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Abstract:  Accurate mathematical modeling of tumor growth supports understanding
treatment effects and experimental planning in preclinical oncology. We apply Markov Chain
Monte Carlo (MCMC) methods to estimate parameters of a tumor growth model, defined
by ordinary differential equations, using real measurement data from mouse experiments
under a predefined dosing schedule. Assuming normally distributed measurement noise, we
assess posterior distributions with convergence diagnostics, density plots, and trace plots,
while analyzing parameter correlations to evaluate model structure and identifiability. The
results highlight that MCMC-based fitting not only provides reliable parameter estimates but
also valuable insights into parameter uncertainty, supporting robust modeling strategies in
preclinical cancer research.
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1 Introduction

Mathematical modeling of tumor growth plays a crucial role in understanding
cancer dynamics and designing personalized treatment strategies [1, 2]. A variety
of models, from empirical growth curves to mechanistic systems of differential
equations [3-5], are employed to describe tumor progression. The utility of these
models relies heavily on the accuracy of parameter estimation. In preclinical studies,
tumor volume is typically estimated using caliper measurements [6], capturing only
length and width. Such indirect estimation introduces systematic and stochastic
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errors that, if unaccounted for, can lead to biased parameter inference and flawed
predictions.

Previous studies demonstrated improved accuracy in identifying key tumor
growth parameters through advanced parameter estimation techniques [7]. These
approaches, including machine learning-based methods like LSTM recurrent
neural networks, provided robust parameter estimates, enhancing the reliability of
model-based inference and therapy optimization [8].

In previous works, we have developed both in vitro [9] and in vivo [10, 11] tumor
models, characterized measurement noise from caliper-based methods [12], and
applied mixed-effects models [13] to improve parameter estimation. Building
on these foundations, we explored personalized treatment design using calibrated
tumor models [9, 14]. For example, a genetic algorithm was used to optimize
chemotherapy protocols based on estimated parameters, minimizing tumor burden
while reducing overall drug exposure [15]. Results indicated that individualized
treatment strategies could achieve comparable or superior efficacy relative to
conventional maximum-tolerated dose regimens [16].

In order to further enhance personalization, we proposed an Al-based clustering
approach to identify individuals with similar tumor dynamics [17] and implemented
neural networks capable of rapidly estimating tumor growth parameters from short
time-series data [18], significantly reducing computational demands. More recently,
we have investigated therapy optimization strategies informed by pharmacokinetics
and soft computing techniques [19]. These developments collectively support more
reliable, adaptive, and personalized treatment planning [20].

In this study, we employ Markov Chain Monte Carlo (MCMC) methods to perform
parameter estimation of tumor models, assuming normally distributed measurement
errors. Unlike frequentist approaches, Bayesian methods such as MCMC explicitly
quantify parameter uncertainty by generating probability distributions rather than
single-point estimates. This allows for the direct incorporation of prior knowledge,
better handling of parameter correlations, and clearer interpretation of uncertainty,
particularly important given the inherent variability in biological measurements.
Our analysis uses tumor volume measurements collected from mice in preclinical
experiments, where volumes were calculated using digital calipers capturing length
and width over multiple time points [12].

Furthermore, to provide parameter estimation, the MCMC framework enables a
detailed analysis of parameter interactions through posterior correlation structures.
Such information is valuable for identifying potential redundancies in model
structure or limitations in data informativeness. By visualizing joint posterior
distributions and examining convergence diagnostics, we can gain a deeper
understanding of the robustness and identifiability of the estimated parameters.
These insights are essential when model predictions are to be used in applications
such as treatment optimization.
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2 Preliminaries
2.1 Tumor Growth Model

We used a system of four ordinary differential equations to model tumor progression
and the pharmacokinetics/pharmacodynamics of the administered drug. The
structure of the model is based on a formal analogy with a chemical reaction, where
each variable is interpreted as a fictive species [11]. Let X;, X5, X3, and X4 denote
the living tumor volume, the dead tumor volume, the drug concentration in the
central compartment, and the drug concentration in the peripheral compartment,
respectively. The biological processes are represented as follows:
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where reaction (1) represents tumor cell proliferation with rate a, (2) describes the
necrosis of viable tumor cells independent of the drug with rate n, (3) corresponds
to the washout of dead tumor tissue with rate w, (4) models the pharmacodynamic
effect of the drug with a maximal effect rate b and a median effective dose E D5y,
(5) accounts for the bidirectional transport of the drug between the central and
peripheral compartments with rate constants k; and kp, while (6) describes the
elimination of the drug from the central compartment with clearance rate ¢. The
system follows mass-action kinetics [21, 22] for all reactions except the drug effect
(4), which is modeled using a Michaelis-Menten kinetics with parameter E Dsy.

The resulting mathematical model is [10]:
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The model also incorporates impulsive inputs representing drug injections. These
are formalized as discontinuities in the central drug compartment as

X3(tl-+) :)C3(ti_)+ui, (11)

where u; [mg/kg] is the amount of injected dose at day ¢#;. Thus, at #;, we give the ith
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dose, which increases the value of x3.

The output of the system is the total volume of living and dead tumor cells, denoted
as y, which is the sum of the living and dead tumor cells:

y=x1+x (12)

and this is the measured variable in the experiments.

2.2 MCMC in Bayesian Inference

Markov Chain Monte Carlo (MCMC) is a computational method widely used for
sampling from complex probability distributions [23, 24]. These methods are used
extensively in the literature for modelling model parameter uncertainity [25]. It
enables researchers to characterize distributions without requiring explicit analytical
knowledge of their mathematical forms. MCMC operates by generating random
samples directly from the target distribution, leveraging only the ability to calculate
its density for given sample points.

The term MCMC reflects two foundational concepts: Monte Carlo simulation
and Markov chains. Monte Carlo methods estimate properties of a probability
distribution through analysis of randomly drawn samples. For instance, rather
than analytically computing the mean of a normal distribution from its formula,
a Monte Carlo approach involves generating numerous random samples from
this distribution and calculating their sample mean. This method is particularly
advantageous when sampling is straightforward but direct analytical computation is
challenging.

The Markov chain component denotes that samples are produced through a
sequential process, where each new sample is generated based solely on the
immediately preceding sample. This sequential dependence characterizes a Markov
process, defined precisely by the property that the current sample depends only on
the previous one, independent of earlier samples.

MCMC is especially valuable in Bayesian inference due to its effectiveness in
handling posterior distributions that are often analytically intractable. Bayesian
inference utilizes observed data to update prior beliefs about parameters, resulting
in posterior beliefs. Formally, this updating process is described by Bayes’ rule:

P(0Yops) o< p(Yops|0)- p(6), (13)

where 0 represents the parameters of interest, Y,,, denotes the observed data,
p(6|Y,p) is the posterior distribution (the probability of 6 after observing the
data), p(Y,ps|0) is the likelihood (the probability of seeing this observation
given the parameters (6)) and p(0) represents the prior distribution, which is
a hyperparameter of the algorithm, representing the initial knowledge of the
parameters. According to Bayes’ rule, the posterior is proportional to the product of
the likelihood and the prior.
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3 Application of MCMC to the Tumor Growth Model

We assigned prior distributions to each model parameter, as summarized in Table 1.
To ensure physiological feasibility, we used distributions defined only in the positive
domain. Since we lack strong prior knowledge or well-established ranges for
most parameters, we specified weakly informative Half-Normal distributions with a
standard deviation of ¢ = 1. An exception is the observation noise parameter G,p;,
for which we used a broader prior with ¢ = 10, to account for the measurement
error, and any other tumor dynamics that the model fails to capture.

The ODE system was solved numerically with parameters 6 = [a,b,n, w, EDs]. The
resulting tumor volume trajectory was used as the mean in a normal likelihood:

Yobs (t) ~ JV(ODESOI(t)7 Gabs)y (14)
where Y,ps(f) denotes the observed tumor volume at time ¢.

The likelihood was modeled assuming additive, independent Gaussian noise with
constant variance. Let y; denote the i-th observation at time #;, and let ; be the
model prediction from the ODE solution at the same time. The observation model
is

yi= Ui+ &, (15)

where € ~ .#(0,02,,) are independent measurement errors with unknown standard
deviation O,;.

Under these assumptions, the likelihood for a single observation is given by the
Gaussian density

1 (yi — 1i)?
pi | i, Opps) = exp(— 5 .
\/27wo2, 20,

(16)

Assuming independence across the N time points, the full likelihood is the product
of these densities:
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Taking the natural logarithm yields the log-likelihood:

N 1 ¥
logg(cobs;y) = _Elog(zﬂcgbs) - Z(yi _:ui)zv (18)
i=1

2
Zoobs j

where the first term comes from the Gaussian normalization constant and depends
only on N and o,s, while the second term penalizes deviations between model
predictions and observations, scaled by the assumed measurement variance. During
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Table 1
Prior distributions for model parameters, along with the fixed parameters and the variance of
observation noise.

Parameter Prior

a Half-Normal (o = 1)
b Half-Normal (¢ = 1)
n Half-Normal (o = 1)
w Half-Normal (o = 1)
EDso Half-Normal (o = 1)
c 1.8211

ki 14.0080

ky 136.2781

Oobs Half-Normal (o = 10)

inference, this log-likelihood is combined with the prior distributions to form
the posterior, guiding parameter estimation toward values that yield predictions
consistent with the observed data within the assumed noise level.

4 Results

In order to create the results, the PyMC library [26] was utilized, providing the
framework for the Bayesian analysis. For all chains, we used 5000 burn-in samples
and 5000 real samples, and we used 8 chains in parallel. The burn-in samples are
discarded, so they do not contribute to the posterior samples at the end. They are
used to give enough time for the Markov Chain to settle into its stationary state.
The number of chains was selected to balance between convergence diagnostics
reliability and the limitations of the computing environment, while the per-chain
sample size was chosen to provide sufficient effective sample size for posterior
inference within a reasonable runtime. For the fitting, we used tumor volume
measurements from mice experiments [1]. The measurements were carried out
using digital caliper.

Figure 1 shows a posterior predictive check, comparing the Bayesian model’s
predicted tumor volume dynamics against observed data. The x-axis represents time
(in days), and the y-axis shows tumor volume. The median trajectory closely follows
the measured tumor volume trend, capturing both the rapid rise and subsequent
decline in volume. This suggests that the model effectively captures the overall
dynamics of tumor response. In Table 2, we can observe the metrics used to
determine the goodness of fit. The Relative Mean Squared Error is 66.85. The
median fit tends to undershoot the data by roughly half of the observed volume,
consistent with the tight 90% band sitting just below many points in the early
phase. The median-parameter trajectory captures the overall dynamics very well
(R? ~0.91), but the large negative MPE tells us it sits systematically below the data,
particularly visible around the growth peak. Residual scatter (MAE and RMSE) is
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Posterior-predictive fit
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Figure 1

Posterior predictive fit of the tumor volume model. The blue dots represent the observed measurements
over time. The orange line represents the posterior median prediction, while the shaded region around
the median corresponds to the 90% credible interval (There is a 90% probability that the true value is
within the interval (given the data)). The close alignment between data and prediction indicates a good

fit and well-calibrated uncertainty.

Table 2
Goodness-of-fit metrics for the posterior—-median parameter set

Metric Symbol Value
Root-mean-square error RMSE 66.85
Mean absolute error MAE 52.58
Mean percentage error MPE —52.16%
Coefficient of determination R? 0.905

moderate; a few outliers inflate RMSE relative to MAE.

The posterior predictive fit was illustrated for a single representative mouse to
demonstrate the feasibility of the method. In our dataset, the majority of individual
tumor growth curves follow a similar qualitative pattern, with initial growth
followed by regression, so the selected example is representative of the general
trend observed across animals. Given the high computational cost of full posterior
predictive checks for all mice, we limited the detailed demonstration to one case in
this study. In future work, we plan to extend the analysis to the full dataset to assess
predictive performance at the population level.

Refining the noise model (e.g., using a noise model with heteroskedastic standard
deviation) or using the posterior predictive mean instead of the single median
curve would likely reduce bias and improve the error metrics. This expectation
is supported by our previous work on caliper measurement error modeling [12,
271, where we showed that the measurement noise variance is not constant but
depends on tumor size, being higher for small tumors and lower for large tumors.
A heteroskedastic noise model could capture this size-dependent measurement
error, potentially reducing bias in parameter estimation and improving predictive
accuracy.

Figure 2 shows the posterior trace plots for the five model parameters and the ¢
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Posterior traces (coloured by chain)
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Figure 2
Trace plots for six model parameters over 5000 MCMC draws, with each color representing a separate
chain. Parameters a, b, and n exhibit slow mixing and inter-chain separation, indicating convergence
difficulties. In contrast, parameters w, EDs, and ¢ show well-mixed chains, suggesting reliable
posterior sampling for these quantities.

parameter of the measurement noise, sampled by multiple MCMC chains. Each
colored line corresponds to one of the parallel chains across 5000 iterations (draws).
Trace plots are essential for assessing the convergence and mixing of the MCMC
sampler. Well-mixed chains should resemble “stationary noise,” fluctuating around
a consistent central value without strong drift or structure.

The chains for a and n display slow convergence and poor mixing. The traces exhibit
clear separation between chains, suggesting that they may not have converged to a
common stationary distribution. There appears to be a strong dependence between
these parameters (also visible in Figure 3), which likely complicates their joint
sampling. The trace for b shows two separate clusters of chains, indicating a
bimodal shape in the posterior. The trace plots for w and E D5, appear noisier but
relatively well mixed, with overlapping chains and no evident drift. Although EDsg
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Figure 3
Pairwise posterior distributions of the tumor model parameters obtained via MCMC. Diagonal plots
show marginal distributions; off-diagonal plots display joint distributions with density contours. A
strong correlation is observed between parameters a and n, while EDs exhibits a right-skewed,
near-zero distribution. The multimodal nature of several parameters indicates a complex posterior
landscape.

shows more variability, this may reflect genuine posterior variability due to sparse
information content in the data. The noise parameter ¢ shows excellent mixing, with
overlapping chains exhibiting stationary behavior and no sign of autocorrelation or
drift. This confirms that the noise scale of the model is well-identified and efficiently
sampled.

In Figure 3, a corner plot summarizes the joint and marginal posterior distributions
of five parameters involved in the tumor model. It provides insights into parameter
uncertainty, correlations, and identifiability. Each diagonal subplot shows the
marginal posterior distribution of a parameter. These distributions represent the
individual uncertainty of each parameter after conditioning on the observed data.
Parameters a and n show multi-modal or rugged distributions, suggesting possible
identifiability issues or complex posterior structure. Parameter b has a few sharp
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peaks, indicating multiple modes. Parameters w and EDsq exhibit skewed and/or
heavy-tailed distributions, particularly EDsg, which is sharply right-skewed and
near-zero.

Each subplot off the diagonal visualizes the pairwise joint posterior distributions
between two parameters. Parameters a and n have nearly perfect positive correlation
(tight linear relationship), implying strong collinearity. This can make the
independent estimation of these parameters difficult. Parameter b shows nontrivial
interactions with both a and n, potentially indicating a non-linear dependency
structure. Parameters w and EDsy show little to no correlation with other
parameters, evidenced by the circular scatter and uniform contour spread. These
parameters may be more independently estimable from the data. The joint posterior
distributions involving EDjs are dispersed, showing high density near zero, again
suggesting identifiability issues or prior influence. The presence of multiple modes,
especially in b, n, and possibly w, suggests that the posterior distribution is
non-Gaussian and possibly multi-modal.

Previous works on parameter estimation for this tumor model have employed
approaches such as mixed-effects modeling and soft computing techniques [8],
including artificial neural networks combined with local search methods [28, 29].
While these methods can provide point estimates efficiently, they do not directly
quantify the uncertainty of the estimates. In contrast, MCMC returns full posterior
distributions for each parameter, allowing uncertainty quantification and credible
interval estimation alongside point estimates. This feature is particularly valuable
in therapy optimization, where understanding the reliability of parameter values can
influence dosing decisions.

Conclusion

This study demonstrates the feasibility and utility of Bayesian parameter estimation
using Markov Chain Monte Carlo (MCMC) methods for calibrating our in vivo
tumor growth model to preclinical measurement data. The results highlight
that the MCMC framework enables the estimation of multiple parameters while
simultaneously quantifying their uncertainties and mutual dependencies.

The posterior distributions revealed varying levels of identifiability among
parameters. While some, such as the residual error standard deviation (o) and
the drug efficacy parameter (EDs), exhibited broad and skewed distributions with
dense regions near zero, others showed strong correlations, particularly between
the growth-related parameters (a, b, n). The trace plots and posterior predictive
checks confirmed reasonable convergence and model fit, capturing the declining
tumor volume observed in the data.

The correlation structure observed in the joint posterior distributions suggests
potential issues with parameter redundancy or a lack of informativeness in the data.
The presence of multimodality in some marginals indicates that further constraints
or structural refinement may be necessary to improve identifiability.

Future work will focus on extending the model to include a validated noise
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model from our previous research [12], as real experimental data often exhibit
both systematic and random errors, which are currently only partially accounted
for. Furthermore, we aim to investigate how different dosing schedules influence
parameter correlations and identifiability. Such extensions are expected to enhance
model realism and support more robust applications in treatment design and
optimization.
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