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Abstract: This paper introduces a framework for data analytics in a blended learning
environment, based on Big Data technologies. The framework integrates heterogeneous
educational data sources and enables real-time processing using Apache Spark.
The methodology applies Z-score and Min—-Max normalization and uses Principal
Component Analysis (PCA) for dimensionality reduction. K-means clustering is employed
to identify patterns in student behavior. The comparison of normalization methods shows
that Min—Max normalization produces more compact clusters than Z-score. The analysis
also indicates consistent relationships between students’ activity on the Moodle platform
and their academic outcomes. The study contributes a Spark-based procedure for
descriptive, diagnostic, and cluster analytics. It also offers an empirical evaluation of
normalization methods. In addition, it provides visual analytics that support early
identification of at-risk students. These tools can help teachers improve course
organization.
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1 Introduction

The digitalization of education and the rapid development of information and
communication technologies have led to the generation of significantly larger and
more diverse datasets, than previously encountered in educational practice. Many
of these datasets exceed the capabilities of traditional analytical methods.
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The term Big Data refers to large, heterogeneous, and dynamic datasets that
require advanced analytical techniques and specialized processing tools [1] [2].
The widespread adoption of digital platforms, learning management systems
(LMS), and various online learning resources has further increased the availability
of student activity data, creating opportunities for more comprehensive analyses of
learning processes. Student interactions within digital learning environments
produce substantial amounts of data that can offer meaningful insights into
learning behavior and support instructional improvement. In such environments,
data are generated continuously, vary in complexity, and require scalable
analytical systems capable of processing information from multiple heterogeneous
sources. Their analysis is further complicated by differences in structure, format,
and origin.

The case study presented in this paper was conducted in an Apache Spark
environment on a cluster with 64 GB of RAM and eight processing cores.
The dataset integrates Moodle log files, Google Sheets records and data from the
institution’s information system. The contribution of this study lies in the
development of a real-time Spark-based analytical process and a visual analytics
approach that enables instructors to identify relationships between student
activities and learning outcomes, recognize clusters of students with similar
behavioral patterns, and detect indicators of potential risk in the learning process.
The obtained results may support improvements in course organization and
overall instructional effectiveness.

In addition to the technological context, the study is grounded in the fields of
Educational Data Mining (EDM) and Learning Analytics (LA), which examine
how digital traces of learning behavior can be used to understand and enhance
educational processes. Although numerous studies analyze LMS generated data,
far fewer integrate heterogencous data sources into a unified Big Data
environment capable of near real-time analytics. This gap highlights the need for
scalable analytical frameworks that can process diverse datasets while providing
pedagogically meaningful interpretation.

2 Related Work

Numerous studies have examined the use of Big Data technologies, learning
analytics, and educational data mining in higher education. Earlier work explored
the visualization of large datasets and tools for processing high-volume data
streams [3]. Learning analytics has been widely applied to LMS data for
instructional improvement [4], for examining the pedagogical value of built-in
analytic tools [5], for visualizing multimodal feedback [6], and for managing large
educational datasets [7]. Log-based analyses have addressed student behavior [8],
learning patterns [9], and online testing environments [10].
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Research also points to the need for scalable learning analytics architectures.
Several studies propose frameworks for data integration and processing in higher
education [11] [12]. Additional reviews outline key educational data mining
techniques used in blended and online learning [13]. More recent work combines
LMS logs with institutional and behavioral data to build predictive and diagnostic
models [14] [15].

Advanced visualization methods support the interpretation of complex and
heterogeneous educational data. Current approaches include multimodal
dashboards, network representations of student interactions, and interactive visual-
analytics systems that enable real-time decision-making [16] [17].

This study builds on earlier contributions by integrating Big Data methods with
established educational theories. It proposes a framework for identifying and
visualizing behavioral patterns in blended learning. The framework integrates
heterogeneous data sources, descriptive and diagnostic analytics, dimensionality
reduction, clustering, and visualization techniques to support interpretable
representations of learner behavior.

Ethical considerations remain essential, particularly with respect to privacy,
fairness, and responsible interpretation in Big Data based educational systems.

3 Background

3.1 Learning Theories

Interpreting educational data benefits from grounding in established learning
theories. Self-regulated learning (SRL) describes learning as a process in which
students set goals and regulate their strategies [18]. Higher levels of self-
regulation are often reflected in LMS data through consistent access and timely
participation. Cognitive load theory offers further insight. It assumes limited
working memory and stresses the need to avoid excessive cognitive demands [19].
Large content volumes or multiple simultaneous tasks may overload learners, a
pattern that can be observed in how students navigate course materials. Student
engagement models add a complementary perspective. Behavioral engagement
visible through assignments, quizzes, and forum activity is directly traceable in
LMS data and is linked to improved academic outcomes [20] [21].

These frameworks support clearer interpretation of identified patterns. Students
who rarely access supplementary materials may show lower self-regulation or
engagement, while frequent and purposeful use of resources often aligns with
effective learning strategies. Together, these theories provide a coherent lens for
explaining how data patterns relate to underlying learning behaviors [18-20].
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3.2 Big Data Analytical Process (BDA)

The BDA process forms an analytical framework used to extract relevant
information, identify patterns, and reveal relationships in large and heterogeneous
datasets [2] [22]. Such datasets require scalable and efficient processing methods
due to their volume, diversity, and complexity.

As described in [2] [22] this framework is typically divided into three phases.
The first phase, data collection, is demanding but fundamental. Data are gathered
from multiple sources, and each source must be assessed for reliability and
relevance. The second phase, data preprocessing, includes operations that detect
irregularities, clean and transform raw data, and prepare a consistent dataset
suitable for further analysis. High quality preprocessing improves the accuracy
and interpretability of results. The third phase, data analysis, identifies patterns,
extracts insights, and supports the formulation of conclusions.

Different analytical approaches may be used depending on the study objectives.
Descriptive analysis summarizes historical data through statistical measures and
visualizations. Predictive analysis applies statistical models and machine learning
to estimate future outcomes. Diagnostic analysis investigates causes behind
observed events. Prescriptive analysis extends predictive insights by proposing
potential actions through modeling and optimization.

Given the size and heterogeneity of contemporary educational datasets,
implementing such an analytical framework remains challenging. Each phase
plays a critical role in ensuring that large volumes of data can be transformed into
reliable and meaningful insights.

3.3 Cluster Analysis

Cluster analysis is an unsupervised learning technique used to group data
instances based on similarity [23]. Instances within the same cluster share more
characteristics with each other than with instances in other clusters. Among
clustering methods, K-means is widely applied due to its simplicity and efficiency
on large datasets [23] [24]. Selecting an appropriate number of clusters is an
important step. The elbow method [25] is a common heuristic, allowing the
examination of how distortion decreases as k increases. The point at which this
decrease slows noticeably is typically taken as a suitable value for k. Cluster
quality is often assessed using the silhouette coefficient, which measures cohesion
within clusters and separation between clusters. Silhouette values range from —1
to +1, with higher values indicating more compact and well-separated clusters.
The overall silhouette score represents the average across all instances [26].
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3.4 Z-score and Min-Max Normalization Methods

The Z-score method [27] [28] is a data normalization strategy that avoids issues
with outliers but does not produce normalized data with exactly the same scale.
This method is commonly used in statistics and data analysis to facilitate
comparison and interpretation of different data distributions. If a value is exactly
equal to the mean of all values for a given attribute, it will be normalized to zero.
If it is below the mean, it will be a negative number, and if it is above the mean, it
will be a positive number. The magnitude of the negative or positive value is
determined by the standard deviation of the original attribute. For unnormalized
data with a large standard deviation, the normalized values will be closer to zero.

The Min-Max method [27] [28] is one of the most common ways to normalize
data. The procedure is based on scaling the data values to a specified range (often
0 to 1). For each attribute, the minimum value is transformed to 0, the maximum
value is transformed to 1, and every other value is transformed into a decimal
number between 0 and 1. The Min-Max method ensures that all attributes share
the same scale but does not handle extreme values well.

3.5 Principal Components Analysis (PCA)

The PCA method [23] [29] is widely used to reduce the complexity and
dimensionality of large datasets. It relies on the eigenvalues and eigenvectors of
the covariance matrix to project data into a new coordinate system. Eigenvalues
indicate the amount of variance captured in a particular direction, while
eigenvectors define those directions. In this way, PCA retains most of the
information while representing the dataset in fewer dimensions. Selecting only the
components that account for the largest share of variability simplifies analysis and
enables visualization in two or three dimensions. As a linear and deterministic
method, PCA can process very large datasets without distorting their underlying
structure [30]. Jolliffe and Cadima [31] note that PCA reduces dimensionality
with minimal information loss, leading to clearer and more interpretable data
representations. They also emphasize its adaptability, particularly when working
with large and complex datasets. Chang [32] argues that PCA is fast and reliable
because it preserves global variance and produces interpretable low-dimensional
projections, making it well suited for large datasets. Jeon et al. [33] further
highlight that PCA preserves global distances between points and treats them as
continuous values, which facilitates comparison.

In contrast, nonlinear methods such as t-SNE and UMAP often distort global
relationships and are highly sensitive to hyperparameters. These characteristics
make them less suitable for high-dimensional educational data. t-SNE is used
mainly for visualization and does not provide stable global distances, while
UMAP offers a better balance of local and global structure but still depends
strongly on parameter settings.
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Given these characteristics, PCA was selected in this study as the method for
dimensionality reduction. It reliably preserves variance structure and provides
linear components that clarify relationships among engagement dimensions.

3.6 Data Visualization

Data visualization plays a crucial role in the data analysis process [34]. Its purpose
is to reveal trends, relationships, and potential irregularities that are not easily
detectable through numerical inspection alone [35]. With increasing data volume
and complexity, visualization serves as an important link between large datasets
and their practical interpretation. Effective visual analysis requires an
understanding of the underlying data so that identified patterns can be interpreted
accurately and in the appropriate context [36] [37]. These considerations form the
basis of the visualization approach in this study, where graphical representations
are used to interpret engagement patterns and clustering outcomes.

3.7 Apache Spark Framework

Apache Spark [38] is an open-source framework that is meant for processing large
amounts of data. It focuses on speed, ecase of development, and advanced
analytical capabilities. The system was built using Spark's in-memory processing
features, which let it keep intermediate results in memory instead of writing them
to disk over and over again. This made analysis take less time. Reading data from
AWS S3 at the same time made it possible to quickly process large datasets.
The cloud cluster was set up so that the whole dataset could be processed in
memory. This made latency even lower and made it possible to see the data almost
in real time.

4 Methodology

4.1 Data Collection and Storage

The dataset used in this study was created by integrating three heterogenecous
sources of educational data: Moodle log files, Google Sheets documents, and
records from the institution’s information system. These sources were selected
because together they capture the full range of student activity in a blended
learning environment. Moodle logs record online engagement, including access to
resources, forum participation, quiz attempts, and interaction with homework and
laboratory materials. Google Sheets records reflect continuous assessment
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conducted throughout the semester, while the institutional databases provide
official course outcomes such as final test scores and grades. Combined, these
sources provide both process-level data (learning activities and engagement) and
outcome-level data (performance), which are essential for diagnostic and cluster
analysis. The dataset includes all students enrolled in the course during the
observed semester; no sampling or exclusion was applied. It therefore represents
an exhaustive dataset for the examined cohort, reducing the potential for sampling
bias. The integrated dataset was processed in the Apache Spark environment on
the Databricks platform, which supports large-scale data storage and analytics
[39]. All data were stored in Amazon S3, a cloud-based storage service provided
by AWS. For the analysis, an AWS cloud cluster with 64 GB of RAM and ecight
processing cores was provisioned. A detailed description of the extracted
attributes is provided in Table 1.

Table 1
Description of extracted attributes

Attribute | Description Value
CountF Forum access count [1,...,60]
Countl Course guide access count [1,...,13]
CountLW | Number of accesses to laboratory preparation videos [1,...,73]
CountHW | Number of accesses to homework assignment materials [1,...,117]
CountLec | Number of accesses to lessons [1,...,140]
AttLec Points achieved in lectures (interaction score) [1,...,10]
LW Points achieved in laboratory exercises [1,...,10]
HE Points achieved in homework assignments [1,...,20]
ET Points achieved in exam test [-1,...,70]
Grade Finale grade [3,5,6,7,8,9,10]

Each row in the dataset represents a record of a student's activities and points
achieved. From Table 1 it can be observed that most attributes are numeric.
The Grade attribute has categorical values: 3 indicates that the student did not take
the exam, 5 indicates failure, while values 6 through 10 are passing grades.

4.2 Proposed Framework

This study presents an environment for processing and visually monitoring large
educational datasets collected from heterogeneous sources. The environment is
implemented on the Apache Spark platform, where big data analytical processes
are executed using the PySpark programming interface. This configuration
provides a unified workflow for preprocessing, normalization, dimensionality
reduction, clustering, and visualization, which are described in the following
sections.
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4.2.1 Descriptive Analysis

During this phase, we have noted that several attributes contain missing values.
These missing values appear only in attributes that record online actions. Moodle
generates a log entry whenever a student accesses a resource. If no entry exists,
this indicates that the student did not access the resource and does not represent a
logging failure. Therefore, missing values in these attributes were replaced with
zero, as the absence of a log entry appropriately reflects no activity. Figure 1
shows how frequently students accessed different Moodle course materials.
A notably higher proportion of missing values is observed for the Countl attribute,
which represents accesses to the Course Guide an informational PDF file rather
than a learning resource.

Figure 1
Distribution of Moodle course material usage

Distribution of the Grade attribute

2 4 6 8 10 12
Grade

(a) percentage distribution (b) frequency with density approximation

Figure 2
Final grade distribution
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Final grade distribution is shown in Figure 2. Figure 2a presents the percentage
distribution of final grades, while Figure 2b shows their frequency together with a
smoothed density curve.

Figure 3 illustrates the distribution of AttLec, which reflects student interactivity
and participation during lectures.

Attlec

Number of occurrences

AttLec values

Figure 3
Distribution of AttLec values

The LW, HE, ET attributes represent scores from laboratory exercises, homework
assignments, and the exam test, respectively. These distributions are shown in
Figure 4 and exhibit considerable variation.
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Figure 4
Score distributions of LW, HE, ET

To improve readability, a discretization procedure was applied [23]. Numerical
values were grouped into categories by selecting an appropriate number of bins.
Based on these intervals, LW, HE, ET were classified into three performance
categories: poor, good, and excellent.
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4.2.2  Diagnostic Analysis

Diagnostic analysis was applied to identify factors associated with student
performance and to examine indicators that may influence the final course grade.
Data on students’ use of course materials and participation in various activities
were analyzed to detect correlations and assess their relationship with academic
outcomes. The correlations between final grades and the frequency of accessing
different Moodle resources are shown in Figure 5.

Countuw_diskret

7
Grade

Figure 5
Correlations between Moodle course materials access and final grades

Figure 6 presents the relationship between students’ participation in lecture related
activities and their final grades. The visualization indicates that students who
achieved the highest grades were significantly more engaged in discussions and

interactive components during lectures.
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Figure 6
Correlation between lecture participation levels and final grades
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Figure 7 shows the distribution of points earned on laboratory exercises,
homework assignments, and the exam test, grouped by final grade. Violin plots
were used to represent both the distribution and density of scores within each
grade category, highlighting the shape and spread of the data.
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Figure 7
Score distributions (laboratory, homework, exam) by final grade categories

To further explore relationships between the attributes, a correlation matrix was
created (Figure 8). Positive coefficients indicate that higher values of one attribute
are associated with higher values of another, while negative coefficients indicate
an inverse relationship. The heatmap highlights several strong correlations
between student activities and academic outcomes. The most intense cells
(correlation coefficients from approximately 0.52 to 0.92) show that frequent use
of Moodle materials particularly those related to homework and laboratory
preparation is strongly associated with higher exam test scores. Students who
regularly accessed these resources tended to achieve higher test results, suggesting
that engagement with these materials has a substantial positive effect on
performance.

Correlation Heatmap

CountF  Countl CountlW CountHW Countlec Atlec Grade

Figure 8
Correlation matrix of the analyzed attributes
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4.2.3 Proposed Cluster Analysis Approach

The proposed cluster analysis is based on a normalization procedure designed to
accommodate heterogeneous data sources. Clusters were formed by identifying
patterns in students’ use of Moodle course materials combined with the points
earned for activities completed in the face-to-face component of the course.
A substantial number of missing values was observed in the attributes related to
access counts for Moodle materials and resources (Table 2).

Table 2
The number of missing values per attribute
Attribute | Description NaN
CountF Forum access count 62
Countl Course guide access count 92
CountLW | Number of accesses to laboratory preparation videos 21
CountHW | Number of accesses to homework assignment materials 29
CountLec | Number of accesses to lessons 31

After replacing the missing values with zeros, it became evident that the attributes
in the dataset differed considerably in their value ranges and scales. Z-score and
Min-Max methods were used depending on each variable's statistical qualities to
compare features with heterogeneous magnitudes and distributions. For qualities
with essentially normal distributions, Z-score normalization rescaled values
around zero with unit variance. Min-Max scaling reduced extreme values in
highly skewed activity measurements, such as resource-access frequencies. Dual-
scaling delivers a balanced transformation suited to specific attributes, improving
downstream clustering stability and interpretability. To evaluate how
normalization influences clustering performance, the elbow method and the
silhouette coefficient were calculated for each normalized dataset. Applying Z-
score and Min—Max scaling resulted in two normalized versions. The elbow and
silhouette analyses were used to estimate the optimal number of clusters for both
datasets. Figure 9a presents the evaluation results for the Z-score normalized

dataset, while Figure 9b shows the corresponding results for the dataset
normalized using the Min—Max method.

Elbow ptimal Number of scaled) primal Number of Clusters (Z-score scalec el

Number o Clusters Number o Clusters Nomber o s Nomber of lsers

a.df KM zscore_scaled b. df KM minmax_scaled
Figure 9

Clustering evaluation for the normalized datasets
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Table 3 shows that the Min—Max normalization consistently yielded higher
silhouette scores than the Z-score method. The trends indicate that silhouette
values decrease from two to five clusters for the Z-score normalization, and from
two to four clusters for the Min—Max normalization. Beyond these points, both
methods show only minor fluctuations with small alternating increases and
decreases.

Table 3

Optimal number of clusters (k) and silhouette scores (Min-Max vs Z-score)

k Silhouette Score (Min-Max) Silhouette Score (Z-score)
2 0.431 0.343
3 0.353 0.298
4 0.338 0.289
5 0.348 0.270
6 0.346 0.289
7 0.350 0.289
8 0.311 0.261
9 0.321 0.287
10 0.326 0.286

Figure 10 shows the distributions of instances in the PCA-transformed space, for
two, three, and four clusters in both normalized datasets. Clusters formed using
Min—Max normalization show clearer boundaries and less overlap, consistent with
the higher silhouette scores. In contrast, Z-score normalization produces more
diffuse and less distinct clusters, especially as the number of clusters increases.
These PCA-based visuals indicate that normalization has a substantial impact on
cluster quality. In this study, Min—Max scaling produced more coherent and
better-separated clusters.

PCA was applied to obtain a lower-dimensional representation suitable for visual
inspection of cluster structure. Complete separability of clusters is not expected
due to the complexity of educational behavioral data; thus, PCA serves primarily
as a visualization aid rather than a measure of clustering performance. Tables 4
and 5 present the centroid vectors for the selected cluster solutions obtained from
the Z-score and Min—-Max normalized datasets. Each centroid represents the
characteristic profile of a cluster, expressed through the mean normalized values
of the original attributes. These profiles provide insight into differences in student
engagement patterns and performance indicators.
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Figure 10

Normalized dataset instance distributions for 2, 3, and 4 clusters

Table 4
Centroid vectors for clusters in df KM zscore_scaled (k=4)

k CountF Countl CountLW CountHW CountLec

0 -15.531 -0.151 37.164 71.259 70.934

1 -21.143 -6.954 -59.090 -135.987 -96.850

2 6.206 -3.791 -13.903 3.484 -36.627

3 42.627 25.896 95.221 121.145 187.055

k AttLec LW HE ET Grade

0 14.947 6.926 15.689 84.403 12.040

1 -7.745 -14.778 -31.197 -86.182 -6.214

2 -4.143 3.107 6.269 -6.726 2.672

3 4.072 5.176 10.188 35.813 6.306

Table 5
Centroid vectors for clusters in df KM minmax_scaled (k=4)

k CountF Countl CountLW CountHW CountLec
0 2.611 0.537 2.293 4.927 1.609
1 7.524 2.602 12.243 37.495 17.573
2 6.022 3.422 20.133 45.111 31.489
3 5.000 0.744 7.333 15.051 5.513
k AttLec Lw HE ET Grade
0 -2.776e-16 -3.331e-15 1.992 -1.000 3.000
1 1.748e+00 8.193e+00 16.112 29.697 6.078
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7.222e+00 8.933e+00 18.449 50.003 8.200
3 2.776e-16 6.928e+00 8.641 4.410 5.000

Using the centroid vectors from the Z-score normalized dataset (Table 4), the
behavioral characteristics of each cluster can be identified. Cluster 0 shows large
positive centroid values across all engagement attributes (CountLW, CountHW,
CountLec, ET), indicating very high activity. This group has the highest grade
centroid (12.04 in Z-score units) and represents students with strong engagement
and strong performance. Cluster 1 exhibits consistently negative centroid values,
indicating low engagement in lectures, homework, and online learning materials.
The group also shows weak performance, with a grade centroid of —6.21. Cluster 2
has centroid values near zero, reflecting moderate engagement and average
achievement (grade centroid = 2.67). Cluster 3 shows high values for structured
academic activities (CountHW, CountLW, CountLec), suggesting strategically
engaged students who focus on formal course requirements and achieve above-
average results (grade centroid = 6.31). These patterns are consistent with findings
in learning analytics research, where higher behavioral engagement is typically
associated with stronger academic performance.

Using the centroid vectors from the Min—Max normalized dataset (Table 5), a
similar cluster structure appears. Cluster 0 shows very low engagement, with
values near zero across most attributes (e.g., CountLW = 2.29, ET = —1.00).
Cluster 1 represents students with moderate engagement, reflected in lower-to-mid
activity levels (CountHW = 37.49, HE = 16.11, ET = 29.70) and mid-range grades
(6.08). Cluster 2 displays the highest engagement and performance, with the
largest centroids for homework (45.11), lecture participation (31.49), overall
interaction (50.00), and the highest grade centroid (8.20). Cluster 3 is smaller and
shows moderate activity (CountHW = 15.05, ET = 4.41) and average performance
(grade = 5.00).

We evaluated K-means models trained on raw, Z-score, and Min—Max normalized
data to assess how normalization affects clustering performance. Z-score scaling
reduced within-cluster variance by 99.27% (from 557.37 to 4.07) and slightly
lowered the silhouette score (0.281 vs. 0.316). Min—Max scaling achieved an even
stronger variance reduction (to 0.183) and produced the highest silhouette score
(0.338), indicating more compact and Dbetter-separated clusters. Both
normalization methods improved cohesion relative to unscaled data, but Min—Max
was the most effective for this dataset.

Although Min—-Max produced the most coherent clusters, it remains sensitive to
outliers and shifts in data range; this can be mitigated through outlier filtering or
adaptive scaling. We also tested alternative algorithms. DBSCAN detected some
local density patterns but was highly unstable across ¢ and MinPts settings.
Hierarchical clustering revealed structure but produced unbalanced clusters and
was slower to compute. K-means yielded the most stable and interpretable
behavioral groups. To validate the four-cluster solution, we performed a
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bootstrapped silhouette analysis (1000 resamples), which showed minimal
variability and strong stability. Repeated 80% subsampling with Adjusted Rand
Index (ARI) evaluation also produced consistently high agreement with the
original solution. These results confirm that the four-cluster structure is robust and
reliable for this dataset.

4.2.4  Statistical and Comparative Analysis

To complement the descriptive and diagnostic results, several statistical tests were
conducted to assess the significance and robustness of the observed behavioral
patterns (Table 6). The analysis examined correlations between engagement
indicators and academic performance, differences in final grades across the four
K-means clusters, and post-hoc comparisons to identify which cluster pairs
exhibited significant differences.

Pearson and Spearman correlations showed moderate to strong positive
relationships between engagement indicators and final grades, with all results
significant at p < 0.01. These findings confirm that higher engagement is
consistently linked to better academic performance. Significant performance
differences across the four K-means clusters were supported by both the Kruskal—
Wallis test (H=189.19, p <0.001) and one-way ANOVA (F =424.52, p <0.001).
Post-hoc tests (Tukey HSD and Dunn with Bonferroni correction) indicated that
all cluster pairs differed significantly (p < 0.001), confirming clear performance
separation.

Table 6
Summary of statistical tests on engagement features and cluster differences

Test Statistic p-value Interpretation
Pearson r = moderate— <0.01 Engagement positively associated with
correlations strong ) grade
Spearmfm p = moderate- <0.01 Confirms monotonic relationship
correlations strong
ANOVA F=42452 4.25 x 102 | Significant differences between clusters
Kruskal-Wallis | H=189.19 9.11 x 10~ | Significant non-parametric cluster

differences
Tukey HSD A.H pairs <0.001 Clusters differ in mean grade
significant

Dunn test All pairs . .
(Bonferroni) significant <0.05 Strong pairwise separation

Mean grade differences (Table 7) ranged from 0.83 (Cluster 0 vs. Cluster 1) to
4.93 (Cluster 2 vs. Cluster 3). Dunn’s test with Bonferroni correction (Table 8)
confirmed that all differences remained statistically significant. These results
indicate that the four clusters form clearly distinct learner profiles that differ
consistently in both engagement and performance, with no overlap in confidence
intervals.
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Table 7
Tukey HSD Post-hoc Comparison
Group | Group 2 | Mean Diff p-adj Lower Upper Reject
1 CI CI
0 1 0.8302 0.0000 0.4302 1.2302 True
0 2 2.9298 0.0000 2.4993 3.3604 True
0 3 -2.0000 0.0000 -2.4547 -1.5453 True
1 2 2.0996 0.0000 1.8090 2.3902 True
1 3 -2.8302 0.0000 -3.1556 -2.5048 True
2 3 -4.9298 0.0000 -5.2921 -4.5675 True
Table 8
Dunn Post-hoc Test (Bonferroni-corrected p-values)
Cluster 0 1 2 3
0 1.0000 0.0080 533 x 107" 0.0187
1 0.0080 1.0000 3.99 x 101 398 x 10"
2 533 x 107" 3.99 x 1072 1.0000 2.20 x 107°
3 0.0187 3.98 x 10" 2.20 x 1073 1.0000

5 Discussion

This study examined student engagement and performance in a blended learning
course by integrating data from heterogeneous educational data sources. Increased
interaction with instructional materials, especially laboratory preparation
resources and homework was associated with higher academic outcomes.
Participation in lecture related activities also showed a positive relationship with
final grades, reflecting well-known links between behavioral involvement and
performance. Cluster analysis showed that engagement varies across distinct
behavioral profiles. High-engagement clusters displayed patterns consistent with
effective self-regulation and proactive study habits. Low-engagement clusters may
signal motivational issues, weaker learning strategies, or external constraints.
These interpretations remain tentative, as strong students may naturally interact
more with course materials, meaning that digital traces can reflect consequences
rather than causes of performance differences.

The results should be viewed within the context of a single course at one
institution. Several limitations apply. Replacing missing log entries with zeros
assumes non-engagement and may mask technical or logging inconsistencies.
The analytical framework depends on cloud-based distributed computing, which
may not be available in all educational settings. Furthermore, log level behavioral
data cannot capture cognitive or motivational dimensions of learning; combining
them with self-report or qualitative data would provide a broader perspective.

-25-



G. Dimi¢ et al. Proposed Approach to Analysis and Visualization of Educational Data
Based on the Concept of the Big Data

Despite these constraints, the framework offers practical value. Integrating
heterogeneous data sources and enabling near real time analytics supports early
identification of at-risk students and helps instructors interpret engagement
patterns. Overall, the study shows that combining descriptive, diagnostic, and
clustering methods within a scalable computational environment can reveal
meaningful behavioral structures in blended learning.

Future work should test the approach in additional courses, refine the handling of
missing data, and incorporate learner-centered measures to deepen the
understanding of engagement and learning processes.

Conclusions

This study presented a scalable framework for analyzing and visualizing
educational data collected from heterogeneous digital sources. By combining
descriptive, diagnostic, and clustering methods, the system provides real-time
insight into student behavior in blended learning environments. The analytical
workflow covering preprocessing, normalization, dimensionality reduction, and
clustering showed that Min—-Max scaling combined with PCA improves cluster
compactness and interpretability. The resulting cluster profiles revealed clear
differences in engagement and performance, giving instructors a clearer picture of
how student groups interact with course materials. Visualizations supported
interpretation by highlighting resource-use patterns and potential indicators of
academic risk.

Several limitations should be noted. Digital traces offer only partial insight into
cognitive and motivational processes. Reliance on cloud-based infrastructure may
limit adoption in settings with restricted technical resources. Missing or
incomplete log data can obscure important behaviors. Because the analysis was
conducted on a single course, the findings should not be generalized without
further validation. Future research should examine additional courses and
contexts, apply more extensive validation procedures, and explore alternative
clustering and predictive models. Ethical issues related to privacy, transparency,
and fairness also remain essential.

With further refinement, the proposed framework can support early identification
of at-risk students, improve evaluation of learning resources, and contribute to
more effective course design in blended learning environments.
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