r2 = 0.1. As we did not want to overspecify the problem and decide on a suitable
oscillation threshold τ1and τ2, we also introduced these as decision variables (i.e.,
we only want each state variable to have a threshold that periodically outgrows and
then goes back below, but we do not specify where that threshold is between the
realistic bounds ϵ ≤ τ1, τ2 ≤ 10). As we are only looking for a feasible solution (and
do not want to choose from them any specific one), we set the cost function J to a
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constant value. The problem took approximately 6 seconds for the solver, resulting
in parameter values a = 0.808, b = 1.690, and trajectories illustrated in Fig. 1a.

Consequently, we repeated the computation for a series of growing periods t =

{10, 12, 15, 20}, using the same approach to derive the constraints, resulting in pa-
rameters and trajectories shown in Figs. 1b-1e. The solver times needed for the
computation are shown in Table 1.

Looking at the results, it can be checked that for cases shown in Figs. 1b-1d, the
condition (8) holds, meaning that the system indeed produces stable oscillations with
these parameters. In the last case in Fig. 1e, however, the condition is not satisfied,
although the prescribed oscillations are fulfilled. Here, we can observe a limitation
imposed by the finite horizon T = 40 of the optimization being barely able to include
two full periods of t = 20. Thus, while the system satisfies each constraint and pro-
duces oscillations, the trajectories converge to a stable equilibrium in the long term.
Essentially the same results were obtained using the Runge-Kutta 4 discretization.
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Figure 1
Computed parameters and their simulated trajectories for the Brussellator model
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3.2 A food chain model in Lotka-Volterra form
Lotka-Volterra-type (LV) models were originally derived independently for two pur-
poses: modeling (then only hypothetical) chemical reactions in which the concentra-
tions of reagents oscillate, and describing population dynamics of interacting species
in a habitat [8, 31]. It is important to mention that generalized Lotka-Volterra mod-
els can be considered as universal descriptors of nonlinear dynamics, therefore, their
analysis and application reach far beyond population models [32].

Model and nominal parameters
We analyze the system proposed in [33], which models a linear three-species food
chain consisting of a low-level prey (L1), its mid-level predator (L2), and a high-level
predator (L3) hunting for L2. The interaction between the species is modeled by the
differential equation system below

L̇1 = aL1−bL1 L2, (9a)

L̇2 = −cL2+dL1 L2−eL2 L3, (9b)

L̇3 = −f L3+g L2 L3. (9c)

with the following parameters:

• a, c, f representing the natural growth and decay rate of populations L1,L2,
and L3, respectively (without being hunted and without prey being available);

• b, e representing the negative effect of being hunted on populations L1,L2; and

• d, g representing the positive effect of prey being available for populations
L2,L3.

The model is known to show oscillations and periodic behavior for certain parame-
ter combinations, specific behaviors being shown in the case of different parameter
regions [33]. For our study, we opted for nominal parameter values: b = 1/2, e =

1, d = 1/6, g = 1/8, fixing the effect of interaction between the species, and let the
solver find the natural growth and decay rates a, c, f for which the task specifica-
tion holds. We prescribed (stable) oscillations for the system with predefined period
lengths, starting from the initial state x0 = [10 3 1]⊺

Optimization parameters and results
As the Lotka-Volterra model showed serious approximation errors in case of the
Euler method, we used different dt values and time horizons in the three case studies,
as detailed in Table 1. Similarly to the Brussellator experiment, we manually set
the periodicity constraint for the first state variable (substituting Eq. (6) with t1 =

10, t01 = 4, ϵ = 0.1, r1 = 0.1, 1 ≤ τ1 ≤ 20 and setting J constant. For the second and
third state variables no constraints were set.

We carried out three computations, with results shown in Figures 2a - 2c. It is visible
that the oscillations fulfill the prescribed periods. It can also be seen from Table 1
that the average solution time was the highest in the case of this model.
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Figure 2
Computed parameters and corresponding trajectories for the Lotka-Volterra model.

The red dashed line shows the computed threshold τ1.
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3.3 An SEIR epidemic model with immunity waning
The SEIR (Susceptible-Exposed-Infected-Recovered) is a four-dimensional nonlinear
compartmental model widely used for describing various epidemic processes [34].
It divides the population into four compartments, representing the different states of
the disease, and people transition from one compartment to another based on their
current health condition. Susceptible individuals (in compartment S) are assumed to
have no protection against the virus and may become ill if exposed to the pathogen.
Those in the exposed compartment (E) already carry the disease, but can not spread it
yet, and transition automatically to the infected group (I) after the incubation period.
Infected people (I) can infect those in S and are assumed to recover over time. Re-
covered individuals (R) are assumed to have perfect immunity against the pathogen.
Complementing the basic SEIR model, in our case recovered people lose their im-
munity after a given time, and are moved back into the susceptible compartment.
Compartments of the model and the possible transitions can be observed in Fig. 3.

Formally, the dynamics of the model is given by the following differential equations:

Ṡ = −β S I /N+ωR, (10a)

Ė = β S I /N − k2 E, (10b)

İ = k2 E−k3 I, (10c)

Ṙ = k3 I−ωR. (10d)

where N is the total population size which is assumed to be constant.

S I R
Susceptible Infected Recovered

E
Exposed

Figure 3
Compartmental transitions of SEIR epidemic model with waning of immunity

The model has four parameters: the transmission rate of the virus (β), the average
incubation period (k−1

2 ), the average time it takes to recover (k−1
3 ) and the average

time the immunity obtained by recovery lasts (ω−1). Thus the parameter vector was
defined as p = [β k2 k3 ω]

T . Typical values of the parameters, roughly corresponding
to the evolution of COVID-19 in Hungary between 15/08/2020 - 15-08-2021 are
β ≈ 0.1− 0.7, k2 ≈ 1/2.65, k3 ≈ 1/6.5, ω ≈ 1/150.

As it has actually been observed during the COVID-19 epidemic, with appropriately
selected parameters, the model can show damped oscillations even considering the

– 467 –



Balázs Csutak et al.
Optimization-based parameter computation for nonnegative

systems to achieve prescribed dynamic behaviour

0 10 20 30 40 50 60 70 80 90 100
Time (days)

0

0.5

1
S

ta
te

 v
ar

ia
bl

es
SEIR: t=30, p=[3.31 1.00 1.00 0.04]

S
E
I
R

(a)

same virus variant: people moving back and forth between S and R cause multiple
epidemic peaks. There exist proofs for similar systems (e.g., for SIRS models) to
be globally asymptotically stable by the construction of appropriate Lyapunov func-
tions [35]. Therefore, we cannot expect sustained oscillations in the solutions. Thus
we prescribed that the solutions show oscillations with specific time period without
altering the parameters or explicitly specifying the oscillation threshold. Moreover,
we wanted to influence the rate of convergence, by prescribing a minimum for the
oscillation amplitude at the end of the time horizon.

Optimization parameters and results
For each simulation, we discretized the system using dt = 0.25 (days). Periodicity
constraints were derived for only the first compartment (S), by substituting into Eq.
(6): t01 = t1/2, ϵ1 = 0.01, r1 = 0.001, J(x, p) = 0, and t1 = {30, 40, 50, 50} (cases
(a), (b), (c), (d)). Additionally, we used the following constraints: 0.01 ≤ τ1 ≤ 0.9,
β ≤ 5, 0 ≤ k2, k3, ω ≤ 1 to ensure the optimizer remains within the selected model
class. In the last simulation (d), to induce stronger oscillations, we increased the
parameter value ϵ1 to 0.025 and the time horizon to T = 150 (days).

We carried out four experiments, as seen in Figures 4a-4d. In experiments (a)-(c)
we computed the parameter values for oscillation periods 30,40 and 50 days respec-
tively, for a time horizon of T = 100 days. For the last experiment (d), in order
to produce stronger oscillations (with higher amplitude), we repeated case (c) with
higher ϵ (i.e., higher deviation from the threshold was required), and a longer hori-
zon. Although the dynamical constraints could be satisfied, the obtained transition
rates were (sometimes unrealistically) high, partly caused by the short time horizon.
It is also apparent from Table 1 that the computation times were significantly lower
than in the case of the Lotka-Volterra model.
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Figure 4
Computed parameters and their simulated trajectories for the SEIR model. Dashed
lines represent the trajectories created by the optimizer (using the Euler method),
while continuous lines show the simulated trajectories produced by the Ode45

solver using the previously computed parameters.
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Brussellator (a) 8

40 0.2 200 a, b 403

5.23
Brussellator (b) 10 262.72
Brussellator (c) 12 21.17
Brussellator (d) 15 3.65
Brussellator (e) 20 29.89
Lotka-Volterra (a) 10 20 0.02 1000

a, c, f
3004 604.74

Lotka-Volterra (b) 7.5 16 0.02 800 2404 385.37
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SEIR (b) 40 100 400 1605 6.72
SEIR (c) 50 100 400 1605 5.32
SEIR (d) 50 150 600 2405 12.88
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Conclusions

An optimization-based method for finding parameter values ensuring a prescribed
dynamical behaviour for nonlinear models was proposed in this paper. The approach
was inspired by nonlinear model predictive control with complex constraints used
e.g., in [25]. Therefore, the computations used the discrete-time dynamics of the
models. Clearly, the choice of the discretization method is fundamentally important
in balancing between computability and the satisfactory approximation of the non-
linear dynamics. In contrast to simulation-based global optimization approaches,
the applied setup requires one optimization run. The price of this is the increased
number of decision variables which are, however, strictly constrained. The method-
ology was illustrated using three kinetic nonlinear models where the goal was to
induce some kind of oscillatory behaviour (sustained or damped) with a given fre-
quency. The computations were successfully performed using the proprietary Baron
solver. Future work will be focused on defining the qualitative dynamical require-
ments in STL form and automatically translating the constraints from those, and also
incorporating other solvers for which the current solutions may possibly be used as
feasible initial values.
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