
Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 277 ‒

Automated Testing of Interaction-Requiring
Devices with a Robotic Arm and Object
Detection

Levente Daroczi1, Beniamin Demeter1, Csaba Sulyok1, Gyöngyi
Katona2, Dénes Mihály2 and Arnold Szász2

1 Department of Computer Science, Faculty of Mathematics and Computer
Science, Babeș-Bolyai University, Strada Ploiești 22-25, Cluj-Napoca 400157,
Romania, levente.daroczi@stud.ubbcluj.ro; beniamin.czompa@stud.ubbcluj.ro;
csaba.sulyok@ubbcluj.ro
2 Codespring, Strada Constantin Brâncuși 69-71, Cluj-Napoca 400347, Romania
katona.gyongyi@codespring.ro; mihaly.denes@codespring.ro;
szasz.arnold@codespring.ro

Abstract: Testing user interfaces is fundamental for ensuring reliability and proper
functionality. However, for many software systems, there is no framework available that
would support automated testing, especially when the system requires manual input controls
such as physical buttons. Currently, testing of these devices is largely done manually, which
is extremely time-consuming, requires a high degree of attention, and can increase the
potential for errors. The project aims to create an automated testing system that uses a
robotic arm and object detection technology. The system is capable of testing devices with
physical buttons and mechanical controls, ensuring precise and repeatable interactions, as
well as validating device feedback. This reduces the need for manual intervention while
significantly increasing the efficiency of the testing process. The solution consists of a web
application and a backend server. The web application provides the user interface that
allows for creating tests and viewing results, while the backend server is responsible for
executing the tests, controlling the robotic arm, and performing object detection processes.

Keywords: object detection; robotic arm; automation; testing; AI

1 Introduction
In the domain of software development, integration testing of a finished product is
at least as important as the separate verification of individual components. While
the latter ensures the correct operation of the building blocks, the former guarantees
their proper cooperation. [1] Testing, however, becomes significantly more
complex when the software is not running on a general-purpose computer but is

mailto:levente.daroczi@stud.ubbcluj.ro
mailto:beniamin.czompa@stud.ubbcluj.ro
mailto:csaba.sulyok@ubbcluj.ro
mailto:katona.gyongyi@codespring.ro
mailto:mihaly.denes@codespring.ro
mailto:szasz.arnold@codespring.ro

L. Daroczi et al. Automated Testing of Interaction-Requiring Devices with a Robotic Arm and Object Detection

‒ 278 ‒

instead designed for dedicated hardware. [2] In such cases, standard testing
infrastructure is often lacking, especially for microcontroller-based devices. [3]
Without such support, it is difficult or even impossible to issue automatic test
instructions or to retrieve their results from the target hardware. The challenge is
further increased if the device is equipped with physical input controls that require
human interaction, such as push buttons, touchscreens, or rotary switches. Testing
these using conventional tools can be particularly cumbersome, especially once the
product has completed its final manufacturing phase. [4, 5]

The current paper proposes a solution for automated testing of such unconventional
systems, relying on the following tools: a robotic arm, a camera, and advanced
object detection software. The arm simulates human interaction by handling
physical inputs such as button presses, touchscreen navigation, or turning rotary
switches. The recognition unit assists in controlling the robotic arm and enables
result verification. Its primary task is to identify the components of the device
undertest through the camera feed.

Unlike conventional testing methods, the use of a robotic arm is essential for devices
equipped with physical input interfaces that require human interaction. While
various testing frameworks exist--such as Appium1, which communicates with
Android devices using the Android Debug Bridge (ADB)2 for Android devices or
software specialized in UI/UX testing-these solutions are typically limited to a
specific platform or input method. There is a lack of a universally applicable system
capable of handling devices with diverse input interfaces, such as touchscreens,
physical buttons, or rotary switches.

With an accurate description of components of the test device and deep learning-
based recognition models, complete multi-step tests can be executed without human
intervention. Introducing an automated system offers several advantages over
traditional manual testing. It eliminates human errors and significantly frees up time
for test engineers. [5] The system can independently perform testing, so the user
only needs to review the results and the camera footage documenting the test
environment’s state at the end of execution.

Currently, there are few solutions on the market capable of software testing for
devices requiring interaction by combining robotic arm and object detection
technology. Among the best-known similar systems are MATT3, developed by
Adapta Robotics, and QUACO Pro4 from the portfolio of Sastra Robotics. These
solutions use proprietary devices that have been specifically designed for this
purpose. As a result, in certain cases, they may be more efficient than systems based
on general-purpose robotic arms.

1 Source: https://appium.io/docs/en/latest/
2 Source: https://developer.android.com/tools/adb/
3 Source: https://www.adaptarobotics.com/matt/
4 Source: https://sastrarobotics.com/products/quaco-pro/

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 279 ‒

2 Interface Element Recognition in Images
The current project aims to allow navigation on/interaction with any user interface,
including touchscreens, physical buttons, knobs and other actuators. The current
section focuses on the technology choices enabling this.

2.1 Theoretical Background
Object detection algorithms are capable of recognizing different shapes, icons, and
even shorter text. They can detect specific visual patterns and structures, which help
identify buttons, surfaces, and other elements [6, 4]. The detection employed in this
project is based on deep learning, and enables the identification and localization of
various objects in images or videos. The goal of their usage is to detect UI widgets
on screens, read label texts and identify interactive elements [7, 8].

Among the various technologies, the YOLO (You Only Look Once) algorithm
family is chosen [9, 10], as it is capable of identifying multiple objects in a single
image. This is particularly important on a user interface, where real-time and
accurate detection plays a key role. YOLO is a single-stage detector that has
undergone numerous developments over the years, continuously integrating the
latest methods into its architecture. The current project uses YOLOv8 as it was the
newest and most advanced version at the time of development. [11]

YOLO recognizes objects and their positions with "a single glance", that is, with a
single image processing, hence the name You Only Look Once. In the background,
YOLO uses a CNN (convolutional neural network) that helps predict the bounding
box of different objects in an image and their associated probabilities.
Convolutional neural networks are very effective in processing visual data, as
features can efficiently pass from initial convolutional layers to later ones. [12]

2.2 Labeling and Training Process
The first step in model training and object detection is creating a well-structured
and properly labelled dataset. In order for the models to accurately and reliably
recognize the desired objects under all conditions, the dataset is created in a varied
environment. Images are captured under different light conditions, continuously
changing light sources, and the device to be tested is photographed from multiple
angles and in different positions. Additionally, the camera position is regularly
modified so that the model would be able to handle perspective differences (see
Figure 1).

In the case of interaction elements of the mobile application (FestivApp), some
similarities could be noticed, so the decision was made to group all buttons
according to these similarities. From the main menu page, buttons were grouped
into separate models for navigation buttons, tabs, and various action buttons, such
as adding to favourites.

L. Daroczi et al. Automated Testing of Interaction-Requiring Devices with a Robotic Arm and Object Detection

‒ 280 ‒

Figure 1

Buttons of a controller used for heating systems with labels

After the training process, the result contains images and files showing various
statistics that help evaluate the performance of the model and the best-performing
model.

2.3 Recognition Process
The project contains a dedicated recognition layer that is responsible for identifying
different objects based on given parameters. In order for this layer not to be specific
to a particular test device, it has been designed so that no modifications to this layer
are necessary when introducing additional devices.

3 Robotic Arm

3.1 Dobot Magician Lite
The application uses the Magician Lite robotic arm developed by Dobot Robotics
for controlling the test device (see Figure 2). This is a general-purpose robotic arm
designed for educational purposes, which can be controlled via hardware, software,
or Python programs. [13]

The robotic arm is capable of executing instructions with a repeatability of 0.2 mm,
providing more than adequate precision for the use case of this project. [13]
Multiple types of end effectors can be attached to the end of the arm, such as a pen
holder, a soft gripper, or a rotatable suction cup capable of vacuum-based gripping
of small objects (see Table 1).

From a hardware perspective, out of the three available end effectors, only two were
actively used, as the gripper unit did not prove useful in this application
environment. The pen holder unit, combined with a touch-sensitive stylus, is
suitable for controlling touchscreen devices such as a smartphone.

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 281 ‒

Table 1
DOBOT Magician Lite end effectors [13]

End Effectors
Pen holder Pen diameter: 8-12 mm
Suction cup Built-in air pump drive, operates under negative pressure, with

suction cup diameters of mm and 20 mm
Soft gripper Built-in air pump drive, operates under both positive and negative

pressure, maximum opening and closing distance: 50 mm

In contrast, the suction cup unit can be effectively used to operate devices equipped
with push buttons or rotary knobs.

The design of the system enables the automatic testing of devices with varying
types, sizes, and input interfaces. However, integration into the application requires
the following conditions to be met: (1) the surfaces of the device intended for
control or observation must be located within the working area of the arm; (2) these
components must be placed on the upper side of the device; (3) the input interfaces
must be physically accessible and operable by the arm. Supported components
include touchscreens, LCD or other displays, push buttons, rotary knobs, and other
physical control elements.

The robotic arm comes with a special mat that determines the position of the arm
base and defines its workspace. While these markings are not strictly necessary for
the operation of the robotic arm, the six reference points (A–F) on the mat play a
key role in the system. On one hand, they visually designate the workspace defined
by the application, but their most important function is to support calibration.

To align the camera image with the other device coordinate system, at least four
points with known coordinates are needed both in the camera image and within the
workspace. The reference points placed on the mat serve precisely this purpose:
with human assistance, the arm can read their spatial coordinates, while they also
appear as recognizable objects in the camera image. This ensures that visual
perception and arm movement are precisely synchronized. (see Section 3.3).

3.2 Camera
The camera is an essential component of the application, as it enables the
recognition of test device components and plays a crucial role during the calibration
of the robotic arm. During a test run, whenever component detection is required, the
control unit retrieves the current frame from the camera and runs the YOLO model
on it. For calibration, the reference points on the mat are also identified using a pre-
trained YOLOv8 model executed on the camera image.

L. Daroczi et al. Automated Testing of Interaction-Requiring Devices with a Robotic Arm and Object Detection

‒ 282 ‒

Figure 2

The test surface as recorded from above by the stationary camera

The primary goal in programming the device is to enable the simplest possible usage
during test execution. For this purpose, an abstraction layer is used to encapsulate
the required methods.

3.3 Calibration
Precise calibration of the arm is essential for running tests. Early tests demonstrate
that the pixel coordinates of components detected by object detection algorithms
and the arm's own coordinate system are not compatible. This is resolved by
applying a projective transformation, which enables the mapping between the two
planes if at least 4 reference points are precisely known for both. [14] The more
available points, the more accurate the fit. [15] The coordinates of the six reference
points on the special mat can be retrieved from the camera image via the camera
module, using the previously trained YOLOv8 model. In the coordinate system of
the robotic arm, these must be registered manually, which requires human
intervention. To ensure easy development and modularity, calibration is outlined
and executed using a behavior tree (see Figure 3). [16]

Device Selection is an atomic element that waits for the user’s input. Once the
camera is selected, it initiates camera initialization. In case of error, this information
propagates to the top level, and calibration becomes invalid. This reaction is similar
in all cases, except for components capable of error handling.

Reference Point Detection is a selector-type component that also executes its
descendants from left to right but stops at the first successful execution and passes
the result up. According to the figure, detection is first attempted with object
detection, and if unsuccessful, manual adjustment is required. If object detection is
successful, no further intervention is needed.

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 283 ‒

Figure 3

Behavior tree of the calibration process

During execution of the atomic Object Detection element, the previously mentioned
YOLOv8 model for reference point detection is run. To reduce errors, the model is
retried up to five times in case of unsuccessful detection. If no satisfactory result is
achieved after this, the component signals an error. The behavior tree library allows
information sharing via a key-value storage system called the blackboard. Through
this, behavior tree components can access the registered coordinates of the reference
points.

The atomic Manual Adjustment element serves as a fallback to ensure that the
robotic arm can always be calibrated. The user must adjust the camera so that the
reference points projected onto the camera image coincide with the real points. In
other words, the user must find a predefined camera angle and distance to ensure
valid coordinates.

After the Camera component completes successfully, the Robotic Arm component
is executed, which is also sequential. Its first step is running the atomic Connection
Check element, which is considered successful if the program communicates
properly with the robotic arm. If the robotic arm is not connected or is used by
another program, an error is signaled.

Reference Point Registration is an atomic element requiring manual intervention,
during which the real coordinates of the reference points are recorded with the user’s
help. This is a simple process in which the end effector of the robotic arm must be
placed on all six points from A to F. The height relative to the mat does not matter,
as only the X and Y coordinates are relevant. Once the robotic arm is positioned on
a reference point, the system queries and records the current coordinates of the end
effector. At the end of the process, the scanned data are also stored in the shared
blackboard.

The atomic Height Setting element is similar to the previous one, except here only
the height of the end effector matters. The user must set this value by adjusting the

L. Daroczi et al. Automated Testing of Interaction-Requiring Devices with a Robotic Arm and Object Detection

‒ 284 ‒

end effector, and the system records it. This is the default height level the robotic
arm will use during the operations unless overridden. The set height value is
communicated to the robotic arm. For both the Reference Point Registration and
Height Setting components, error checking is performed to filter out values outside
the workspace.

After successful execution of the Camera and Robotic Arm components, all
conditions are met to run the Projective Transformation element. In this step, the
mapping between the two planes is established using the method described above,
and a transformation function is built that can convert coordinates between the two
systems. Although at least four reference points are required for mapping, this does
not guarantee that the transformation exists. The underlying system of equations
may have no solution, for example, if the reference points are collinear. [15] In such
cases, calibration must be repeated.

On the user interface, the calibration process includes an additional step for
selecting the test device. However, this only sends feedback to the server and is not
part of the behavior tree, as it is always considered a successful operation.

4 Tests
Testing plays an important role in the development of any software or hardware
system, as it ensures that applications and devices function as expected. The goal of
testing is to identify potential errors, thereby ensuring the error-free operation of the
application. Software testing can rely on well-established methods and automated
tools/frameworks, while hardware testing is based on a much more complex
process. [17]

Software tests typically run in a virtual environment where all parameters can be
precisely controlled. In contrast, hardware testing must account for physical factors
such as mechanical elements of devices, which can present significant challenges.
For all these tests, a structure had to be devised that can support testing for
touchscreen or other hardware devices as well.

4.1 Graph of the Operation of Applications and Hardware
Devices

Some interactive elements (such as buttons, scroll wheels, touchscreen surfaces)
allow the user to move from one state of the system to another. These states can be
considered different pages or user interfaces, between which the user can navigate
through specific actions. For example, pressing the Back button returns the user
from the current page to a previous state, while a Like button does not change the
navigational state but performs a modification on the current page (for example, by
updating the state of an element).

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 285 ‒

After studies, the idea emerged that the structure enabling navigation can be
effectively represented in the form of a graph, regardless of whether a given action
actually results in a state change or merely performs a modification within the
current state.

This approach allows for the structured mapping of the operation of applications
and hardware devices, and supports the definition and execution of automated tests.
The states (pages) can be interpreted as the nodes of the graph, while the interactive
elements that perform various actions ‒ such as navigation, button presses, or
settings adjustments ‒ form the edges of the graph. With this method, it is possible
to visually and logically model the options available to the user within a given
system, and how they can interact with individual elements (see the navigation
graph of the controller used for heating system control, Figure 4).

Figure 4

Navigation graph of the controller used for managing heating systems

The graph-based representation not only enables the structured mapping of the
operation of applications and hardware devices, but also contributes to the efficient
design and execution of automated tests. Since this type of representation allows for
the precise definition of testing paths, potential errors can be identified more easily,
and it can be ensured that every interaction is covered during the testing process.

From an implementation perspective, the navigation structure must be represented
for every application, so a solution had to be found that is easily modifiable, flexible,
and does not impose limitations when adding extensions, new features, or
restructuring applications.

To store the data in memory, structured JSON files are used. In this format, nodes
(pages) and edges (interaction elements) can be easily defined, which helps to
accurately and comprehensibly represent the navigation tree of the application or
system. This ensures that the system remains easily modifiable and expandable,
while the data remain well-structured and simple to manage.

L. Daroczi et al. Automated Testing of Interaction-Requiring Devices with a Robotic Arm and Object Detection

‒ 286 ‒

4.2 Test Structure
The tests that the user can create consist of steps. Each step represents edges in the
graph, that is, operations that test the functionality of the given test device. For
example, checking the correct operation of a button or examining the response of
an interaction element may belong here. The sum of the individual steps constitutes
the complete test. Since the steps of the tests are determined by the graph structure,
they automatically fit into the navigation process of the system and provide an
opportunity to test functionality.

The parameters stored in the JSON objects of the navigation graph contain not only
the data that the user needs to know directly, but also other background information
that is essential for the operation of the system but not necessary for the user.

Table 2
Description of the edge object fields

Field Description
id The unique identifier of the edge, which allows for unambiguous

identification.
componentName The name of the interactive component found on the application

interface.
from The node (page) from which the navigation starts.
to The node (page) to which the navigation occurs.
static Boolean value: for static (true) edge there is no navigation, while

for dynamic (false) there is.
deltaHeight A numeric value that modifies the default Y-coordinate (vertical

position) of the touch event. Useful when the component must be
touched slightly above or below its default center.

push A boolean value indicating the nature of the interaction: true means
the action requires a firm press (e.g., long press or physical button),
while false means a simple touch (tap) is sufficient.

action The name of the interaction operation.
direction Specifies the direction of the gesture or interaction (e.g., “up”,

“down”, “left”, “right”)—commonly used for scroll or rotate
actions.

hold The duration (in seconds) for which the touch interaction should be
held. This is relevant for gestures like long press or press-and-hold
operations.

There are two main object lists in the JSON file: nodes (nodes) and edges (edges).
Within the nodes object list, other objects are stored that have an id and a name
field, where the id represents a unique identifier, and the name is the name of the
page within an application/interface. Within the edges object list, the edges are
stored (see edge object fields in Table 2).

During test device integration, parameter values for each edge were determined by
experimenting with different inputs and interpolating the optimal results.

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 287 ‒

4.3 Test Execution
The tests and their correctness conditions are received by the backend server in
JSON format, which then checks and processes them.

Each test step has a behavior tree assigned to it, which is responsible for recognizing
objects in the image provided by the camera and executing the desired operation
(see Figure 5).

The use of a behavior tree is advantageous because if any part of a step’s execution
fails (for example, an object is not recognized or an interaction cannot be
performed), then the entire step execution is considered unsuccessful.
Consequently, the test cannot continue, as the step was not executed correctly.
The system clearly indicates if any step did not execute as intended. Furthermore,
if a step’s behavior tree fails, the robot stops executing the remainder of the test.
The user is then notified of how many steps were successfully executed before the
failure occurred. At this stage, the system is not capable of recovering from the
failure or returning to the initial state, and manual intervention may be required to
reset or diagnose the issue.

Figure 5

Behavior tree for the execution of steps

The Step executor is a sequential component that runs all of its direct subordinate
elements, the Action selector and the Execution. If any of these components do not
execute correctly, the entire step is considered unsuccessful.

The Action selector is a selector component that stops after running the first
successful direct subordinate element. This allows the system to decide which
operation the given step belongs to.

The Action selector component has three subordinate elements: Touch, Scrolling,
and Rotation. All three are sequential components, from which the system selects

L. Daroczi et al. Automated Testing of Interaction-Requiring Devices with a Robotic Arm and Object Detection

‒ 288 ‒

which operation to execute based on the supported operations, and also sets the
necessary parameters.

During the execution of these operations, the Touch, Scrolling, and Rotation
condition components can return success or error states, which decide which
operation should continue.

For the Touch and Rotation operations, an interface component must be recognized
on the test device. The Object detection node is responsible for this task, which sets
the appropriate coordinates of the component using the so-called blackboard keys.
These coordinates can be read by later nodes and used to execute the given
operation.

In the case of Scrolling, it is not necessary to recognize a component, but rather to
determine the position of the device, the so-called Phone scrollable path. This
requires two coordinates that describe the path where the scrolling operation should
be performed. Using computer vision, the frame of the phone screen can be outlined,
and using distance analysis, the section where the user typically scrolls can be
determined. To solve this task, the fitLine function of OpenCV is applied. [18] In
this case as well, the two coordinates needed to determine the section are stored
using the blackboard keys.

After the Action selector has successfully completed the tasks necessary for the
operation, the Execution node reads from the blackboard the scrolling coordinates
(if they exist), and the component centre point coordinates, which were set by the
Object detection nodes. For each operation, the appropriate functions belonging to
the robot module are called.

4.4 Test Validation
To check the correctness of tests, predefined conditions are needed that ensure the
success of the test can be evaluated. These conditions allow the user to decide on a
test result without reviewing the testing process on video or personally monitoring
the execution.

The system provides the opportunity to create customized correctness conditions.
The user can select those interface elements that must be present after the test
execution, as well as those that should not appear. If the user does not define custom
conditions, the default criterion for success is that at least 60% of the expected
interaction elements should be recognizable after execution.

For other testing possibilities, OCR (optical character recognition) algorithms are
applied, which are capable of extracting textual information based on images. [19]
The user can specify an expected text for each step that should appear on the screen
of the device being tested after the step is executed. This provides an opportunity
for the system to automatically check whether the device has actually entered the
desired state. The best performing solution is EasyOCR, an open-source Python
library that supports character recognition in multiple languages.

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 289 ‒

To increase the accuracy of text recognition, the images go through multi-step
preprocessing before the OCR algorithm runs. The input image is first converted to
greyscale, then the contrast is increased using the CLAHE (Contrast Limited
Adaptive Histogram Equalization) method to better distinguish the text from the
background. After that, a sharpening filter is applied, which further highlights the
characters, and finally, the image is enlarged so that the OCR can work from a
higher resolution.

5 Environmental Requirements
To ensure that the test runs properly and object detection works accurately, certain
environmental conditions must be met. For optimal recognition performance, it is
important that the test device is evenly illuminated from all directions, minimizing
shadows and reflections. There must be no direct light source above the test device,
as reflected light can hinder object recognition. The screen brightness should also
not be too high or too low; the optimal range is between 45% and 80%. The device
should be positioned facing away from the robot arm, preferably in the center of the
workspace, ensuring the camera has a clear and unobstructed view.

During testing, it was observed that if a light source is placed directly above the test
device and causes strong reflections, it can significantly reduce the effectiveness of
object detection. In such cases, the recognition of interaction elements may become
inaccurate or completely fail. Therefore, it is important that light sources are
positioned in a way that prevents disruptive glare on the surface of the test device.
In addition, the focus of the camera and exposure settings also influence recognition
performance. For example, if a mobile phone screen has a very high brightness in a
poorly lit environment, the camera may struggle to focus properly, resulting in a
blurred or overexposed image. In such cases, the objects may be difficult to identify
even with the human eye, which also complicates automatic analysis.

6 Architecture
The application consists of two distinct layers: a processing layer and a presentation
layer. The processing layer contains all functionalities related to object detection
and device control, while the presentation layer communicates via HTTP requests
to display relevant features to the user (see Figure 6). During the execution of the
processing layer, it is crucial to consider hardware resources, as this layer requires
greater computational capacity due to model execution and multithreading. Thanks
to the clear separation of layers, the presentation layer does not impose significant
hardware requirements and can be easily deployed elsewhere.

L. Daroczi et al. Automated Testing of Interaction-Requiring Devices with a Robotic Arm and Object Detection

‒ 290 ‒

Communication between the layers is handled via a REST API, with the exception
of video streaming, which uses sockets for increased speed.

Figure 6

System architecture

The processing layer (backend) is implemented in Python, as the Dobot Magician
Lite must be programmed in this language, and state-of-the-art AI tools such as
YOLOv8 are also available in Python. This layer also provides an API for the
presentation layer, functioning as a backend server.

The presentation layer is a web interface served by a Flask server because it offers
all needed functionalities without unnecessarily burdening application
performance. The robotic arm and camera are connected to the server exclusively
via USB cable, which significantly complicates remote deployment.

The backend server provides numerous functionalities for the presentation layer,
which are offered through an API following REST conventions, a logical and well-
organized framework for endpoints. All endpoints use the convenient and natural
JSON format for payload transmission. [20]

Persistent data storage is handled by a PostgreSQL database, chosen for its efficient
handling of JSON data and excellent compatibility with Python.

The database includes tables such as Tests, Configs (loadable calibrations), and
Subjects (test devices). The server can connect to a local or remote database, the
location of which is configurable via environment variables.

The web application is written in JavaScript using the React library, resulting in an
intuitive and clean interface. Since the application is not intended solely for experts,
this is taken into account during interface design.

A designer is involved in the interface development, resulting in a design prototype
created in the Figma design program, which serves as the basis for the website.

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 291 ‒

The required React components are built by customizing elements provided by the
Bootstrap library.

All functionalities of the web application are accessible exclusively to authenticated
users. User management is provided by a private Keycloak server, made available
for the project by Codespring.

Conclusions

The system presented in the thesis provides the user with the ability to test
interaction-requiring devices using a robotic arm based on object recognition.
The testing process is accessible through a web application, which ensures the use
of the application’s functions. After calibrating the robotic arm, the user is able to
perform a multi-step test. The system offers unique verification conditions for each
test and step, which automatically evaluate the success of the test.

To support the evaluation of the system’s practical effectiveness, a series of test
executions was conducted under controlled conditions. A total of 100 test
executions were performed, with the goal of evaluating the system’s practical
effectiveness. The test case consisted of 11 steps, including rotation and press
actions, aimed at increasing the temperature on the controller used in heating
systems. Out of the 100 tests, 88 were fully successful, while 11 resulted in
application errors due to hardware-related limitations inherent to the educational
robot, and one test failed. Additionally, 5 tests were identified as false positives,
where the robot executed all steps, but one or more actions did not perform as
expected, yet the test was still marked as successful. The execution time across all
successful tests remained consistent, ranging between 1 minute and 14 seconds to 1
minute and 16 seconds. These initial results suggest a functional baseline but
highlight the need for further development cycles focused on quantitative
performance metrics. Incorporating measures such as detection accuracy, detailed
error analysis, and step-level execution timing would strengthen the assessment of
reliability and enable more targeted improvements.

The foundations of the system have proven to be quite usable; however, further
developments are needed to increase reliability. Additionally, several functionalities
can be integrated that enhance the user experience and bring the system closer to a
market-ready state. The following development opportunities are highlighted:

• Importing and exporting test configurations from the database, as well as
creating an overview dashboard where the user can view previously run tests
and their results.

• Generating statistics based on executed tests and their outcomes, such as
success rates, common errors, average run times, etc.

• Providing the ability to run multiple tests sequentially in an automated
manner.

L. Daroczi et al. Automated Testing of Interaction-Requiring Devices with a Robotic Arm and Object Detection

‒ 292 ‒

• Implement robust error recovery strategies in the event of test execution
failure.

• Developing a system that allows users to introduce new test devices. This
would include generating the necessary configuration files and training new
models, preferably with minimal human intervention.

• Implementing backend server deployability and decoupling communication
with the robotic arm from the wired connection.

Acknowledgement

The authors would like to express their sincere gratitude to Codespring for the
opportunity to participate in this internship project as part of their mentoring
program. We are especially thankful to our mentors, Gyöngyi Katona, Arnold
Szász, and Dénes Mihály, for their invaluable guidance, continuous support, and
expert advice throughout the development of the project. We also extend our
appreciation to Csaba Sulyok for his coordination and oversight, which greatly
contributed to the success of our work. Finally, we acknowledge the support of
Babeș-Bolyai University, Cluj-Napoca, for fostering an environment that
encourages practical and research-based learning experiences.

References

[1] B. J. Dilworth, A. Karlicek and L. Thibault, “An Approach to Component
Testing: An Analytical Study,” pp. 341-345, 2019

[2] M. Pernice, D. Piumatti, E. Sánchez, P. Bernardi and R. Martorana, “An
efficient strategy for the development of software test libraries for an
automotive microcontroller family,” Microelectronics Reliability, Vol. 115, p.
113962, 2020

[3] J. Shi, W. Li, W. Wang and L. Guan, Facilitating Non-Intrusive In-Vivo
Firmware Testing with Stateless Instrumentation, 2024

[4] K. Kato, S. Takekoshi and T. Shinagawa, Testing device drivers against
hardware failures in real environments, 2016, pp. 1858-1864

[5] A. B. Ahmed, O. Mosbahi, M. Khalgui and Z. Li, “Toward a New
Methodology for an Efficient Test of Reconfigurable Hardware Systems,”
IEEE Transactions on Automation Science and Engineering, Vol. 15, No. 4,
pp. 1864-1882, 2018

[6] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng and R. Qu, “A Survey of
Deep Learning-Based Object Detection,” 2019

[7] R. Kaur and S. Singh, “A comprehensive review of object detection with deep
learning,” Digital Signal Processing, Vol. 132, p. 103812, 2023

[8] P. Kumar and E. Manash, “Deep learning: a branch of machine learning,”
Journal of Physics: Conference Series, Vol. 1228, p. 012045, 2019

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 293 ‒

[9] M. Hussain, “YOLO-v1 to YOLO-v8, the Rise of YOLO and Its
Complementary Nature toward Digital Manufacturing and Industrial Defect
Detection,” Machines, Vol. 11, 2023

[10] T. Diwan, G. Anirudh and J. V. Tembhurne, “Object detection using YOLO:
challenges, architectural successors, datasets and applications,” Multimedia
Tools and Applications, Vol. 82, pp. 9243-9275, 2023

[11] U. Sirisha, P. S. Praveen, P. N. Srinivasu, P. Barsocchi and A. K. Bhoi,
“Statistical Analysis of Design Aspects of Various YOLO-Based Deep
Learning Models for Object Detection,” International Journal of
Computational Intelligence System, Vol. 16, p. 126, 2023

[12] U. Inc., “Ultralytics YOLO Docs,” 2025 [Online] Available:
https://docs.ultralytics.com/ [Accessed 3 4 2025]

[13] Shenzhen Yuejiang Technology Co. Ltd, “Dobot Magician Lite User Guide
(DobotLab-based),” 6 12 2022 [Online] Available:
https://dobot.com.mx/assets/download/magician-lite/Dobot%20Magician%
20Lite%20User%20Guide%20(DobotLab-based).pdf

[14] R. Hartley and A. Zisserman, Multiple View Geometry, Cambridge University
Press, 1999

[15] E. Dubrofsky, Homography estimation, 2009

[16] I. Shames, O. Biggar and M. Zamani, “An Expressiveness Hierarchy of
Behavior Trees and Related Architectures,” 2021

[17] P. E. Strandberg, “Automated System-Level Software Testing of Industrial
Networked Embedded Systems,” arXiv, vol. abs/2111.08312, 2021

[18] S. Gollapudi, Learn Computer Vision Using OpenCV: With Deep Learning
CNNs and RNNs, Apress Berkeley, CA, 2019, pp. XX, 15

[19] A. Chaudhuri, K. Mandaviya, P. Badelia and S. K. Ghosh, Optical Character
Recognition Systems, Springer International Publishing, 2017, pp. 9-41

[20] C. Rodriguez, M. Baez, F. Daniel, F. Casati, J. Trabucco, L. Canali and G.
Percannella, REST APIs: A Large-Scale Analysis of Compliance with
Principles and Best Practices, Springer International Publishing, 2016, pp. 21-
39

	1 Introduction
	2 Interface Element Recognition in Images
	2.1 Theoretical Background
	2.2 Labeling and Training Process
	2.3 Recognition Process

	3 Robotic Arm
	3.1 Dobot Magician Lite
	3.2 Camera
	3.3 Calibration

	4 Tests
	4.1 Graph of the Operation of Applications and Hardware Devices
	4.2 Test Structure
	4.3 Test Execution
	4.4 Test Validation

	5 Environmental Requirements
	6 Architecture

