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Abstract: Exact linearization of nonlinear systems enables the application of linear control
theory to nonlinear dynamics. However, it relies on exact cancellation of nonlinear terms,
which becomes impractical when model uncertainties are present. This paper analyzes
the effect of parametric uncertainties on exact linearization and derives equivalent linear
perturbed models when the real system deviates from the nominal one. We consider
parametric perturbations where the nonlinear drift vector field is linear in the parameters.
Necessary and sufficient conditions are given for the relative degree to remain invariant under
such perturbations. Furthermore, the case of internal stabilization applied after linearization
is analyzed, and the corresponding equivalent perturbed model is provided. Finally, we
extend the framework to positive-input systems, derive results on the relative degree of the
extended dynamics, and present the associated equivalent linear perturbed model.
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1 Introduction

Exact linearization, also known as feedback linearization, is a classical method used
to handle nonlinearities in dynamical systems [1, 2]. It has been widely applied
in various fields [3–6]. The main limitation of this approach is its reliance on exact
cancellation of nonlinear terms, which makes it sensitive to parametric uncertainties.
In [7], this issue was addressed for uncertain systems where the drift vector field
depends linearly on the parameters, and the influence of parameter perturbations on
the linearization process was examined. A related extension was presented in [8],
where a positive input dynamics was incorporated into the framework.

In general, uncertainties in nonlinear systems are managed by adaptive or robust
controllers [9, 10]. Classical works, such as Chen [11], analyzed exact linearization
under parametric uncertainty by transforming the nonlinear system into a perturbed
linear model and providing adaptive control laws that ensure stability under
matched uncertainties. Panchal et al. [12] proposed robust control methods for
uncertain nonlinear systems without assuming a specific structure of the uncertainty.
Sastry and Kokotovic [13] established conditions for convergence of path-tracking
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controllers when the vector fields are linear in uncertain parameters, and later
extended the framework to dynamic uncertainties using singular perturbation theory.
Other adaptive schemes were developed for nonlinear systems of different relative
degrees, e.g., [14–16].

Most of these studies assume that the relative degree of the system remains invariant
under parametric perturbations [11, 13]. In contrast, this paper provides necessary
and sufficient conditions for the relative degree of a SISO output to remain robust
to parameter changes. The corresponding linear perturbed model is derived for
systems without zero dynamics, as first introduced in [7].

Exact linearization is often combined with linear control design methods such
as H2/H∞ control. While linearization around an operating point provides an
approximate model [17], exact linearization yields a model free of approximation
errors but results in poles at zero, leading to infinite H∞-norm. In order to address
this, internal stabilization by state feedback is required to shift poles into the left-half
plane [18, 19]. The impact of parametric perturbations under such stabilization was
studied in [7], and here we generalize those results to derive the equivalent linear
perturbed model for stabilized systems.

Furthermore, the framework is extended to systems with positive input dynamics
[8], relevant to chemical and physiological applications [20–26], and several other
engineering applications [27]. In such systems, the control input must remain
nonnegative, which is enforced through a dynamical extension where the physical
input becomes a state of the augmented system. We analyze the effect of parametric
perturbations on the extended system and provide the corresponding perturbed
linear model both with and without stabilizing feedback.

The results include explicit expressions for the perturbed linear models of
smooth input-affine nonlinear systems and their positive-input extensions. These
formulations can support robust stability analysis [28, 29], fault detection [30],
and robust fixed-point transformation-based control [31–33]. Moreover, they can
serve as a preprocessing step for tensor-product model transformation and controller
synthesis [34–36], or for systems with input saturation constraints [37].

2 Exact Linearization in the Presence of Parametric
Uncertainty

2.1 The Original and Perturbed Model

We consider smooth, input-affine nonlinear systems described by

ẋ = f (x)+g(x)u (1)

where x(t)∈U ⊆Rn denotes the system state, u(t)∈L ∞(R,R) is the control input,
f ∈C ∞(U,Rn) is the drift vector field, and g∈C ∞(U,Rn) is the control vector field.
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The scalar system output is given by

y = h(x) (2)

with h ∈ C ∞(U,R) and y(t) ∈ R for all t ≥ 0. Later, in Section 3, we extend the
analysis to systems with nonnegative inputs, i.e., u(t)≥ 0 for every t ∈ R.

In this study, the control and output vector fields g and h are assumed to be known
exactly, while the drift f depends linearly on uncertain parameters. Specifically,

f (x) =
P

∑
p=1

κp fp(x), (3)

where each fp ∈C ∞(U,Rn) and the coefficients κp represent the nominal parameter
values. The perturbed drift vector field is defined as

f̂ (x) =
P

∑
p=1

κ̂p fp(x), (4)

where κ̂p denote the possibly perturbed parameter values. Since g and h are
independent of the uncertain parameters, they remain unchanged in the perturbed
model (ĝ = g, ĥ = h). This formulation follows the structure introduced in [7] and
extended in [8].

Example 1. As a representative case, we adopt the minimal tumor growth model
from [38], which has been utilized for nonlinear [39, 40], robust [19], and LPV
controller design [41]. The system dynamics are given by(

ẋ1
ẋ2

)
=

(
ax1 −bx1x2
−cx2 +u

)
=

(
ax1 −bx1x2

−cx2

)
︸ ︷︷ ︸

f (x)

+

(
0
1

)
︸ ︷︷ ︸

g(x)

u. (5)

Here, x1 represents the tumor volume (mm3), x2 the drug level (mg · kg−1), and u
the drug injection rate (mg · (kg · day)−1). The output of the system is y = x1. The
drift vector field is linear in parameters a, b, and c:

f (x) = a
(

x1
0

)
+b
(

−x1x2
0

)
+ c
(

0
−x2

)
. (6)

Defining f1(x) = (x1 0)⊤, f2(x) = (−x1x2 0)⊤, and f3(x) = (0 − x2)
⊤ as the basis

vector fields, the nominal parameters are κ1 = a, κ2 = b, and κ3 = c. For the
perturbed model with parameters κ̂1, κ̂2, and κ̂3, the perturbed drift vector field
becomes

f̂ (x) = κ̂1

(
x1
0

)
+ κ̂2

(
−x1x2

0

)
+ κ̂3

(
0

−x2

)
(7)

while g and h remain unchanged (ĝ = g, ĥ = h).
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2.2 Linearization Using Feedback

Feedback linearization transforms a nonlinear system into an equivalent linear
one by canceling nonlinearities through appropriately designed feedback [1]. The
concept is based on Lie derivatives of smooth scalar fields along smooth vector
fields. The Lie derivative of the scalar field h along the vector field f is

L f h := (∂xh) f , (8)

where ∂x denotes differentiation with respect to the state vector. Higher-order Lie
derivatives are defined recursively as

Li
f h := L f

(
Li−1

f h
)
=
(

∂x

(
Li−1

f h
))

f , i > 0, L0
f h := h. (9)

The Lie derivative of Li
f h along g is

LgLi
f h :=

(
∂x
(
Li

f h
))

g. (10)

For the system given by (1), the time derivative of the output y = h(x) is

ẏ = ḣ(x) = (∂xh)ẋ = (∂xh)( f (x)+g(x)u) = L f h+Lghu. (11)

If Lgh = 0, differentiation can be continued until the input appears explicitly in the
r-th derivative:

ÿ = Lr
f h+LgLr−1

f hu. (12)

The smallest integer r for which LgLr−1
f h ̸= 0 defines the relative degree of the

output y = h(x) [1]. Formally,

LgLk
f h(x) = 0, k = 0,1, . . . ,r−2, LgLr−1

f h(x) ̸= 0. (13)

If the relative degree r equals the system order n, the system can be exactly
linearized using feedback. The corresponding transformed dynamics take the form

y = h (14)
ẏ = L f h (15)

ÿ = L2
f h (16)

...
y(n−1) = Ln−1

f h (17)

y(n) = Ln
f h+LgLn−1

f hu := w. (18)

The input u can then be computed from w using (18), where w is the linearized
system input.
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The expression for u thus becomes

u =
w−Ln

f h

LgLn−1
f h

. (19)

The state transformation defining the linearized coordinates is

z = Φ(x) =


h(x)

L f h(x)
L2

f h(x)
...

Ln−1
f h(x)

 . (20)

Example 2. Using the minimal tumor model from Example 1, the Lie derivatives
are computed as follows:

L f h =
(

1 0
)( ax1 −bx1x2

−cx2

)
= ax1 −bx1x2 (21)

Lgh =
(

1 0
)( 0

1

)
= 0 (22)

L2
f h =

(
a−bx2 −bx1

)( ax1 −bx1x2
−cx2

)
= x1(a−bx2)

2 +bcx1x2 (23)

LgL f h =
(

a−bx2 −bx1
)( 0

1

)
=−bx1. (24)

Since Lgh = 0 and LgL f h ̸= 0 for x1 ̸= 0, the output y = x1 has maximal relative
degree whenever x1 ̸= 0. The corresponding feedback law that linearizes the system
is

u =
w− x1(a−bx2)

2 −bcx1x2

−bx1
, x1 ̸= 0. (25)

The coordinates of the linearized system are(
z1
z2

)
= Φ

(
x1
x2

)
=

(
x1

ax1 −bx1x2

)
. (26)
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2.3 Effect of Parametric Uncertainty on Exact Linearization

Lemma 1. For any integer k ≥ 0, we have

Lk
f h =

P

∑
p1=1

P

∑
p2=1

. . .
P

∑
pk=1

κp1κp2 · · ·κpk L fpk
. . .L fp2

L fp1
h (27)

LgLk
f h =

P

∑
p1=1

P

∑
p2=1

. . .
P

∑
pk=1

κp1κp2 · · ·κpk LgL fpk
. . .L fp2

L fp1
h. (28)

Proof. The result follows by induction using linearity of differentiation, see [7].

Example 3. According to Lemma 1, the Lie derivatives in Example 2 can be written
as

L f h = aL f1h+bL f2h+ cL f3h = ax1 +b(−x1x2) (29)

Lgh =
(

1 0
)( 0

1

)
= 0 (30)

L2
f h = a2L f1L f1h+ab

(
L f2L f1h+L f1L f2h

)
+ac

(
L f3L f1h+L f1 L f3h

)
+b2L f2L f2h+bc

(
L f3L f2 h+L f2L f3h

)
+ c2L f3 L f3h

= a2x1 −2abx1x2 +b2x1x2
2 +bcx1x2

= x1(a−bx2)
2 +bcx1x2 (31)

LgL f h = aLgL f1h+bLgL f2 h+ cLgL f3h =−bx1. (32)

Theorem 1. Let the nominal output have relative degree r > 1 at x. The perturbed
system keeps the same relative degree if: (C1) LgL fpi

· · ·L fp1
h(x) = 0 for all

index tuples of length i = 1, . . . ,r − 2. (C2) There exists (p̄1, . . . , p̄r−1) such that
LgL f p̄r−1

· · ·L f p̄1
h(x) ̸= 0 and is linearly independent of the others.

Proof. See [7].

Example 4. For the minimal model, r = 2 for x1 ̸= 0. Since LgL f2h =−x1 ̸= 0, the
perturbed system also has relative degree two if κ̂2 = b̂ ̸= 0.

The following result extends the previous analysis of the perturbed relative degree
[7] and complements the positive-input framework [8] by deriving the explicit form
of the equivalent linear perturbed model.

Theorem 2. Assume maximal relative degree r = n. Under the nominal feedback
(19), the perturbed coordinates satisfy

˙̂zn = w+ψn(x)+ρ(x)
(
w−Ln

f h(x)
)
= w+ϕ(x,w) (33)
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where ψi = Li
f̂
ĥ−Li

f h and

ρ(x) =
LĝLn−1

f̂
ĥ(x)−LgLn−1

f h(x)

LgLn−1
f h(x)

. (34)

The linearized coordinates are

ẑ = Φ(x)+


0

ψ1(x)
ψ2(x)

...
ψn−1(x)

 . (35)

Proof. Since the output of the perturbed system has maximal relative degree, it
can be transformed into a series of integrators with ẑ1 = y, and the states of the
transformed, perturbed system can be written as

ẑ1 = h (36)
˙̂z1 = ẑ2 = L f̂ h (37)

˙̂z2 = ẑ3 = L2
f̂ h (38)

...
˙̂zn−1 = ẑn = Ln−1

f̂
h (39)

˙̂zn = Ln
f̂ h+LgLn−1

f̂
hu. (40)

If we denote the difference of the ith Lie derivatives of h along f̂ and f as ψi =
Li

f̂
h−Li

f h, then the linearized states of the perturbed model expressed in the point
x ∈U are written as

ẑ1 = z1 = Φ1(x) (41)
ẑ2 = z2 +L f̂ h(x)− z2 = z2 +L f̂ h(x)−L f h(x) = z2 +ψ1(x)

= Φ2(x)+ψ1(x) (42)

ẑ3 = z3 +L2
f̂ h(x)− z3 = z3 +L2

f̂ h(x)−L2
f h(x) = z3 +ψ2(x)

= Φ3(x)+ψ2(x) (43)
...

ẑn = zn +Ln−1
f̂

h(x)− zn = zn +Ln−1
f̂

h(x)−Ln−1
f h(x) = zn +ψn−1(x)

= Φn(x)+ψn−1(x) (44)

which implies (35). Substituting the linearizing feedback law (19) based on the
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parameters of the original model into the differential equation of ẑn results in

˙̂zn = Ln
f̂ h+LgLn−1

f̂
h

w−Ln
f h

LgLn−1
f h

. (45)

Write LgLn−1
f̂

h in the form

LgLn−1
f̂

h = (1+ρ)LgLn−1
f h, (46)

which can be done in every point x where the system output has maximal relative
degree, since this implies LgLn−1

f h(x) ̸= 0, then (45) becomes

˙̂zn = Ln
f̂ h+(1+ρ)LgLn−1

f h
w−Ln

f h

LgL(n−1)
f h

(47)

= Ln
f̂ h+(1+ρ)(w−Ln

f h) = Ln
f̂ h+w−Ln

f h+ρ(w−Ln
f h) (48)

= w+Ln
f̂ h−Ln

f h+ρ(w−Ln
f h) = w+ψn(x)+ρ(w−Ln

f h), (49)

which implies (33).

Example 5. Apply the feedback linearization in Example 2 to the perturbed model
in Example 1, and suppose moreover that b̂ ̸= 0, i.e., the relative degree of the
output of the perturbed system is the same as the relative degree of the output of
the original system, as it was shown in Example 4. We apply Theorem 2 to create
the linear perturbed model resulting after the linearization. First, we construct ρ(x).
If the output of the original and the perturbed model have maximal relative degree,
then b ̸= 0 and b̂ ̸= 0, and we can write b̂ = b(1+∆b) with ∆b ̸=−1, thus

ρ(x) =
LĝL f̂

ĥ−LgL f h

LgL f h
=

−b̂x1 +bx1

−bx1
=

−b̂+b
−b

=
−b(1+∆b)+b

−b
= ∆b. (50)

Using the results from Example 3, the differences ψ1 and ψ2 are

ψ1 = L f̂ ĥ−L f h = (â−a)L f1h+(b̂−b)L f2h

= (â−a)x1 +(b̂−b)(−x1x2) (51)

ψ2 = L2
f̂ ĥ−L2

f h = (â2 −a2)L f1L f1h+(âb̂−ab)
(
L f2L f1h+L f1L f2h

)
+(âĉ−ac)

(
L f3L f1h+L f1L f3h

)
+(b̂2 −b2)L f2L f2h

+(b̂ĉ−bc)
(
L f3 L f2h−L f2L f3h

)
+(ĉ2 − c2)L f3L f3h

= (â2 −a2)x1 −2(âb̂−ab)x1x2 +(b̂2 −b2)x1x2
2 +(b̂ĉ−bc)x1x2. (52)

Thus, the perturbed linear model has the states

ẑ1 = z1 = y (53)
ẑ2 = z2 +Ψ1 = z2 +(â−a)x1 +(b̂−b)(−x1x2) (54)
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and the differential equation of ẑ2 is the perturbed linear model

˙̂z2 = w+ϕ(x,w) (55)

with ϕ(x,w) being the model perturbation

ϕ(x,w) = ψ2(x)+ρ(x)(w−L2
f h)

= (â2 −a2)x1 −2(âb̂−ab)x1x2 +(b̂2 −b2)x1x2
2

+(b̂ĉ−bc)x1x2 +∆b(w−L2
f h)

= (â2 −a2(1+∆b))x1 −2(âb̂−ab(1+∆b))x1x2

+(b̂2 − (b2 +∆b))x1x2
2 +(b̂ĉ−bc(1+∆b))x1x2 +∆bw (56)

caused by the parametric perturbations.

Corollary 1. The difference ψi for i = 1,2, . . . ,n can be written as the sum

ψi = Li
f̂ ĥ−Li

f h =

P

∑
p1=1

P

∑
p2=1

. . .
P

∑
pi=1

(κ̂p1 κ̂p2 · · · κ̂pi −κp1 κp2 · · ·κpi)L fpi
. . .L fp2

L fp1
h, (57)

while ψn −ρLn
f h is the sum

ψn −ρLn
f h =

P

∑
p1=1

P

∑
p2=1

. . .
P

∑
pn=1

(κ̂p1 κ̂p2 · · · κ̂pn − (1+ρ)κp1κp2 · · ·κpn)L fpn . . .L fp2
L fp1

h, (58)

thus the model perturbation ϕ(x,w) can be rewritten in the form

ϕ(x,w) =
P

∑
p1=1

P

∑
p2=1

. . .
P

∑
pn=1

(κ̂p1 κ̂p2 · · · κ̂pn − (1+ρ(x))κp1κp2 · · ·κpn)L fpn . . .L fp2
L fp1

h(x)

+ρ(x)w. (59)

2.4 Stabilization and Parametric Perturbation

In order to ensure stability of the linearized dynamics, we consider the feedback
w = −Kz+ bnusl with K = (kn,kn−1, . . . ,k1). Application of the feedback on the
integrator series y(n) = w results in the system

ż = Az+Busl (60)
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with

A =


0 1 . . . 0 0 0
0 0 1 . . . 0 0
...

. . .
...

0 0 0
... 1 0

−kn −kn−1 −kn−2 . . . −k2 −k1

 , B =


0
0
...
0
bn

 , (61)

which is a stable linear system if the characteristic polynomial

λ (s) = sn + k1sn−1 + k2sn−2 + . . .+ kn−1s+ kn (62)

of the system matrix is Hurwitz. The transfer function of the system is

G(s) =
bn

sn + k1sn−1 + k2sn−2 + . . .+ kn−1s+ kn
, (63)

thus, the static gain of the closed-loop system is bn/kn. Stabilization may be a
crucial step, e.g., for robust controller design. Provided that all poles are real or
critically damped, the H∞-norm of the stabilized system is bn/kn < ∞, while the
H∞-norm of the integrator series (15)-(18) was infinite.

Theorem 3. Suppose that the original and perturbed systems have maximal relative
degree in a point x, the linearizing feedback law w = −Kz+bnusl designed for the
nominal model is applied to the perturbed model, with z being the states of the
linearized nominal model. This results in the perturbed linear model with dynamics

˙̂z = Aẑ+Busl + enϕ(x,usl) (64)

in each point x ∈ U, with en being the nth unit vector, the matrices A and B are as
defined in (61), and

ϕ(x,usl) =
n

∑
i=2

kn+1−iψi−1(x)+ψn(x)

−ρ(x)

(
Ln

f h(x)+
n

∑
i=1

kn+1−iΦi(x)

)
+ρ(x)bnusl (65)

with ρ and ψi, i = 1,2, . . . ,n as defined in Theorem 2.

Proof. From Theorem 2 we know, that the states of the perturbed linear system
in point x ∈ U are ẑ1 = z1 = h(x), ẑi = Φi(x)−ψi−1(x) for i = 2,3, . . . ,n, and the
differential equation of ẑn is

˙̂zn = w+ψn(x)+ρ(x)(w−Ln
f h(x)), (66)

while substituting the feedback law w =−Kz+bnusl results in

˙̂zn =−Kz+bnusl +ψn(x)+ρ(x)(−Kz+bnusl −Ln
f h(x)). (67)
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The term Kz in the feedback can be written as

Kz =
n

∑
i=1

kn+1−izi =
n

∑
i=1

kn+1−iΦi(x) =
n

∑
i=2

kn+1−i (ẑi −ψi−1(x))+ knẑ1

= Kẑ−
n

∑
i=2

kn+1−iψi−1(x). (68)

Using these expressions, (67) becomes

˙̂zn = −Kẑ+bnusl +
n

∑
i=2

kn+1−iψi−1(x)+ψn(x)

+ρ(x)

(
−

n

∑
i=1

kn+1−iΦi(x)+bnusl −Ln
f h(x)

)
. (69)

Rearranging the terms results in (64) and (65).

Example 6. Consider the perturbed linearized system from Example 5, and apply
the control law w = −Kz + b2usl with b2 > 0. The differential equation of ẑ2
becomes

˙̂z2 =−Kẑ+b2usl +ϕ(x,usl) (70)

and ϕ(x,usl) is

ϕ(x,usl) = ψ2(x)−ρ(x)L2
f h(x)+ k1ψ1(x)

−ρ(x)(k2Φ1(x)+ k1Φ2(x))+ρ(x)usl

= L2
f̂ ĥ(x)− (1+∆b)L2

f h(x)+ k1

(
L f̂ ĥ(x)−L f h(x)

)
−∆b

(
k2h(x)+ k1L f h(x)

)
+∆bb2usl

= (â2 −a2(1+∆b))x1 −2(âb̂−ab(1+∆b))x1x2

+(b̂2 − (b2 +∆b))x1x2
2 +(b̂ĉ−bc(1+∆b))x1x2

+k1
(
(â−a(1+∆b))x1 +

(
b̂−b(1+∆b)

)
(−x1x2)

)
−k2∆bx1 +∆bb2usl . (71)

3 Positive Control and Exact Linearization in the
Presence of Parametric Uncertainty

3.1 Positive Input Dynamics

Certain classes of real-world systems can only accept nonnegative control inputs
[21, 22, 24, 25]. Conventional controller structures typically ignore this constraint
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Figure 1
Controller architecture with positive input dynamics extension [8]

and may produce negative input values. In order to address this limitation, the
system can be extended with a dynamic element that ensures positivity of the
physical input [40, 42]:

u̇ =−uṽ (72)

where ṽ ∈ L ∞(R,R) acts as a virtual control input. The solution to (72) remains
positive for all t ≥ 0 whenever u(0)> 0, regardless of the sign of ṽ. Consequently,
u never reaches zero in finite time but may become arbitrarily small.

For controller synthesis, the plant is augmented with the dynamics (72) to form the
extended state vector

x̃ =
(

x
u

)
(73)

whose evolution is described by(
ẋ
u̇

)
︸ ︷︷ ︸

˙̃x

=

(
f (x)+g(x)u

0

)
︸ ︷︷ ︸

f̃ (x̃)

+

(
0
−u

)
︸ ︷︷ ︸

g̃(x̃)

ṽ (74)

Here f̃ and g̃ denote the drift and control vector fields of the extended system,
respectively, and the output mapping h̃(x,u) = h(x) ensures that the external
measured variable remains unchanged.

In practice, the controller is designed for this extended representation. The virtual
input ṽ can take any real value, while the auxiliary dynamics guarantees that the
actual actuator input u remains positive [39, 42]. The resulting structure (Figure 1)
allows conventional design techniques to handle systems with inherent positivity
constraints.

From (74) it follows that g̃ depends only on u, which is known and measurable.
Therefore, if uncertainties are present in the original control vector field g, they are
transferred into the drift term f̃ only. This property allows the analytical results of
the previous sections to be applied directly to uncertain systems with constrained
positive inputs.
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Example 7. Consider again the minimal tumor growth model from Example 1
[19, 39, 42]. After including the positive input dynamics (72), the extended system
becomes ẋ1

ẋ2
u̇


︸ ︷︷ ︸

˙̃x

=

 ax1 −bx1x2
−cx2 +u

0


︸ ︷︷ ︸

f̃ (x̃)

+

 0
0
−u


︸ ︷︷ ︸

g̃(x̃)

ṽ (75)

with output h̃(x,u) = h(x) = x1. For any initial condition satisfying
x1(0),x2(0),u(0)> 0, the trajectories remain positive for all t ≥ 0 and any bounded
virtual input ṽ(t).

3.2 Positive Input Dynamics with Feedback Linearization

The coordinate transformation corresponding to the extended system is

z̃ =


h̃

L f̃ h̃
L2

f̃ h̃
...

Ln
f̃ h̃

 := Φ̃(x̃), (76)

while the feedback law for linearization is given by

ṽ =
w̃−Ln+1

f̃
h̃

Lg̃Ln
f̃
h̃

, (77)

where w̃ is the input of the resulting integrator series. Since the extended system
has order n+ 1, the Lie derivatives in the coordinate transformation are required
until the nth order, while the Lie derivatives in the feedback law are required until
the (n+ 1)th order. Throughout the paper, we will denote the order of the original
system by n, and the order of the extended system by n+1.

Lemma 2. Suppose that the original system output has maximal relative degree
(i.e., r = n) in a point x with u being the input. Then the output of the system
after extension with positive input dynamics with the new input ṽ also has maximal
relative degree (i.e., r = n+1) in the point x if and only if u ̸= 0.

Proof. See [8].

Corollary 2. The coordinate transformation (76) and feedback law (77) for the
extended system can be written in terms of the vector fields and variables of the
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original system as

z̃ =



h
L f h
L2

f h
...

Ln−1
f h

Ln
f h+LgLn−1

f hu


(78)

ṽ =
w̃−

(
Ln+1

f h+LgLn
f hu+L f LgLn−1

f hu+L2
gLn−1

f hu2
)

−LgLn−1
f hu

. (79)

Example 8. The linearizing feedback of the extended system from Example 7 can
be written as

ṽ =
w̃−

(
L3

f h+LgL2
f hu+L f LgL f hu+L2

gL f hu2
)

−LgL f hu
, (80)

where −LgL f h(x)u = bx1u, thus the extended system can be linearized using state
feedback, i.e., the output has maximal relative degree if x1 ̸= 0 and u ̸= 0, and

L3
f h =

3

∑
p1=1

3

∑
p2=1

3

∑
p3=1

κp1κp2κp3L fp1
L fp2

L fp3
h (81)

LgL2
f h =

3

∑
p1=1

3

∑
p2=1

κp1κp2LgL fp1
L fp2

h (82)

L f LgL f h =
3

∑
p1=1

3

∑
p2=1

κp1κp2L fp1
LgL fp2

h (83)

L2
gL f h =

3

∑
p1=1

κp1L2
gL fp1

h, (84)

i.e., the Lie derivatives in the feedback law (79) can be calculated using the Lie
derivatives of the vector fields of the original system. The states of the integrator
series resulting from the linearization of the extended system are

z̃ =

 h
L f h

L2
f h+LgL f hu

=

 φ̃1(x̃)
φ̃2(x̃)
φ̃3(x̃)

=

=

 y
∑

3
p1=1 κp1L fp1

h
∑

3
p1=1 ∑

3
p2=1 κp1κp2L fp1

L fp2
h+∑

3
p1=1 κp1LgL fp1

hu

 . (85)

Due to space limitations, we do not give the explicit form of the functions in the Lie
derivatives for this example.
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Lemma 2 states that the output of the extended system has maximal relative degree
if u ̸= 0 everywhere where the original system output has maximal relative degree,
i.e., in every point except x1 = 0. This is equivalent with the result that the extended
system output has maximal relative degree if −LgL f h(x)u = bx1u ̸= 0 in (80).

3.3 Stabilizaton and Parametric Perturbation

The positive input dynamics guarantees that the control signal of the original system
remains nonnegative. However, this extension introduces nonlinearity, even when
the nominal system itself is linear. Therefore, in Subsection 3.2, state feedback
was used to linearize the extended model, resulting in a chain of n+ 1 integrators
governed by

z̃(n+1) = w̃. (86)

Next, internal loop-shaping is applied (analogous to the approach in Section 2.4) to
shift the zero poles of the system to new poles s1,s2, . . . ,sn+1, each having a negative
real part.

Let K̃ =
(
k̃n+1, k̃n, . . . , k̃2, k̃1

)
, and denote the input of the new system by ũ.

Application of the control law

w̃ =−K̃z̃+ b̃n+1ũ (87)

results in the closed-loop system

˙̃z = Ãz̃+ B̃ũ, (88)

with matrices

Ã =


0 1 . . . 0 0 0
0 0 1 . . . 0 0
...

. . .
...

0 0 0 . . . 1 0
−k̃n+1 −k̃n −k̃n−1 . . . −k̃2 −k̃1

 , B̃ =


0
0
...
0

b̃n+1

 . (89)

The system matrix Ã has a companion form, and its characteristic polynomial is

sn+1 + k̃1sn + k̃2sn−1 + . . .+ k̃n+1, (90)

where the coefficients are selected so that (90) is Hurwitz, with its roots
p1, p2, . . . , pn+1 representing the closed-loop poles. The static gain of the system
equals b̃n+1/k̃n+1.

The transfer function of the loop-shaped linearized model is

G(s) =
b̃n+1

sn+1 + k̃1sn + k̃2sn−1 + . . .+ k̃ns+ k̃n+1
, (91)
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Figure 2
The positive input dynamics extension ensures positivity of the original input; the extended system is

linearized: the result is the integrator series with transfer function 1/sn+1; finally the integrator series is
transformed to G(s) using internal loop-shaping

where the poles p1, p2, . . . , pn+1 are determined by the chosen coefficients
k̃1, k̃2, . . . , k̃n+1. Provided that the poles are critically damped or real, the H∞ norm
of G(s) is b̃n+1/k̃n+1 < ∞, thus the model is appropriate as a nominal plant for H2
or H∞ controller synthesis.

In summary, the nonlinear plant is first augmented with positive input dynamics
to guarantee input positivity, then converted into a chain of integrators, and
finally reshaped into a stable linear system with finite H∞ norm through internal
loop-shaping, as illustrated in Figure 2.

Theorem 4. Suppose that the original and perturbed models have maximal relative
degree in a point x, design the dynamical extension (72), feedback linearization
(77) and internal loop-shaping (87) for the nominal model and apply them for
the perturbed model as shown in Figure 2. The linear perturbed model of the
closed-loop system in Figure 2 in the presence of parametric uncertainties (which
are as described in Subsection 2.1) is given by

˙̃̂z = Ã ˆ̃z+ B̃ũ+ en+1ϕ(x̃, ũ) (92)

with Ã and B̃ are as given in (88), en+1 being the (n+1)th unit vector and

ϕ(x̃, ũ) = ψ̃n+1(x̃)+
n+1

∑
i=2

(
ψ̃i−1(x̃)k̃n+2−i

)
+ρ̃(x̃)

(
−

n+1

∑
i=1

φ̃i(x̃)k̃n+2−i + b̃n+1ũ−Ln+1
f̃ h̃(x̃)

)
(93)

where for all i = 1,2, . . . ,n+1

ψ̃i = Li
ˆ̃f
ˆ̃h−Li

f̃ h̃ (94)

φ̃i = Li−1
f̃ h̃ (95)
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and

ρ̃ =
L ˆ̃gLn

ˆ̃f
ˆ̃h−Lg̃Ln

f̃ h̃

Lg̃Ln
f̃
h̃

. (96)

Proof. See [8].

Example 9. Consider the extended linearized model from Example 8, and apply
the state feedback w =−K̃z̃+ b̃3ũ, where K̃ = (k̃3, k̃2, k̃1). If the system parameters
are perturbed, then according to Theorem 4, the resulting closed-loop dynamics can
be expressed as a linear perturbed system

˙̃̂z = Ãz̃+ B̃ũ+ e3ϕ(x̃, ũ), (97)

where

Ã =

 0 1 0
0 0 1

−k̃3 −k̃2 −k̃1

 , B̃ =

 0
0
b̃3

 . (98)

The perturbation term is given by

ϕ(x̃, ũ) = ψ̃3(x̃)+
3

∑
i=2

(
ψ̃i−1(x̃)k̃4−i

)
+ ρ̃(x̃)

(
−

3

∑
i=1

φ̃i(x̃)k̃4−i + b̃3ũ−L3
f̃ h̃

)
= ψ̃3(x̃)+ ψ̃2(x̃)k̃1 + ψ̃1(x̃)k̃2

+ρ̃(x̃)(−φ̃1(x̃)k̃3 − φ̃2(x̃)k̃2 − φ̃3(x̃)k̃1 + b̃3ũ−L3
f̃ h̃) (99)

After substituting the definitions of ψ̃i and φ̃i, this can be rewritten as

ϕ(x̃, ũ) = L3
ˆ̃f
ˆ̃h(x̃)−L3

f̃ h̃(x̃)+ k̃1

(
L2

ˆ̃f
ˆ̃h(x̃)−L2

f̃ h̃(x̃)
)
+ k̃2

(
L ˆ̃f

ˆ̃h(x̃)−L f̃ h̃(x̃)
)

−ρ̃(x̃)k̃3h̃(x̃)− ρ̃(x̃)k̃2L f̃ h̃(x̃)− ρ̃(x̃)k̃1L2
f̃ h̃(x̃)+ ρ̃(x̃)ũ− ρ̃(x̃)L3

f̃ h̃

= L3
ˆ̃f
ˆ̃h(x̃)− (1+ ρ̃(x̃))L3

f̃ h̃(x̃)+ k̃1

(
L2

ˆ̃f
ˆ̃h(x̃)− (1+ ρ̃(x̃))L2

f̃ h̃(x̃)
)

+k̃2

(
L ˆ̃f

ˆ̃h(x̃)− (1+ ρ̃(x̃))L f̃ h̃(x̃)
)
− k̃3ρ̃(x̃)h̃(x̃)+ ρ̃(x̃)ũ.

The function ρ̃(x̃) is

ρ̃(x̃) =
L ˆ̃gL2

ˆ̃f
ˆ̃h−Lg̃L2

f̃ h̃

Lg̃Ln
f̃
2̃

=
b̂x1u−bx1u

bx1u
=

b̂−b
b

. (100)

Assuming b̂ = b(1+∆b) with ∆b ̸=−1, we have ρ̃(x̃) = ∆b.

Finally, the perturbation term can be expressed in terms of the Lie derivatives of the
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nominal vector fields as

ϕ(x̃, ũ) =
3

∑
p1=1

3

∑
p2=1

3

∑
p3=1

(
κ̂p1 κ̂p2 κ̂p3 − (1+∆b)κp1κp2κp3

)
L fp1

L fp2
L fp3

h(x)

+
3

∑
p1=1

3

∑
p2=1

(κ̂p1 κ̂p2 − (1+∆b)κp1 κp2)LgL fp1
L fp2

h(x)u

+
3

∑
p1=1

3

∑
p2=1

(κ̂p1 κ̂p2 − (1+∆b)κp1κp2)L fp1
LgL fp2

h(x)u

+
3

∑
p1=1

(κ̂p1 − (1+∆b)κp1)L2
gL fp1

h(x)u2 +

k̃1

(
3

∑
p1=1

3

∑
p2=1

(κ̂p1 κ̂p2 − (1+∆b)κp1κp2)L fp1
L fp2

h(x)

+
3

∑
p1=1

(κ̂p1 − (1+∆b)κp1)LgL fp1
h(x)u

)

+k̃2

3

∑
p1=1

(κ̂p1 − (1+∆b)κp1)L fp1
h(x)

−k̃3∆bx1 +∆bũ := ν(x)+∆bũ. (101)

The controller gains k̃1, k̃2, k̃3 can also be selected not only to ensure that the
characteristic polynomial (90) is Hurwitz, but to minimize the influence of model
uncertainties represented by |ν(x)|. This provides an additional degree of freedom
in the design, allowing the robustness of the closed-loop system to be increased by
reducing the impact of parameter perturbations.

Conclusions

An analytical framework was developed for the exact linearization of nonlinear
systems with parametric uncertainties and positive input dynamics. Equivalent
linear perturbed models were derived to describe how parameter variations affect
the system after feedback linearization and internal stabilization. Conditions were
given for the invariance of the relative degree, and explicit formulas were obtained
for the perturbed linear dynamics. The analysis also demonstrated how positive
input dynamics can be incorporated into the controller structure to guarantee input
nonnegativity while preserving the possibility of exact linearization.

The results provide a unified approach to handling uncertainty and positivity in
nonlinear control design. The derived perturbed models form a basis for robust and
adaptive controller synthesis, sensitivity evaluation, and fault detection. Moreover,
recognizing that stabilization gains can reduce the effect of parametric perturbations
introduces an additional tuning option to improve robustness. Future research
may extend these findings to multi-input multi-output configurations and develop
optimization-based methods for joint performance–robustness tuning.
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[29] P. Polcz, T. Péni, and G. Szederkényi. Improved algorithm for computing
the domain of attraction of rational nonlinear systems. European Journal of
Control, 39:53 – 67, 2018.

[30] P. Li, F. Boem, and G. Pin. Fast-convergent fault detection and isolation in a
class of nonlinear uncertain systems. European Journal of Control, page In
Press, 2020.
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[38] D. A. Drexler, J. Sápi, and L. Kovács. A minimal model of tumor growth with
angiogenic inhibition using bevacizumab. Proceedings of the 2017 IEEE 15th
International Symposium on Applied Machine Intelligence and Informatics,
pages 185–190, 2017.

[39] D. A. Drexler, J. Sápi, and L. Kovács. Positive control of a minimal model
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