
Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

 – 101 –

Mathematical Modelling and Case Study with
File System Performance Comparison for
Linux-based Hypervisors

Borislav Đorđević1, Kristina Janjić2, Nenad Kraljević2
1 Mihailo Pupin Institute, University of Belgrade, Volgina 15, 11060 Belgrade,
Serbia; e-mail: borislav.djordjevic@pupin.rs
2 Department of Computer Technologies, The School of Electrical and Computer
Engineering of Applied Studies, Vojvode Stepe 283, 11000 Belgrade, Serbia
e-mails: kristinarin5222@gs.viser.edu.rs, nenadk@gs.viser.edu.rs

Abstract: This paper concentrates on comparing the file system performance across
various type-1 Linux-based hypervisors. The main contribution of this paper is a
mathematical model of the hypervisor-based virtual environment, followed by a real
experiment presented as a specific case study. We leverage the model for interpreting the
results obtained from the experiment. VMware ESXi, Xen, KVM on Debian-12, and
Proxmox VE were selected as the designated hypervisors. Our selection for the benchmark
program in testing is Filebench. Recognised for its exceptional flexibility, Filebench
enables the simulation of authentic application and server behaviours. CentOS 9,
representing the Linux family, fulfilled the role of the guest operating system. The tests in
our experiment involved the simultaneous operation of one, two, three, and four virtual
machines.

Keywords: hypervisor; ESXi; Xen; KVM; Proxmox; CentOS 9; virtual machine; Filebench

1 Introduction

In the domain of global IT progress, virtualisation emerges as a vanguard of
innovation, advancing the management, storage, and utilisation of data and assets.
Virtualisation, a technology allowing the simultaneous operation of multiple
operating systems on the same hardware platform, elevates system uptime and
dependability while optimising resource utilisation. It enables the creation of
virtual replicas of computers, servers, and assets, promoting resource optimisation,
financial savings, simplified system administration, and enhanced scalability.
Virtualisation guarantees the allocation of virtual machines with well-defined
CPU, memory, and storage allocations, thus ensuring optimal hardware resource

B. Đorđević et al. Mathematical Modeling and Case Study with
 File System Performance Comparison for Linux-based Hypervisors

 – 102 –

utilisation [1]. Still, virtualisation also solves problems like management
complexity, potential expenses related to licensing, security vulnerabilities, and
the risk of a single point of failure if a hypervisor or physical server malfunctions.
In spite of these obstacles, the advantages of virtualisation typically surpass its
disadvantages, solidifying its status as a fundamental component of modern IT
infrastructure.

Virtualisation encompasses various classifications, including software, hardware,
desktop, data, network architecture, memory, and storage kinds of virtualisation.
This paper is focused on hardware virtualisation. A distinguishing feature of
hardware virtualisation (also known as server virtualisation or platform
virtualisation) lies in its ability to enable virtual machines to operate as
autonomous entities, notwithstanding their utilisation of the same underlying
physical hardware. Hardware virtualisation encompasses three types: full
hardware virtualisation (FHV), para-virtualisation (PV), and partial virtualisation.
In full hardware virtualisation, the guest operating system is completely isolated
from the virtualisation layer and hardware. Full hardware virtualisation, the focus
of this study, involves emulating the entire hardware infrastructure, allowing guest
operating systems to be installed and run without any changes. This solution is the
most elegant and easiest to use, but the obtainable performances can be low. This
issue can be solved using special features of the processor (Intel VT or AMD-V).

In the context of hardware virtualisation, a crucial component is the Virtual
Machine Monitor (VMM) or hypervisor software layer. Hypervisors serve to
abstract hardware from the operating system, facilitating the concurrent operation
of multiple operating systems on the same hardware. Typically, hypervisors are
categorised into two classes: type-1 hypervisors, which operate directly on the
hardware (known as bare-metal or native hypervisors), and type-2 hypervisors,
which operate within the operating system (referred to as hosted hypervisors).

This paper employs four type-1 (bare-metal) hypervisors: VMware ESXi, Xen,
KVM on Debian-12, and Proxmox VE. For our choice, we wanted to include all
known classes of type-1 Linux-based hypervisors with their modern
representatives from each class.

2 Related Work, Objective, and Motivation

In the literature dedicated to virtualisation, a multitude of papers utilises various
methods to evaluate the performance of different virtual environments. One
common method involves conducting performance comparisons among various
hypervisors, including ESXi, Xen, Proxmox, KVM, and MS Hyper-V. Most
references include two or three different hypervisors, mostly type-1 or type-2,
without mixing of types. Our paper is among the first to include all dominant

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

 – 103 –

Linux-based hypervisors. These papers often feature high-quality experimental
case studies and use a range of benchmarks, including AS SSD, HD Tune Pro,
Filebench, and Bonnie++, among others [2-14]. The majority of these case studies
do not integrate mathematical modelling into their performance evaluation.

Acknowledging that numerous benchmarks in this domain tend to be synthetic, we
advocate for Filebench due to its advantageous attributes. Setting itself apart from
other contenders, Filebench shows a modern approach, thread-based design,
flexibility, adaptability, and ability to simulate the behaviour of real servers and
services through the rich Workload Model Language (WML) [15].

The primary focus of this paper is on developing a comprehensive mathematical
model specifically aimed at analysing file system performance within a type-1
hypervisor-based virtual environment. Our model encompasses a broad range of
input parameters and is open to further refinement. Similar mathematical models
are used in [16-19]. These models have an emphasis on hypervisor type-1
virtualisation and include 5 input parameters. The model in this paper is more
complex with 7 input parameters and has an accent on hypervisor type-1
virtualisation, but in the context of the Linux architecture on which all used
hypervisors are based, which makes this model quite different from the models
from [16-19]. Reference [16] covers 4 different hypervisors, references [17] and
[18] cover 2 different hypervisors, while reference [19] deals with different
versions of the same type-2 hypervisor. The experimental results from [16-18] are
quite similar to our paper; there are small deviations in the experimental results,
which is a consequence of different hardware and software versions of the
hypervisors and host/guest operating systems.

Such an approach, along with the methodology, sets our experiment apart. We
adopt a distinctive methodology that begins with formulating a mathematical
model, followed by conducting a real experiment serving as a specific case study.
Subsequently, the model serves as a main tool in interpreting the results obtained
from the experiment, providing a distinct perspective in the assessment of virtual
environment performance. On the other side, the obtained experimental results
enable the validation of our mathematical model. We concentrated on four
dominant Linux-based hypervisors, all of which are globally similar in
architecture (Linux), and most use QEMU-based full hardware virtualisation
similar in architecture, too. However, despite the similar Linux architecture,
analysing the details for all four hypervisors, our model predicts solid differences
in many components that will cause differences in FS performance, and the
experiment confirms it.

Comparing our paper and similar reference [16], both papers deal with 4
hypervisors; reference [16] includes mixed representatives of Linux architecture
(ESXi, Xen, and KVM) and MS Windows architecture (Hyper-V), while this
paper includes all possible representatives of Linux-based architectures (ESXi,
Xen, KVM, Proxmox). The model in reference [16] universally describes

B. Đorđević et al. Mathematical Modeling and Case Study with
 File System Performance Comparison for Linux-based Hypervisors

 – 104 –

hypervisor-based type-1 virtualisation with 5 input parameters. Our model is more
complex with 7 input parameters; it includes hypervisor-based virtualisation, but
emphasises the similarities and differences between hypervisors in the context of
Linux architecture, which is the main novelty in modelling. Although hardware
configurations and software versions are quite different, our paper shows very
similar experimental results with reference [16], confirming the superiority of the
KVM architecture for complex fileserver workloads, while the same architecture
shows quite poor performance in mailserver workloads.

Our experiment involved the utilisation of four bare-metal hypervisors: VMware
ESXi, Xen, KVM on Debian-12, and Proxmox VE. These hypervisors were
selected for their full hardware virtualisation capabilities, supported by features
such as Intel-VT and AMD-V. Each hypervisor was subjected to testing under
identical and equitable conditions. CentOS 9, with the XFS file system, was
employed as the guest operating system due to its extensive adoption within the
Linux family. To conduct the experiments, we employed the Filebench benchmark
program, which includes four distinct workloads (fileserver, webserver,
mailserver, and random-file-access). After conducting the tests, we validated the
results by applying a mathematical model to interpret and authenticate them.

3 Linux-based (type-1) Hypervisors

In the world of Linux-based hypervisor virtualisation, four names stand out
prominently: VMware ESXi, KVM (as global architecture), Proxmox, and Xen.
Through this narrative, we will explore the characteristics, advantages, and
capabilities of each, and we will emphasise that all Linux-based hypervisors are
quite similar globally if only full hardware virtualisation is examined.

ESXi (Elastic Sky X integrated) is a type-1 hypervisor (VMware ESXi 8.0 in our
paper), directly installed on hardware rather than on top of an operating system. Its
architecture comprises the underlying operating system, VMkernel, with processes
running above it. ESXi emphasises the following features: type-1 hypervisor and
full hardware virtualisation, exclusively utilising VMware's solution for virtual
drivers. It employs VMkernel as a hypervisor, and the host operating system
represents its own Linux distribution. ESXi also utilises an original VMFS as a
host file system, distinct from classical Linux file systems, as it is a cluster-based
file system [20].

Xen, another hypervisor, falls under the category of type-1 hypervisors as well
(Xen Citrix Hypervisor 8.2.1 in our paper). Xen emphasises the following
features: type-1 hypervisor and virtualisation types, including para-virtualisation
and full hardware virtualisation. It utilises an open-source QEMU-based solution
for full hardware virtualisation, employs the Xen kernel as a hypervisor, and uses

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

 – 105 –

the host operating system to represent its own para-virtualized Linux distribution
(PV) as Domain0, with support for classical Linux file systems such as ext4 and
XFS.

KVM (Kernel-based Virtual Machine) is an open-source virtualisation technology
that facilitates hardware-level virtualisation directly within Linux, operating as an
integral part of its kernel. Initially initiated through a Red Hat-sponsored effort,
KVM has seamlessly integrated into the Linux kernel starting from version 2.6.20,
serving as a crucial kernel module [22]. KVM emphasises the following features:
type-1 hypervisor and full hardware virtualisation, exclusively using an open-
source QEMU-based solution for virtual drivers. It utilises the Linux kernel with a
KVM module as a hypervisor and allows host operating systems to represent any
Linux distribution. Additionally, KVM employs classical Linux file systems such
as ext4 and XFS.

Definitely, KVM is a global architecture, applicable to all modern Linux
distributions (installation is made by using a few administrative
actions/commands). So, there are a large number of KVM practical
implementations, and the different performance is expected on each of them. We
used KVM on the Debian Linux distribution: Debian 12 Bookworm, kernel
6.5.11-4, and QEMU emulator version 8.1.2.

Proxmox is one of the KVM implementations; which is practically Debian Linux
distribution with a pre-installed KVM option. KVM and Proxmox are of identical
architecture; KVM can be employed on any Linux distribution, whereas Proxmox
only uses the Debian Linux distributions. Proxmox Virtual Environment
(Proxmox VE or PVE) is an open-source server virtualisation platform
constructed on the dependable and resilient Debian operating system (Proxmox
VE 7.4-1 in our paper). Serving as a bare-metal, type-1 hypervisor, Proxmox VE
is installed directly onto physical machines or servers. It presents two distinct
virtualisation methodologies: one is hypervisor-driven virtualisation using KVM,
while the other is container-driven virtualisation relying on containers (LXC,
Linux Containers) [23].

Proxmox emphasises the following features: type-1 hypervisor and full hardware
virtualisation, exclusively using an open-source QEMU-based solution for virtual
drivers. It uses the Linux kernel with a KVM module as a hypervisor and allows
host operating systems to represent some distributions from the Debian Linux
family. Additionally, Proxmox employs classical Linux file systems such as ext4
and XFS.

B. Đorđević et al. Mathematical Modeling and Case Study with
 File System Performance Comparison for Linux-based Hypervisors

 – 106 –

4 Mathematical Model and Hypothesis

In the context of file system performance and access types, workloads generate the
typical random and sequential (read/write) components. In the context of file
system performance and file system inside, workload features determine the total
workload time required to accomplish all operations within the specified file
system. These operations include tasks related to file data blocks, directory blocks,
various metadata operations, free-list management, housekeeping, and more.

In a virtual environment based on hypervisor technology, there are at least seven
significant components that remarkably affect workload time, denoted as Twhyp in
Eq. 1:

),,,,,,(hFShHypVHgFSgBfTw kprocprockhyp = (1)

Surely, in a complex hypervisor-based virtual environment (VE), there are two
full operating systems with their own kernels (gk as the kernel of the guest
operating system and hk as the kernel of the host operating system) and associated
file systems (gFS as the guest file system and hFS as the host file system). They
work as a file system pair. Virtual hardware (VHproc) is offered to the guest
operating system and hypervisor (Hypproc) as the kernel for VE, which connects
the guest operating system (gOS) and host operating system (hOS).

The first component, denoted as B, signifies the processing time for benchmarks.
B exhibits consistent attributes across all hypervisors used in our experiments,
stemming from the uniform usage of identical benchmarks and their parameters.

The second component, gk, and the third component, gFS, belong to the guest
operating system side. The second component, gk, denotes the kernel processing
time within the guest operating system. gk exhibits comparable features across all
hypervisors used in our experiments. This similarity comes from the consistent
utilisation of identical guest virtual machines with identical kernels.

The third component, gFS, denotes the processing time within the guest file
system, whereas the guest file system is tightly coupled with the kernel, internal
hard disk drivers, and file system caching of the guest operating systems. The gFS
component shows similar characteristics for each hypervisor involved in our
experiments. This similarity arises from the consistent utilisation of identical
virtual machines and the same guest file systems (XFS in our case).

When we consider guest operating systems as integral components of the virtual
environment, the following observations can be made: We use the absolute same
virtual machines with all identical parameters (full guest operating system with
guest kernel, guest file system, hard disk layout, internal hard disk drivers, and
OS/graphical environment). Therefore, a similar impact on performance is
expected from the guest side. Differences in the context of the guest side can be
influenced by the interaction of the guest operating system with the different

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

 – 107 –

virtual hardware (offered by the hypervisor) and the different behaviour of the file
system pair due to the differences on the host file system side. In addition, the
differences can be influenced by the virtualisation itself, which allows the
virtualisation to modify the guest operating systems, from mild patching to serious
changes similar to para-virtualisation effects.

The fourth component, VH-proc, represents the processing time allocated to
virtual hardware, particularly virtual hard disk drivers. This fourth component,
VH-proc, displays notable variations across all hypervisors examined in our
experiment. With the exception of Xen, which exclusively employs full hardware
virtualisation and favours para-virtualisation (not included in our experiment), all
other hypervisors force full hardware virtualisation only. All hypervisors in our
experiment, except ESXi, rely on QEMU-based open-source solutions for full
hardware virtualisation. Notably, these QEMU solutions offer a wide range of
virtual driver sets, spanning from qemu-0.10.0 (released on March 4, 2009) to
qemu-8.2.1 (released on January 29, 2024). Consequently, hypervisors such as
Xen, KVM, and Proxmox use distinct sets of QEMU virtual drivers, leading to
significant variations in the VH-proc component. ESXi stands apart from the rest
by developing its own sets of virtual drivers, renowned for their high quality. As a
result, the performance of each hypervisor is anticipated to exhibit considerable
diversity. Moreover, VH-proc is intricately linked with file system caching on
both the guest and host operating system sides.

The fifth component, Hyp-proc, signifies the time designated for hypervisor
processing. This involves the duration needed for the hypervisor to handle
requests from the virtual drivers and subsequently relay these requests to the host
operating system. Essentially, file system requests originating from the guest file
system are transmitted to the host file system within the VM image file. Across
our experiment, we examine four distinct hypervisors: ESXi employs its
proprietary VMkernel, XenServer utilises the original Xen hypervisor, while
KVM and Proxmox hypervisors are characterised by their unique approach,
leveraging real Linux kernels with additional KVM kernel modules. Despite their
shared attributes of modernity, slimness, and utilisation of micro-kernel
architecture, variations in performance are expected among these hypervisors.
Even between KVM and Proxmox, which share identical architectures, differences
arise due to the implementation of distinct versions of the Linux kernel and KVM
kernel modules. Importantly, all evaluated hypervisors will demonstrate distinct
hypervisor processing times.

The sixth component, hk, and the seventh component, hFS, belong to the host
operating system side. The sixth component, hk, denotes the kernel processing
time within the host operating system. hk may show very different characteristics
for each hypervisor involved in our experiments because all host operating
systems are Linux-based and represent different Linux distributions with different
versions of the kernel, which will certainly make solid performance differences.

B. Đorđević et al. Mathematical Modeling and Case Study with
 File System Performance Comparison for Linux-based Hypervisors

 – 108 –

The seventh component, hFS, denotes the processing time of the host file system,
which is intricately linked with the kernel, internal hard disk drivers, and file
system caching of the host operating system. Notably, we anticipate significant
disparities among hypervisors in this aspect. ESXi stands out from other
hypervisors by employing its proprietary VMware solution, such as VMFS, a
cluster-based file system designed for storing VM image files. Conversely, Linux-
based hypervisors typically utilise ext4 or XFS, either with or without the LVM
option. Although our evaluation predominantly employed ext4, variations in ext4
versions introduce distinctions. With the ESXi hypervisor and its completely
different file system, like VMFS, and with the remaining hypervisors using the
popular Linux file systems (ext4 or XFS), but with different versions, the
performance will be quite different.

When examining the host operating system within a virtual environment, it
becomes evident that all four hypervisors are Linux-based, sharing the same
architecture but differing significantly in detail. Each hypervisor adopts its own
Linux distribution: ESXi uses a VMware-specific distribution; XenServer
employs a Xen-orientated distribution; Proxmox is based solely on the Debian
Linux distribution; and KVM is adaptable to various Linux distributions. As a
result, variations emerge in host OS kernels, physical drivers, file system versions,
and operating system environments. Despite their Linux-based foundation, the
hypervisors exhibit substantial disparities in host operating systems and filesystem
configurations.

In the context of virtualisation, we highlight the pronounced impact of the fourth
and fifth components in Eq. 1, VH-proc and Hyp-proc. The fourth component,
VH-proc, illuminates the efficacy of file system caching on both the guest and
host sides, revealing solid differences across all hypervisors.

In summary, across all hypervisors, we can observe both similarities and
differences in the following aspects:

On the guest side everything remains consistent, with identical virtual machine
features and the benchmark.

On the virtual environment side, while full hardware virtualisation and QEMU
solutions for virtual drivers are common (except ESXi), significant differences
emerge. Notably, disparities arise in the fourth and fifth components of Eq. 1. VH-
proc and Hyp-proc.

Regarding the host OS side, despite all hypervisors being Linux-based, significant
variations are apparent. These differences include kernel versions, Linux
distributions, host file systems (especially notable with ESXi use of VMFS and
other hypervisors use of ext4 but different versions of ext4), physical hard disk
drivers, and file system cache mechanisms.

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

 – 109 –

Within the virtual environment, filesystem pairs are crucial, comprising guest
filesystems on host filesystems. In our experiment, we consider filesystem pairs
such as XFS on VMFS and XFS on ext4.

With the insights provided by this mathematical model and the identified
differences and similarities, we can now interpret the performance results of
different hypervisors.

5 HW Test Configuration and Benchmark

To ensure an equitable performance evaluation, it is essential to use identical
hardware, operating systems, virtual machines, and measurement methodologies,
along with an identical benchmark program. Before initiating testing, it was
imperative to establish an appropriate hardware configuration, select the operating
system, and determine a benchmark program suitable for all testing iterations.
The virtual platforms used included VMware ESXi 8.0, Xen Citrix Hypervisor
8.2.1, Proxmox VE 7.4-1, and KVM on Debian-12 Linux host (Debian 12
Bookworm, kernel host 6.5.11-4, and QEMU emulator version 8.1.2). The entire
experiment was carried out on an HP rack server (Table 1). For the guest
operating system, CentOS Stream 9 from the Linux distribution family was
selected.

Table 1
Test environment (Server)

HPE ProLiant BL460c Gen10
Component Characteristics

Processor Intel® Xeon® Silver 4116 CPU @ 2.10GHz,16 MB L3 cache
RAM Memory 32GB DDR4 2400 MHz

Hard disk
2xHPE 480GB SATA3 6G RI SSF SSD as RAID1

Sequential read up to 535 MB/s, Sequential write up to 495 MB/s

All testing procedures employed the benchmark program Filebench 1.4.9.1-3. We
use the Filebench, because it is a modern, flexible, multi-threaded filesystem
benchmark that perfectly simulates real server environments. This software
facilitates the simulation of diverse workloads, enabling a comprehensive
performance evaluation of a system. These tests can be customised to suit specific
requirements, allowing for the creation of scenarios that mirror real-world
situations or experimental cases for analysis. Filebench offers detailed insights
into system performance, including file read and write speeds across varying
workloads. Two identical hard drives were mounted in a RAID-1 configuration on
the HPE ProLiant BL460 Gen10 server. Refer to Table 2 for the parameters of the
virtual machines.

B. Đorđević et al. Mathematical Modeling and Case Study with
 File System Performance Comparison for Linux-based Hypervisors

 – 110 –

Table 2
Virtual machine parameters

Component Characteristics
vCPU 4

RAM memory 6GB
virtual HDD /dev/sda with 2 partitions – 64GB

sda1 system partition with CentOS –
32GB

sda2 additional partition for testing –
32GB

Guest operating system CentOS Stream 9

6 Testing and Results

One of the primaries aims of this study is to evaluate the performance of file
systems across four distinct type-1 hypervisors. This evaluation aims to streamline
decision making processes for large companies by identifying the most efficient
hypervisor model for their needs. Additionally, the study seeks to validate the
assumption that an increase in the number of operational virtual machines leads to
a noticeable decrease in performance. One component of this research involves
employing different types of workloads to obtain performance results. These
include fileserver, webserver, mailserver, and random-file-access workloads, all
designed to equally evaluate the performance of appropriate servers (Table 3).
The duration of each testing session was set to 120 seconds.

Table 3
Parameters of *f files

 Fileserver Webserver Varmail RFA
Nfiles 10000 1000 1000 10000
meandir width 20 20 1000000 20
meanfile size 128k 16k 16k random
nthtreads 50 100 16 5

Initially, for all four hypervisors (ESXi, Xen, Proxmox, and KVM), the
assessment was conducted using a single virtual machine. Subsequently, in the
second test, an identical virtual machine was created, and the evaluation was
repeated with both virtual machines running simultaneously. This process was
then replicated with three virtual machines concurrently running. Finally, the
fourth test involved operating four identical virtual machines concurrently.

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

 – 111 –

For all workloads, all components from Chapter 4 are very important. These are
VH-proc, guest file system, FS-pair, FS-cache-pair, Hyp-proc, virtual hard disk
drivers, physical hard disk drivers, as well as all the mentioned components from
the host OS (kernel, host file system, and OS/graphical environments). All these
components are different for different hypervisors, especially the VMFS of ESXi
as the host file system.

Before the particular results, we will emphasise some facts. For each workload,
we firstly measured the native operating system. It is an operating system (CentOS
Stream 9 in our paper) in double roles. In the beginning, we installed this
operating system on real physical hardware, and we measured the Filebench
performance. It is a native or physical operating system, and we use its
performance as native or physical performance. Then, we used the same operating
system as virtual machines under 4 Linux-based hypervisors, and we measured the
Filebench performance as file system performance of virtualisation.

For each workload discussion, we have 4 parts. In the first part, we examine the
workload features based on the Workload Model Language (WML) and definition
parameters for the given workload in their definition files (Table 3). We estimate
the nature of the hard disk dataflow (random/sequential, reading/writing,
synchronous/asynchronous) and possible file system cache impact. In the second
part, we describe the obtained results without interpretations (which one is the
best, etc.). In the third part, we analyse the file system cache impact based on the
relation between the workload throughput and maximum possible hard disk
speeds (Table 1). And in the fourth part, we interpret the results based on the
workload features and mathematical model of Linux-based virtualisation.

6.1 Fileserver Results

The outcomes of the fileserver workload test are presented in Fig. 1, whereas the
fileserver speed of the native operating system was 3885.14 MB/s.

Figure 1
Fileserver test result chart

B. Đorđević et al. Mathematical Modeling and Case Study with
 File System Performance Comparison for Linux-based Hypervisors

 – 112 –

The characteristics of the fileserver workload encompass the presence of random
read, random write, sequential read, and sequential write components.
The workload involves a substantial number of I/O operations and a considerable
data flow. Given these features, including repetitive reading and diverse types of
asynchronous writes, there is a notable impact of file system caches on both the
guest operating system and host operating system, particularly in the context of
writing operations. In the fileserver workload, the most significant impact is
attributed to the fourth component (Eq. 1), VH-proc, working in conjunction with
the file system cache on both the guest and host operating systems, primarily due
to the large data flow. Additionally, the fifth component (Eq. 1), Hyp-proc, plays
a substantial role due to the workload's significant number of I/O operations.

In terms of fileserver workload performance, KVM on Debian-12 stands out as the
top choice, followed by Proxmox in second place and ESXi in third, with Xen
ranking last. The differences are big; in the duel best/worst as KVM/Xen, KVM
on Debian-12 is better than Xen, 2-4 times, the differences are the least on a single
virtual machine, while the differences are bigger on a larger number of virtual
machines; on four virtual machines, the differences are most pronounced.
Compared to the second best, KVM on Debian-12 is better than Proxmox, 35-
53%, and the differences are greater on a larger number of virtual machines.
Compared to the third-placed ESXi, the best KVM on Debian-12 is better than
ESXi by 2-2.5 times, and the rates are higher on a larger number of virtual
machines. Certainly, KVM-based solutions are significantly better than the
competition. We note that all hypervisors have solid performance drops compared
to the native host (best case: Native/1VM), KVM on Debian-12 2.7 times,
Proxmox 3.7 times, ESXi 5.3 times, and Xen 6.4 times.

When examining the achieved throughput of the fileserver workload alongside the
maximum speeds of the hard disk interface (approximately 600 MB/s) and the
maximum sequential speeds of SSD hard disks (around 500 MB/s), the conclusion
is evident: with a single virtual machine, all hypervisors exhibit throughput
surpassing the maximum hard disk speeds. However, when two virtual machines
are running, ESXi and Xen begin to falter, with their throughputs dropping below
the maximum hard disk speeds. Proxmox maintains satisfactory performance up to
three virtual machines, but with four virtual machines, its throughput falls below
the maximum hard disk speeds. KVM on Debian-12 is by far the best; it has better
throughputs than the maximum hard disk speeds on all virtual machines. High
throughput rates indicate the dominance of file system cache pairs (guest/host
caches), alongside a significant volume of I/O requests directed to the virtual-
physical drivers, exhibiting both random and sequential features. These high
throughputs, surpassing hard disk speeds, underscore the effectiveness of FS
cache pairs, particularly evident with KVM/Proxmox setups but to a lesser extent
with ESXi and Xen, where virtual/physical hard disk drivers take precedence.

In terms of fileserver workload, we believe that the main components are
primarily VH-proc with FS-pairs and with the cache effects of this FS-cache-pair,

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

 – 113 –

but due to a high frequency of cache misses in both the guest and host caches, the
significance of hard disk drivers within the guest operating system. Virtual hard
disk drivers of the hypervisors and physical hard disk drivers of the host operating
system are also important. In the context of a complex workload characterised by
substantial data flow, such as the fileserver, we assume that the KVM on Debian-
12 and Proxmox generation possesses the best combination of components: VH-
proc with file system cache effects of FS-cache-pair, as well as a combination of
guest/virtual/physical hard disk drivers. KVM on Debian-12 is by far the best,
closely followed by Proxmox, which has a very similar architecture. On the other
hand, ESXi and especially Xen have a weaker mention combination and probably
a weaker hit/miss ratio in file system cache-pair.

6.2 Mailserver Results

The outcomes of the mailserver workload test are displayed in Fig. 2, whereas the
mailserver speed of the native operating system was 187.20 MB/s.

Figure 2
Varmail test result chart

The characteristics of the mailserver workload include a dominance of random
read and synchronous random write components. The workload entails a moderate
number of I/O operations and a moderate data flow. Given these features,
particularly the presence of random reading and synchronous random write
components, the influence of file system caches on both the guest operating
system and host operating system is minimal. In the context of the mailserver
workload, the primary influence stems from the fourth component (Eq. 1), VH-
proc (excluding the impact of file system cache), attributed to the workload's
moderate data flow. Additionally, the fifth component (Eq. 1), Hyp-proc, has a
substantial effect due to the workload's moderate number of I/O operations.

B. Đorđević et al. Mathematical Modeling and Case Study with
 File System Performance Comparison for Linux-based Hypervisors

 – 114 –

In terms of mailserver workload performance, ESXi stands out as the top choice,
followed by Xen in second place and Proxmox in third, with KVM on Debian-12
ranking last. The differences are not big; in the best/worst duel (ESXi vs. KVM),
ESXi is better than KVM on Debian-12 by 18-67%, the differences are the
smallest on a single virtual machine, and the differences are bigger on a larger
number of virtual machines. Compared to the second best, ESXi is better than Xen
by 1-5%, and the differences are small; these two hypervisors are very similar.
Compared to the third place, the best ESXi is better than Proxmox by 5-54%, and
the scales are higher on more virtual machines. Certainly, KVM-based solutions
are significantly weaker than the competition, and ESXi and Xen are very similar.
We note that all hypervisors have solid performance drops compared to the native
host (best case: Native/1VM), ESXi 2.32 times, Xen 2.36 times, Proxmox 2.43
times, and KVM on Debian-12 2.73 times.

When examining the achieved throughput of the mailserver workload alongside
the maximum speeds of the hard disk interface (approximately 600 MB/s) and the
maximum sequential speeds of SSD hard disks (around 500 MB/s), the conclusion
is evident: on all virtual machines, all hypervisors have significantly lower
throughputs than the maximum hard disk speeds. The low mail throughput speeds
for email operations suggest minimal impact from guest/host caches within cache
pairs, indicating that the majority of I/O requests are directed towards virtual-
physical drivers. This implies that the FS cache pairs did not significantly
intercept hard disk requests, resulting in nearly all the random read/write
operations being handled through virtual/physical drivers.

Nevertheless, we assert that the principal components primarily consist of Hyp-
proc and VH-proc with FS-pair, although with minimal cache effects from FS-
cache-pair. As both caches in the pair exhibit weak influence, the hard disk drivers
of the guest OS, the virtual hard disk drivers of the hypervisor, and the physical
hard disk drivers of the host OS assume significant importance for random
read/random write performance. In the context of a data flow predominantly
characterised by random read and synchronous random write, our assumption is
that the ESXi and Xen present the most favourable combinations: a combination
of Hyp-proc and VH-proc with minimal file system cache effects and a
combination of guest/virtual/physical hard disk drivers. Furthermore, the ESXi
and Xen exhibit similar best combinations, whereas the Proxmox and KVM on
Debian-12 demonstrate a somewhat weaker combination for the mailserver
workload.

6.3 Webserver Results

The outcomes of the webserver workload test are presented in Fig. 3, whereas the
webserver speed of the native operating system was 476.20 MB/s.

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

 – 115 –

Figure 3
Webserver test result chart

The characteristics of the webserver workload include a predominant presence of
random read and small random write components. The workload involves a
moderate volume of I/O operations and highlights a limited data flow. Given these
attributes, particularly the prevalence of random read components, the influence of
file system caches on both the guest operating system and the host operating
system is small, except for repeating reading. In the context of the webserver
workload, the most significant impact is attributed to the fifth component (Eq. 1),
Hyp-proc, due to the workload's moderate number of I/O operations. Additionally,
the fourth component (Eq. 1), VH-proc (with a limited impact of file system
cache), plays a substantial role owing to the workload's small data flow.

In terms of webserver workload performance, Proxmox stands out as the top
choice, followed by KVM on Debian-12 in second place and Xen in third, with
ESXi ranking last. The differences are not big; in the best/worst duel (Proxmox vs.
ESXi), Proxmox is better than ESXi by 83-49%, and the differences are the
smallest on 4 virtual machines, and the differences are bigger on a smaller number
of virtual machines (cache effect). Compared to the second best, Proxmox is better
than KVM on Debian-12 by 1-3%, and the differences are small; these two
hypervisors are very similar. Compared to the third place, Proxmox is better than
Xen by 6-14%, and the differences are bigger on a larger number of VMs. Surely,
KVM-based solutions are significantly better than the competition, and Proxmox
and KVM on Debian-12 are very similar. We note that all hypervisors have a
slight drop compared to the native host (best case: Native/1VM), Proxmox 5.3%,
KVM on Debian-12 6.2%, Xen 12%, and only ESXi has solid drops from 93% to
2 times.

When examining the achieved throughput of the webserver workload alongside
the maximum speeds of the hard disk interface (approximately 600MB/s) and the
maximum sequential speeds of SSD hard disks (around 500MB/s), the conclusion

B. Đorđević et al. Mathematical Modeling and Case Study with
 File System Performance Comparison for Linux-based Hypervisors

 – 116 –

is evident: on all virtual machines, all hypervisors have quite good random-read
throughput close to the maximum hard disk speed, except for ESXi, which is
significantly weaker. The relatively high webserver throughputs suggest the
influence of guest/host caches for random reads, although a significant number of
I/O requests with random read characteristics are directed towards virtual-physical
drivers. Achieving high throughput for random read workloads close to maximum
hard disk speeds indicates some success of the FS cache-pair with
KVM/Proxmox/Xen, but not with ESXi. With ESXi, there is a weaker cache
effect, and it is more influenced by guest/virtual/physical hard disk drivers. This
implies that while the FS cache pair absorbs a certain amount of random read hard
disk requests, a considerable number of random read IO operations (as cache
misses) were processed through guest/virtual/physical drivers.

However, we believe that the primary components consist of Hyp-proc, VH-proc
with FS-pair, and the limited cache effects of FS-cache-pair. With numerous
misses in both caches, the significance of the hard disk driver of the guest OS, the
virtual driver of the hypervisor, and the physical hard disk drivers of the host OS,
particularly regarding their random read performance, becomes paramount. In a
data flow predominantly characterised by random reads, our assumption is that
Proxmox/KVM/Xen hypervisors present the most favourable combination of
components: VH-proc with limited reading file system cache effects, Hyp-proc,
and guest/virtual/physical hard disk drivers. The ESXi exhibits the least optimal
combination of VH-proc, Hyp-proc, and guest/virtual/physical hard disk drivers.
ESXi has a very different host file system (VMFS) and therefore a very different
FS pair (XFS-on-VMFS), which also affects its very poor webserver performance.

6.4 RFA Results

The results for the RFA workload test are illustrated in Fig. 4, whereas the RFA
speed of the native operating system was 16700.44 MB/s.

The key attributes defining the RFA workload include the prevalence of random
read and asynchronous random write components. A moderate volume of I/O
operations and a balanced data flow characterise the workload. Given these
distinctive features, particularly the inclusion of asynchronous random writing, the
influence of file system caches is noteworthy on both the guest and host operating
systems. The primary influence on RFA workload stems from the fourth
component (Eq. 1), VH-proc, characterised by a large impact from file system
cache, attributed to a moderate writing dataflow. Additionally, the fifth component
(Eq. 1) and Hyp-proc exhibit a significant impact, driven by a moderate number of
I/O operations.

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

 – 117 –

Figure 4

RFA test result chart

In terms of RFA workload performance, KVM on Debian-12 stands out as the top
choice, followed by XEN in second place and Proxmox in third, with ESXi
ranking last. The differences are big; in the best/worst duel, KVM on Debian-12 is
better than ESXi from 40% to two times, and the differences are the least on four
virtual machines, and the differences are bigger on a smaller number of virtual
machines (cache effect). Compared to the second best, KVM on Debian-12 is
better than Xen by 1-3%, and the differences are small; these two hypervisors are
very similar. Compared to the third place, the best KVM on Debian-12 is better
than Proxmox by 7-5%, and the rates are higher on a smaller number of virtual
machines. Surely, KVM-based solutions are quite good, as are Xen-based
solutions, KVM/Xen/Proxmox are very similar, and ESXi is much weaker. We
notice that all hypervisors have a small attenuation compared to the native host
(best case Native/1VM), KVM on Debian-12 20%, Xen 20.1%, Proxmox 28%,
and only ESXi has solid drops about 2.5 times.

When examining the achieved throughput of the RFA workload alongside the
maximum speeds of the hard disk interface (approximately 600 MB/s) and the
maximum sequential speeds of SSD hard disks (around 500 MB/s), the conclusion
is evident: on all virtual machines, all hypervisors have significantly higher
throughput than the maximum hard disk speeds. High RFA throughputs indicate
that guest/host caches exert significant influence, with only a few I/O requests
directed towards virtual-physical drivers featuring random read/write
characteristics. Achieving throughputs higher than hard disk speeds indicates
notable success of the FS cache-pair with KVM/Xen/Proxmox setups, although
with slightly less success with ESXi. This implies that the FS caches absorbed
almost all random read/random write hard disk requests.

B. Đorđević et al. Mathematical Modeling and Case Study with
 File System Performance Comparison for Linux-based Hypervisors

 – 118 –

However, we assert that this time the component that absolutely dominates is VH-
proc with file system pair, and with the cache effects of file system cache in pair.
In scenarios dominated by random reads and asynchronous random writes data
flow, the KVM/XEN/Proxmox displays the most favourable combination with a
VH-proc featuring strong file system cache effects. The ESXi shows the least
desirable combination of VH-proc with FS-pair, and with the cache effects of FS-
cache-pair, it probably has the lowest hit/miss ratio, but that is a consequence of
the ESXi having a very different host OS FS (VMFS) and therefore a very
different FS pair (XFS-on-VMFS), which causes very poor RFA performance.

Conclusion

This paper is focused on comparing the file system performance of specific type-1
Linux-based hypervisors, the four most dominant globally: ESXi, Xen, KVM on
Debian-12, and Proxmox. At first glance, hypervisors are very similar in
architecture, especially KVM on Debian-12 and Proxmox. We have discerned the
similarities and differences among each individual Linux-based hypervisor. Our
mathematical model suggests that these distinctions arise from several key
components: hypervisor processing, virtual hardware processing, file system
caching on both guest and host sides, host filesystems, and components of the host
operating system (kernel and OS/graphical environments). While these
components may initially seem very similar, upon closer examination, they reveal
significant differences among Linux-based hypervisors.

In this case analysis, representatives of the KVM on Debian-12 and Proxmox
hypervisors excel in the fileserver, RFA, and webserver workloads, but perform
poorly in the mailserver workload. The Xen hypervisor's representative performs
relatively well in the mailserver and RFA workloads but poorly in the fileserver
workload. The ESXi hypervisor's representative performs relatively well in
mailserver, poorly in the fileserver workload, and very poorly in webserver and
RFA workloads. Clearly, for these four workloads, KVM demonstrates the most
favourable performance, while ESXi exhibits the least favourable performance,
likely due to VMFS as its host file system, which is totally different from others.

The paper underscores the significance of selecting the right hypervisor to achieve
optimal performance for the specific workloads. However, this is only one case
study, so we do not guarantee that it will behave exactly like this on other
hardware configurations with Linux-based hypervisors. Still, for some options,
like complex fileserver workloads, our results agree with other references, where
they confirm the superiority of KVM architecture for fileserver performance. For
serious conclusions, a large number of different experiments should be provided
that represent different case studies and which can be used to create a KDB
(Knowledge Data Base) about the behaviour of Linux-based hypervisors. But our
math model is universal and applicable to most experimental case studies.

We present potential options for future research, such as exploring the differences
between various versions and generations of Linux-based hypervisors within

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

 – 119 –

comparable configurations and workloads. This encompasses evaluating
forthcoming releases of Linux-based hypervisors, assessing a range of guest
operating systems (including various versions of Linux and Windows),
scrutinising different file systems such as ext4, Btrfs, and XFS, and comparing
against alternative benchmark tools like Fio, HD Tune Pro, and AS SSD.
Additional tests that can be conducted on factors that may affect performance are
RAM memory allocation and the use of additional CPU cores.

Acknowledgements

The work presented in this paper has partially been funded by the Ministry of
Education, Science, and Technological Development of the Republic of Serbia.

References

[1] E. Correia, Hypervisor based server virtualisation, Encyclopedia of
Information Science and Technology, Third Edition, IGI Global, 2015

[2] A. Kumar, S. Shiwani, “Guest operating system based performance
comparison of VMware & Xen hypervisor,” IJSET, Engineering and
Technology, Vol. 2, No. 5, pp. 286-297, 2014, ISSN: 2348-4098

[3] S. Pawar, S. Singh, “Performance comparison of VMware and Xen
hypervisor on guest OS,” IJICSE, Vol. 2, No. 3, pp. 56-60, 2015, ISSN:
2393-8528

[4] H. Kazan, L. Perneel, M. Timmermann, “Benchmarking the performance of
Microsoft Hyper-V server, VMware ESXi and Xen hypervisors,” IJETCIS,
Vol. 4, No. 12, pp. 922-933, 2013, ISSN 2079-8407

[5] A. Bhatia, G. Bhattal, “A comparative study of various hypervisors
performance,” IJSER, Vol. 7, No. 12, pp. 65-71, 2016

[6] V. P. Singh, “Analysis of system performance using VMware ESXi server
virtual machines” PhD Thesis, 2012, Online:
http://hdl.handle.net/10266/1809

[7] C. D. Graziano, “A performance analysis of Xen and KVM hypervisors for
hosting the Xen worlds project,” Iowa State University (2011) Graduate
Theses and Dissertations. 12215. doi:10.31274/etd-180810-2322

[8] S. A. Algarni, M. R. Ikbal, R. Alroobaea, A. S. Ghiduk, F. Nadeem,
“Performance evaluation of Xen, KVM, and Proxmox hypervisors”,
IJOSSP, Vol. 9, No. 2, 2018, doi:10.4018/IJOSSP.2018040103

[9] V. K. Manik, D. Arora, “Performance comparison of commercial VMM:
ESXi, XEN, HYPER-V & KVM,” 4th Int. Conf. on Computing for
Sustainable Global Development, 2016, ISBN:978-1-4673-9417-8

[10] S. Ally, “Comparative analysis of Proxmox VE and XenServer as type 1
open source based hypervisors”, IJSTR©2018, Volume, 7(3), 72-77, 2018,
ISSN 2277-8616, http://www.ijstr.org/final-print/mar2018/Comparative-

B. Đorđević et al. Mathematical Modeling and Case Study with
 File System Performance Comparison for Linux-based Hypervisors

 – 120 –

Analysis-Of-Proxmox-Ve-And-Xenserver-As-Type-1-Open-Source-Based-
Hypervisors-.pdf

[11] A. Kovari, P. Dukan, “KVM & OpenVZ virtualisation based IaaS open
source cloud virtualisation platforms: OpenNode, Proxmox VE”, In 2012
IEEE 10th Jubilee International Symposium on Intelligent Systems and
Informatics (pp. 335-339) IEEE, Subotica, September 2012, doi:
10.1109/SISY.2012.6339540

[12] S. Lozano, T. Lugo, J. Carretero, “A Comprehensive Survey on the Use of
Hypervisors in Safety-Critical Systems” IEEE Access, Open Access, Vol.
11, pp. 36244-36263, 2023, ISSN: 21693536, doi:
10.1109/ACCESS.2023.3264825

[13] E. Gamess, M. Parajuli, S. Shah, “PERFORMANCE EVALUATION OF
THE KVM HYPERVISOR RUNNING ON ARM-BASED SINGLE-
BOARD COMPUTERS”, International Journal of Computer Networks and
Communications, Open Access, Vol. 15, Issue 2, pp. 147-164, March 2023,
ISSN 09752293, doi: 10.5121/ijcnc.2023.15208

[14] J. Jiménez, L. Muguira, U. Bidarte, A. Largacha, J. Lázaro, “Specific
Electronic Platform to Test the Influence of Hypervisors on the
Performance of Embedded Systems”, Technologies, Open Access, Vol. 10,
Issue 3, June 2022, Article number 65, ISSN 22277080, doi:
10.3390/technologies10030065

[15] Filebench, https://github.com/filebench/filebench [Accessed: 2024]

[16] B. Đorđević, V. Timčenko, N. Kraljević, N. Maček: “File System
Performance Comparison in Full Hardware Virtualisation with ESXi,
KVM, Hyper-V and Xen Hypervisors”, Advances in Electrical and
Computer Engineering, Vol. 21, Iss. 1, 2021 doi:
10.4316/AECE.2021.01002

[17] B. Djordjevic, V. Timčenko, N. Kraljevic, N. Jovicic, "Performance
comparison of KVM and Proxmox Type-1 Hypervisors“, 30th TELFOR
2022, Nov 15-16, 2022, Belgrade, Serbia, pp. 441-440, IEEE, doi:
10.1109/TELFOR56187.2022.9983666

[18] B. Đorđević, M. Piljić, N. Kraljević, V. Timčenko, “Comparison of file
system performance in full virtualisation with MS Hyper-V and KVM
hypervisors”, pp. 565-568, X ICETRAN, ISBN 978-86-7466-930-3, June
6-9, 2022, Novi Pazar, Serbia

[19] B. Đorđević, S. Gucunja, N. Kraljević and N. Davidović, "Performance
comparison of different hypervisor versions of the type-2 hypervisor
VirtualBox“, X ICETRAN, East Sarajevo, B&H, June 5-8, 2023, doi:
10.1109/IcETRAN59631.2023.10192192

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

 – 121 –

[20] ESXi VMware,
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/tec
hpaper/ESXi_architecture.pdf [Accessed: 2024]

[21] Xen, https://docs.xenserver.com/en-us/citrix-hypervisor [Accessed: 2023]

[22] KVM, https://ubuntu.com/blog/kvm-hyphervisor [Accessed: 2023]

[23] W. Ahmed, “Mastering Proxmox: Build virtualized environments using the
Proxmox VE hypervisor”, Packt Publishing Ltd, 2017

	1 Introduction
	2 Related Work, Objective, and Motivation
	3 Linux-based (type-1) Hypervisors
	4 Mathematical Model and Hypothesis
	5 HW Test Configuration and Benchmark
	6 Testing and Results
	6.1 Fileserver Results
	6.2 Mailserver Results
	6.3 Webserver Results
	6.4 RFA Results

