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Abstract: This paper introduces a framework for data analytics in a blended learning 
environment, based on Big Data technologies. The framework integrates heterogeneous 
educational data sources and enables real-time processing using Apache Spark.  
The methodology applies Z-score and Min–Max normalization and uses Principal 
Component Analysis (PCA) for dimensionality reduction. K-means clustering is employed 
to identify patterns in student behavior. The comparison of normalization methods shows 
that Min–Max normalization produces more compact clusters than Z-score. The analysis 
also indicates consistent relationships between students’ activity on the Moodle platform 
and their academic outcomes. The study contributes a Spark-based procedure for 
descriptive, diagnostic, and cluster analytics. It also offers an empirical evaluation of 
normalization methods. In addition, it provides visual analytics that support early 
identification of at-risk students. These tools can help teachers improve course 
organization.  
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1 Introduction 

The digitalization of education and the rapid development of information and 
communication technologies have led to the generation of significantly larger and 
more diverse datasets, than previously encountered in educational practice. Many 
of these datasets exceed the capabilities of traditional analytical methods.  
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The term Big Data refers to large, heterogeneous, and dynamic datasets that 
require advanced analytical techniques and specialized processing tools [1] [2]. 
The widespread adoption of digital platforms, learning management systems 
(LMS), and various online learning resources has further increased the availability 
of student activity data, creating opportunities for more comprehensive analyses of 
learning processes. Student interactions within digital learning environments 
produce substantial amounts of data that can offer meaningful insights into 
learning behavior and support instructional improvement. In such environments, 
data are generated continuously, vary in complexity, and require scalable 
analytical systems capable of processing information from multiple heterogeneous 
sources. Their analysis is further complicated by differences in structure, format, 
and origin. 

The case study presented in this paper was conducted in an Apache Spark 
environment on a cluster with 64 GB of RAM and eight processing cores.  
The dataset integrates Moodle log files, Google Sheets records and data from the 
institution’s information system. The contribution of this study lies in the 
development of a real-time Spark-based analytical process and a visual analytics 
approach that enables instructors to identify relationships between student 
activities and learning outcomes, recognize clusters of students with similar 
behavioral patterns, and detect indicators of potential risk in the learning process. 
The obtained results may support improvements in course organization and 
overall instructional effectiveness. 

In addition to the technological context, the study is grounded in the fields of 
Educational Data Mining (EDM) and Learning Analytics (LA), which examine 
how digital traces of learning behavior can be used to understand and enhance 
educational processes. Although numerous studies analyze LMS generated data, 
far fewer integrate heterogeneous data sources into a unified Big Data 
environment capable of near real-time analytics. This gap highlights the need for 
scalable analytical frameworks that can process diverse datasets while providing 
pedagogically meaningful interpretation. 

2 Related Work 

Numerous studies have examined the use of Big Data technologies, learning 
analytics, and educational data mining in higher education. Earlier work explored 
the visualization of large datasets and tools for processing high-volume data 
streams [3]. Learning analytics has been widely applied to LMS data for 
instructional improvement [4], for examining the pedagogical value of built-in 
analytic tools [5], for visualizing multimodal feedback [6], and for managing large 
educational datasets [7]. Log-based analyses have addressed student behavior [8], 
learning patterns [9], and online testing environments [10]. 
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Research also points to the need for scalable learning analytics architectures. 
Several studies propose frameworks for data integration and processing in higher 
education [11] [12]. Additional reviews outline key educational data mining 
techniques used in blended and online learning [13]. More recent work combines 
LMS logs with institutional and behavioral data to build predictive and diagnostic 
models [14] [15]. 

Advanced visualization methods support the interpretation of complex and 
heterogeneous educational data. Current approaches include multimodal 
dashboards, network representations of student interactions, and interactive visual-
analytics systems that enable real-time decision-making [16] [17]. 

This study builds on earlier contributions by integrating Big Data methods with 
established educational theories. It proposes a framework for identifying and 
visualizing behavioral patterns in blended learning. The framework integrates 
heterogeneous data sources, descriptive and diagnostic analytics, dimensionality 
reduction, clustering, and visualization techniques to support interpretable 
representations of learner behavior. 

Ethical considerations remain essential, particularly with respect to privacy, 
fairness, and responsible interpretation in Big Data based educational systems. 

3 Background 

3.1 Learning Theories 

Interpreting educational data benefits from grounding in established learning 
theories. Self-regulated learning (SRL) describes learning as a process in which 
students set goals and regulate their strategies [18]. Higher levels of self-
regulation are often reflected in LMS data through consistent access and timely 
participation. Cognitive load theory offers further insight. It assumes limited 
working memory and stresses the need to avoid excessive cognitive demands [19]. 
Large content volumes or multiple simultaneous tasks may overload learners, a 
pattern that can be observed in how students navigate course materials. Student 
engagement models add a complementary perspective. Behavioral engagement 
visible through assignments, quizzes, and forum activity is directly traceable in 
LMS data and is linked to improved academic outcomes [20] [21]. 

These frameworks support clearer interpretation of identified patterns. Students 
who rarely access supplementary materials may show lower self-regulation or 
engagement, while frequent and purposeful use of resources often aligns with 
effective learning strategies. Together, these theories provide a coherent lens for 
explaining how data patterns relate to underlying learning behaviors [18-20]. 
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3.2 Big Data Analytical Process (BDA) 

The BDA process forms an analytical framework used to extract relevant 
information, identify patterns, and reveal relationships in large and heterogeneous 
datasets [2] [22]. Such datasets require scalable and efficient processing methods 
due to their volume, diversity, and complexity. 

As described in [2] [22] this framework is typically divided into three phases.  
The first phase, data collection, is demanding but fundamental. Data are gathered 
from multiple sources, and each source must be assessed for reliability and 
relevance. The second phase, data preprocessing, includes operations that detect 
irregularities, clean and transform raw data, and prepare a consistent dataset 
suitable for further analysis. High quality preprocessing improves the accuracy 
and interpretability of results. The third phase, data analysis, identifies patterns, 
extracts insights, and supports the formulation of conclusions. 

Different analytical approaches may be used depending on the study objectives. 
Descriptive analysis summarizes historical data through statistical measures and 
visualizations. Predictive analysis applies statistical models and machine learning 
to estimate future outcomes. Diagnostic analysis investigates causes behind 
observed events. Prescriptive analysis extends predictive insights by proposing 
potential actions through modeling and optimization. 

Given the size and heterogeneity of contemporary educational datasets, 
implementing such an analytical framework remains challenging. Each phase 
plays a critical role in ensuring that large volumes of data can be transformed into 
reliable and meaningful insights. 

3.3 Cluster Analysis 

Cluster analysis is an unsupervised learning technique used to group data 
instances based on similarity [23]. Instances within the same cluster share more 
characteristics with each other than with instances in other clusters.  Among 
clustering methods, K-means is widely applied due to its simplicity and efficiency 
on large datasets [23] [24]. Selecting an appropriate number of clusters is an 
important step. The elbow method [25] is a common heuristic, allowing the 
examination of how distortion decreases as k increases. The point at which this 
decrease slows noticeably is typically taken as a suitable value for k. Cluster 
quality is often assessed using the silhouette coefficient, which measures cohesion 
within clusters and separation between clusters. Silhouette values range from −1 
to +1, with higher values indicating more compact and well-separated clusters. 
The overall silhouette score represents the average across all instances [26]. 
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3.4 Z-score and Min-Max Normalization Methods 

The Z-score method [27] [28] is a data normalization strategy that avoids issues 
with outliers but does not produce normalized data with exactly the same scale. 
This method is commonly used in statistics and data analysis to facilitate 
comparison and interpretation of different data distributions. If a value is exactly 
equal to the mean of all values for a given attribute, it will be normalized to zero. 
If it is below the mean, it will be a negative number, and if it is above the mean, it 
will be a positive number. The magnitude of the negative or positive value is 
determined by the standard deviation of the original attribute. For unnormalized 
data with a large standard deviation, the normalized values will be closer to zero. 

The Min-Max method [27] [28] is one of the most common ways to normalize 
data. The procedure is based on scaling the data values to a specified range (often 
0 to 1). For each attribute, the minimum value is transformed to 0, the maximum 
value is transformed to 1, and every other value is transformed into a decimal 
number between 0 and 1. The Min-Max method ensures that all attributes share 
the same scale but does not handle extreme values well.  

3.5 Principal Components Analysis (PCA) 

The PCA method [23] [29] is widely used to reduce the complexity and 
dimensionality of large datasets. It relies on the eigenvalues and eigenvectors of 
the covariance matrix to project data into a new coordinate system. Eigenvalues 
indicate the amount of variance captured in a particular direction, while 
eigenvectors define those directions. In this way, PCA retains most of the 
information while representing the dataset in fewer dimensions. Selecting only the 
components that account for the largest share of variability simplifies analysis and 
enables visualization in two or three dimensions. As a linear and deterministic 
method, PCA can process very large datasets without distorting their underlying 
structure [30]. Jolliffe and Cadima [31] note that PCA reduces dimensionality 
with minimal information loss, leading to clearer and more interpretable data 
representations. They also emphasize its adaptability, particularly when working 
with large and complex datasets. Chang [32] argues that PCA is fast and reliable 
because it preserves global variance and produces interpretable low-dimensional 
projections, making it well suited for large datasets. Jeon et al. [33] further 
highlight that PCA preserves global distances between points and treats them as 
continuous values, which facilitates comparison. 

In contrast, nonlinear methods such as t-SNE and UMAP often distort global 
relationships and are highly sensitive to hyperparameters. These characteristics 
make them less suitable for high-dimensional educational data. t-SNE is used 
mainly for visualization and does not provide stable global distances, while 
UMAP offers a better balance of local and global structure but still depends 
strongly on parameter settings. 
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Given these characteristics, PCA was selected in this study as the method for 
dimensionality reduction. It reliably preserves variance structure and provides 
linear components that clarify relationships among engagement dimensions. 

3.6 Data Visualization 

Data visualization plays a crucial role in the data analysis process [34]. Its purpose 
is to reveal trends, relationships, and potential irregularities that are not easily 
detectable through numerical inspection alone [35]. With increasing data volume 
and complexity, visualization serves as an important link between large datasets 
and their practical interpretation. Effective visual analysis requires an 
understanding of the underlying data so that identified patterns can be interpreted 
accurately and in the appropriate context [36] [37]. These considerations form the 
basis of the visualization approach in this study, where graphical representations 
are used to interpret engagement patterns and clustering outcomes. 

3.7 Apache Spark Framework 

Apache Spark [38] is an open-source framework that is meant for processing large 
amounts of data. It focuses on speed, ease of development, and advanced 
analytical capabilities. The system was built using Spark's in-memory processing 
features, which let it keep intermediate results in memory instead of writing them 
to disk over and over again. This made analysis take less time. Reading data from 
AWS S3 at the same time made it possible to quickly process large datasets.  
The cloud cluster was set up so that the whole dataset could be processed in 
memory. This made latency even lower and made it possible to see the data almost 
in real time. 

4 Methodology 

4.1 Data Collection and Storage 

The dataset used in this study was created by integrating three heterogeneous 
sources of educational data: Moodle log files, Google Sheets documents, and 
records from the institution’s information system. These sources were selected 
because together they capture the full range of student activity in a blended 
learning environment. Moodle logs record online engagement, including access to 
resources, forum participation, quiz attempts, and interaction with homework and 
laboratory materials. Google Sheets records reflect continuous assessment 
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conducted throughout the semester, while the institutional databases provide 
official course outcomes such as final test scores and grades. Combined, these 
sources provide both process-level data (learning activities and engagement) and 
outcome-level data (performance), which are essential for diagnostic and cluster 
analysis. The dataset includes all students enrolled in the course during the 
observed semester; no sampling or exclusion was applied. It therefore represents 
an exhaustive dataset for the examined cohort, reducing the potential for sampling 
bias. The integrated dataset was processed in the Apache Spark environment on 
the Databricks platform, which supports large-scale data storage and analytics 
[39]. All data were stored in Amazon S3, a cloud-based storage service provided 
by AWS. For the analysis, an AWS cloud cluster with 64 GB of RAM and eight 
processing cores was provisioned. A detailed description of the extracted 
attributes is provided in Table 1. 

Table 1 
Description of extracted attributes 

Attribute  Description Value 
CountF Forum access count  [1,…,60] 
CountI Course guide access count [1,…,13] 
CountLW Number of accesses to laboratory preparation videos [1,…,73] 
CountHW Number of accesses to homework assignment materials [1,…,117] 
CountLec Number of accesses to lessons [1,…,140] 
AttLec Points achieved in lectures (interaction score) [1,…,10] 
LW Points achieved in laboratory exercises [1,…,10] 
HE Points achieved in homework assignments [1,…,20] 
ET Points achieved in exam test [-1,…,70] 
Grade Finale grade [3,5,6,7,8,9,10] 

Each row in the dataset represents a record of a student's activities and points 
achieved. From Table 1 it can be observed that most attributes are numeric.  
The Grade attribute has categorical values: 3 indicates that the student did not take 
the exam, 5 indicates failure, while values 6 through 10 are passing grades. 

4.2 Proposed Framework 

This study presents an environment for processing and visually monitoring large 
educational datasets collected from heterogeneous sources. The environment is 
implemented on the Apache Spark platform, where big data analytical processes 
are executed using the PySpark programming interface. This configuration 
provides a unified workflow for preprocessing, normalization, dimensionality 
reduction, clustering, and visualization, which are described in the following 
sections. 
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4.2.1 Descriptive Analysis 

During this phase, we have noted that several attributes contain missing values. 
These missing values appear only in attributes that record online actions. Moodle 
generates a log entry whenever a student accesses a resource. If no entry exists, 
this indicates that the student did not access the resource and does not represent a 
logging failure. Therefore, missing values in these attributes were replaced with 
zero, as the absence of a log entry appropriately reflects no activity. Figure 1 
shows how frequently students accessed different Moodle course materials.  
A notably higher proportion of missing values is observed for the CountI attribute, 
which represents accesses to the Course Guide an informational PDF file rather 
than a learning resource. 

 
Figure 1 

Distribution of Moodle course material usage 

 
(a) percentage distribution 

 
(b) frequency with density approximation 

Figure 2 
Final grade distribution 
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Final grade distribution is shown in Figure 2. Figure 2a presents the percentage 
distribution of final grades, while Figure 2b shows their frequency together with a 
smoothed density curve. 

Figure 3 illustrates the distribution of AttLec, which reflects student interactivity 
and participation during lectures. 

 
Figure 3 

Distribution of AttLec values 

The LW, HE, ET attributes represent scores from laboratory exercises, homework 
assignments, and the exam test, respectively. These distributions are shown in 
Figure 4 and exhibit considerable variation. 

 
Figure 4 

Score distributions of LW, HE, ET 

To improve readability, a discretization procedure was applied [23]. Numerical 
values were grouped into categories by selecting an appropriate number of bins. 
Based on these intervals, LW, HE, ET were classified into three performance 
categories: poor, good, and excellent. 
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4.2.2 Diagnostic Analysis 

Diagnostic analysis was applied to identify factors associated with student 
performance and to examine indicators that may influence the final course grade. 
Data on students’ use of course materials and participation in various activities 
were analyzed to detect correlations and assess their relationship with academic 
outcomes. The correlations between final grades and the frequency of accessing 
different Moodle resources are shown in Figure 5. 

 
Figure 5 

Correlations between Moodle course materials access and final grades  

Figure 6 presents the relationship between students’ participation in lecture related 
activities and their final grades. The visualization indicates that students who 
achieved the highest grades were significantly more engaged in discussions and 
interactive components during lectures. 

 

 

 

 

 

 

 

Figure 6 
Correlation between lecture participation levels and final grades 
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Figure 7 shows the distribution of points earned on laboratory exercises, 
homework assignments, and the exam test, grouped by final grade. Violin plots 
were used to represent both the distribution and density of scores within each 
grade category, highlighting the shape and spread of the data. 

 
Figure 7 

Score distributions (laboratory, homework, exam) by final grade categories 

To further explore relationships between the attributes, a correlation matrix was 
created (Figure 8). Positive coefficients indicate that higher values of one attribute 
are associated with higher values of another, while negative coefficients indicate 
an inverse relationship. The heatmap highlights several strong correlations 
between student activities and academic outcomes. The most intense cells 
(correlation coefficients from approximately 0.52 to 0.92) show that frequent use 
of Moodle materials particularly those related to homework and laboratory 
preparation is strongly associated with higher exam test scores. Students who 
regularly accessed these resources tended to achieve higher test results, suggesting 
that engagement with these materials has a substantial positive effect on 
performance. 

 
Figure 8 

Correlation matrix of the analyzed attributes 



G. Dimić et al. Proposed Approach to Analysis and Visualization of Educational Data  
 Based on the Concept of the Big Data 

 – 20 – 

4.2.3 Proposed Cluster Analysis Approach 

The proposed cluster analysis is based on a normalization procedure designed to 
accommodate heterogeneous data sources. Clusters were formed by identifying 
patterns in students’ use of Moodle course materials combined with the points 
earned for activities completed in the face-to-face component of the course.  
A substantial number of missing values was observed in the attributes related to 
access counts for Moodle materials and resources (Table 2). 

Table 2 
The number of missing values per attribute 

Attribute Description NaN 
CountF Forum access count 62 
CountI Course guide access count 92 
CountLW Number of accesses to laboratory preparation videos 21 
CountHW Number of accesses to homework assignment materials 29 
CountLec Number of accesses to lessons 31 

After replacing the missing values with zeros, it became evident that the attributes 
in the dataset differed considerably in their value ranges and scales. Z-score and 
Min-Max methods were used depending on each variable's statistical qualities to 
compare features with heterogeneous magnitudes and distributions. For qualities 
with essentially normal distributions, Z-score normalization rescaled values 
around zero with unit variance. Min-Max scaling reduced extreme values in 
highly skewed activity measurements, such as resource-access frequencies. Dual-
scaling delivers a balanced transformation suited to specific attributes, improving 
downstream clustering stability and interpretability. To evaluate how 
normalization influences clustering performance, the elbow method and the 
silhouette coefficient were calculated for each normalized dataset. Applying Z-
score and Min–Max scaling resulted in two normalized versions. The elbow and 
silhouette analyses were used to estimate the optimal number of clusters for both 
datasets. Figure 9a presents the evaluation results for the Z-score normalized 
dataset, while Figure 9b shows the corresponding results for the dataset 
normalized using the Min–Max method. 

  
a. df_KM_zscore_scaled b. df_KM_minmax_scaled 

Figure 9 
Clustering evaluation for the normalized datasets 
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Table 3 shows that the Min–Max normalization consistently yielded higher 
silhouette scores than the Z-score method. The trends indicate that silhouette 
values decrease from two to five clusters for the Z-score normalization, and from 
two to four clusters for the Min–Max normalization. Beyond these points, both 
methods show only minor fluctuations with small alternating increases and 
decreases. 

Table 3 
Optimal number of clusters (k) and silhouette scores (Min-Max vs Z-score) 

k Silhouette Score (Min-Max) Silhouette Score (Z-score) 
2 0.431 0.343 
3 0.353 0.298 
4 0.338 0.289 
5 0.348 0.270 
6 0.346 0.289 
7 0.350 0.289 
8 0.311 0.261 
9 0.321 0.287 
10 0.326 0.286 

Figure 10 shows the distributions of instances in the PCA-transformed space, for 
two, three, and four clusters in both normalized datasets. Clusters formed using 
Min–Max normalization show clearer boundaries and less overlap, consistent with 
the higher silhouette scores. In contrast, Z-score normalization produces more 
diffuse and less distinct clusters, especially as the number of clusters increases. 
These PCA-based visuals indicate that normalization has a substantial impact on 
cluster quality. In this study, Min–Max scaling produced more coherent and 
better-separated clusters. 

PCA was applied to obtain a lower-dimensional representation suitable for visual 
inspection of cluster structure. Complete separability of clusters is not expected 
due to the complexity of educational behavioral data; thus, PCA serves primarily 
as a visualization aid rather than a measure of clustering performance. Tables 4 
and 5 present the centroid vectors for the selected cluster solutions obtained from 
the Z-score and Min–Max normalized datasets. Each centroid represents the 
characteristic profile of a cluster, expressed through the mean normalized values 
of the original attributes. These profiles provide insight into differences in student 
engagement patterns and performance indicators. 
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Figure 10 
Normalized dataset instance distributions for 2, 3, and 4 clusters 

Table 4 
Centroid vectors for clusters in df_KM_zscore_scaled (k=4) 

k CountF CountI CountLW CountHW CountLec 
0 -15.531 -0.151 37.164 71.259 70.934 
1 -21.143 -6.954 -59.090 -135.987 -96.850 
2 6.206 -3.791 -13.903 3.484 -36.627 
3 42.627 25.896 95.221 121.145 187.055 
k AttLec LW HE ET Grade 
0 14.947 6.926 15.689 84.403 12.040 
1 -7.745 -14.778 -31.197 -86.182 -6.214 
2 -4.143 3.107 6.269 -6.726 2.672 
3 4.072 5.176 10.188 35.813 6.306 

Table 5 
Centroid vectors for clusters in df_KM_minmax_scaled (k=4) 

k CountF CountI CountLW CountHW CountLec 
0 2.611 0.537 2.293 4.927 1.609 
1 7.524 2.602 12.243 37.495 17.573 
2 6.022 3.422 20.133 45.111 31.489 
3 5.000 0.744 7.333 15.051 5.513 
k AttLec LW HE ET Grade 
0 -2.776e-16 -3.331e-15 1.992 -1.000 3.000 
1 1.748e+00 8.193e+00 16.112 29.697 6.078 
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2 7.222e+00 8.933e+00 18.449 50.003 8.200 
3 2.776e–16 6.928e+00 8.641 4.410 5.000 

Using the centroid vectors from the Z-score normalized dataset (Table 4), the 
behavioral characteristics of each cluster can be identified. Cluster 0 shows large 
positive centroid values across all engagement attributes (CountLW, CountHW, 
CountLec, ET), indicating very high activity. This group has the highest grade 
centroid (12.04 in Z-score units) and represents students with strong engagement 
and strong performance. Cluster 1 exhibits consistently negative centroid values, 
indicating low engagement in lectures, homework, and online learning materials. 
The group also shows weak performance, with a grade centroid of –6.21. Cluster 2 
has centroid values near zero, reflecting moderate engagement and average 
achievement (grade centroid ≈ 2.67). Cluster 3 shows high values for structured 
academic activities (CountHW, CountLW, CountLec), suggesting strategically 
engaged students who focus on formal course requirements and achieve above-
average results (grade centroid = 6.31). These patterns are consistent with findings 
in learning analytics research, where higher behavioral engagement is typically 
associated with stronger academic performance. 

Using the centroid vectors from the Min–Max normalized dataset (Table 5), a 
similar cluster structure appears. Cluster 0 shows very low engagement, with 
values near zero across most attributes (e.g., CountLW = 2.29, ET = –1.00). 
Cluster 1 represents students with moderate engagement, reflected in lower-to-mid 
activity levels (CountHW = 37.49, HE = 16.11, ET = 29.70) and mid-range grades 
(6.08). Cluster 2 displays the highest engagement and performance, with the 
largest centroids for homework (45.11), lecture participation (31.49), overall 
interaction (50.00), and the highest grade centroid (8.20). Cluster 3 is smaller and 
shows moderate activity (CountHW = 15.05, ET = 4.41) and average performance 
(grade = 5.00). 

We evaluated K-means models trained on raw, Z-score, and Min–Max normalized 
data to assess how normalization affects clustering performance. Z-score scaling 
reduced within-cluster variance by 99.27% (from 557.37 to 4.07) and slightly 
lowered the silhouette score (0.281 vs. 0.316). Min–Max scaling achieved an even 
stronger variance reduction (to 0.183) and produced the highest silhouette score 
(0.338), indicating more compact and better-separated clusters. Both 
normalization methods improved cohesion relative to unscaled data, but Min–Max 
was the most effective for this dataset. 

Although Min–Max produced the most coherent clusters, it remains sensitive to 
outliers and shifts in data range; this can be mitigated through outlier filtering or 
adaptive scaling. We also tested alternative algorithms. DBSCAN detected some 
local density patterns but was highly unstable across ε and MinPts settings. 
Hierarchical clustering revealed structure but produced unbalanced clusters and 
was slower to compute. K-means yielded the most stable and interpretable 
behavioral groups. To validate the four-cluster solution, we performed a 
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bootstrapped silhouette analysis (1000 resamples), which showed minimal 
variability and strong stability. Repeated 80% subsampling with Adjusted Rand 
Index (ARI) evaluation also produced consistently high agreement with the 
original solution. These results confirm that the four-cluster structure is robust and 
reliable for this dataset. 

4.2.4 Statistical and Comparative Analysis 

To complement the descriptive and diagnostic results, several statistical tests were 
conducted to assess the significance and robustness of the observed behavioral 
patterns (Table 6). The analysis examined correlations between engagement 
indicators and academic performance, differences in final grades across the four 
K-means clusters, and post-hoc comparisons to identify which cluster pairs 
exhibited significant differences. 

Pearson and Spearman correlations showed moderate to strong positive 
relationships between engagement indicators and final grades, with all results 
significant at p < 0.01. These findings confirm that higher engagement is 
consistently linked to better academic performance. Significant performance 
differences across the four K-means clusters were supported by both the Kruskal–
Wallis test (H = 189.19, p < 0.001) and one-way ANOVA (F = 424.52, p < 0.001). 
Post-hoc tests (Tukey HSD and Dunn with Bonferroni correction) indicated that 
all cluster pairs differed significantly (p < 0.001), confirming clear performance 
separation. 

Table 6 
Summary of statistical tests on engagement features and cluster differences 

Test Statistic p-value Interpretation 
Pearson 
correlations 

r = moderate–
strong < 0.01 Engagement positively associated with 

grade 
Spearman 
correlations 

ρ = moderate–
strong < 0.01 Confirms monotonic relationship 

ANOVA F = 424.52 4.25 × 10⁻⁹² Significant differences between clusters 

Kruskal–Wallis H = 189.19 9.11 × 10⁻⁴¹ Significant non-parametric cluster 
differences 

Tukey HSD All pairs 
significant < 0.001 Clusters differ in mean grade 

Dunn test 
(Bonferroni) 

All pairs 
significant < 0.05  Strong pairwise separation 

Mean grade differences (Table 7) ranged from 0.83 (Cluster 0 vs. Cluster 1) to 
4.93 (Cluster 2 vs. Cluster 3). Dunn’s test with Bonferroni correction (Table 8) 
confirmed that all differences remained statistically significant. These results 
indicate that the four clusters form clearly distinct learner profiles that differ 
consistently in both engagement and performance, with no overlap in confidence 
intervals. 
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Table 7 
Tukey HSD Post-hoc Comparison 

Group 
1 

Group 2 Mean Diff p-adj Lower 
CI 

Upper 
CI 

Reject 

0 1 0.8302 0.0000 0.4302 1.2302 True 
0 2 2.9298 0.0000 2.4993 3.3604 True 
0 3 -2.0000 0.0000 -2.4547 -1.5453 True 
1 2 2.0996 0.0000 1.8090 2.3902 True 
1 3 -2.8302 0.0000 -3.1556 -2.5048 True 
2 3 -4.9298 0.0000 -5.2921 -4.5675 True 

Table 8 
Dunn Post-hoc Test (Bonferroni-corrected p-values) 

Cluster 0 1 2 3 
0 1.0000 0.0080 5.33 × 10⁻¹⁵ 0.0187 
1 0.0080 1.0000 3.99 × 10⁻¹³ 3.98 × 10⁻¹⁵ 
2 5.33 × 10⁻¹⁵ 3.99 × 10⁻¹³ 1.0000 2.20 × 10⁻³⁹ 
3 0.0187 3.98 × 10⁻¹⁵ 2.20 × 10⁻³⁹ 1.0000 

5 Discussion 

This study examined student engagement and performance in a blended learning 
course by integrating data from heterogeneous educational data sources. Increased 
interaction with instructional materials, especially laboratory preparation 
resources and homework was associated with higher academic outcomes. 
Participation in lecture related activities also showed a positive relationship with 
final grades, reflecting well-known links between behavioral involvement and 
performance. Cluster analysis showed that engagement varies across distinct 
behavioral profiles. High-engagement clusters displayed patterns consistent with 
effective self-regulation and proactive study habits. Low-engagement clusters may 
signal motivational issues, weaker learning strategies, or external constraints. 
These interpretations remain tentative, as strong students may naturally interact 
more with course materials, meaning that digital traces can reflect consequences 
rather than causes of performance differences. 

The results should be viewed within the context of a single course at one 
institution. Several limitations apply. Replacing missing log entries with zeros 
assumes non-engagement and may mask technical or logging inconsistencies.  
The analytical framework depends on cloud-based distributed computing, which 
may not be available in all educational settings. Furthermore, log level behavioral 
data cannot capture cognitive or motivational dimensions of learning; combining 
them with self-report or qualitative data would provide a broader perspective. 
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Despite these constraints, the framework offers practical value. Integrating 
heterogeneous data sources and enabling near real time analytics supports early 
identification of at-risk students and helps instructors interpret engagement 
patterns. Overall, the study shows that combining descriptive, diagnostic, and 
clustering methods within a scalable computational environment can reveal 
meaningful behavioral structures in blended learning. 

Future work should test the approach in additional courses, refine the handling of 
missing data, and incorporate learner-centered measures to deepen the 
understanding of engagement and learning processes. 

Conclusions 

This study presented a scalable framework for analyzing and visualizing 
educational data collected from heterogeneous digital sources. By combining 
descriptive, diagnostic, and clustering methods, the system provides real-time 
insight into student behavior in blended learning environments. The analytical 
workflow covering preprocessing, normalization, dimensionality reduction, and 
clustering showed that Min–Max scaling combined with PCA improves cluster 
compactness and interpretability. The resulting cluster profiles revealed clear 
differences in engagement and performance, giving instructors a clearer picture of 
how student groups interact with course materials. Visualizations supported 
interpretation by highlighting resource-use patterns and potential indicators of 
academic risk. 

Several limitations should be noted. Digital traces offer only partial insight into 
cognitive and motivational processes. Reliance on cloud-based infrastructure may 
limit adoption in settings with restricted technical resources. Missing or 
incomplete log data can obscure important behaviors. Because the analysis was 
conducted on a single course, the findings should not be generalized without 
further validation. Future research should examine additional courses and 
contexts, apply more extensive validation procedures, and explore alternative 
clustering and predictive models. Ethical issues related to privacy, transparency, 
and fairness also remain essential. 

With further refinement, the proposed framework can support early identification 
of at-risk students, improve evaluation of learning resources, and contribute to 
more effective course design in blended learning environments. 
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