
Acta Polytechnica Hungarica Vol. 15, No. 4, 2018

Multi-Project Optimization with Multi-
Functional Resources by a Genetic Scheduling
Algorithm

Tibor Dulai, György Dósa, Ágnes Werner-Stark
University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
dulai.tibor@virt.uni-pannon.hu
dosagy@almos.uni-pannon.hu
werner.agnes@virt.uni-pannon.hu

Abstract: In this paper we show how a genetic scheduler algorithm can be applied to solve
a hard multi-project optimization problem with shared resources. The resources work in
multiple operation modes, so they can substitute each other (but with different efficiency).
We consider processes which have quite complex structure, i.e., it allows the existence of
parallel sub-processes. This problem is extremely complex, there is no chance to get the
optimal solution in reasonable time. The proposed algorithm intends to find a near-optimal
solution, where the goal of the optimization is the minimization of the makespan of the
schedule. We present the genetic operations of the algorithm in detail. We fill the pool of
populations only with feasible solutions, but making possible the discovery of the whole
search space. The feasibility of a schedule is ensured by excluding time-loops regarding the
sequence of the tasks both in their process and in the queue of their resource. We executed
several tests for determining the (hopefully) optimal parameters of the algorithm regarding
the number of generations, the population size, the crossover rate and rate of the mutation.
We applied the algorithm for many problem classes where the parameters of the input are
fixed or randomly chosen from some interval.

Keywords: multi-project scheduling; genetic algorithm; multi-purpose machines

1 Introduction
Scheduling is a widespread research area of operations research. The classes of the
problem differs, e.g. in the number of the resources (machines) or in the properties
of the tasks to schedule. Two important versions of the problem are the flow-shop
problem [5, 10] and the job-shop problem. [2, 11]

As the basic scheduling problem ‒ called job-shop scheduling problem (JSP),
where a set of jobs have to be scheduled on a set of machines regarding certain
criterion(s) ‒ is NP-hard [6], heuristics and more effective meta-heuristics are
often used for real-life sized problems instead of exact solution methods. An

 – 101 –

T. Dulai et al. Multi-Project Optimization with Multi-Functional Resources by a Genetic Scheduling Algorithm

effective meta-heuristic is genetic algorithm (GA), in [15] Zhang et al. reviewed
some of GA applications for flexible JSP and introduced their own problem
representation and genetic operators. It was followed by the presentation of their
computational results on common benchmark data sets. Next to GA other
heuristics like tabu search [7] or simulated annealing [9] are also popular methods.

The application area of different scheduling problems has a wide spectrum. In
computer architecture and parallel software planning tasks have to be scheduled
on processors (e.g. on CPU and GPU), in industrial or business applications
workflow elements have to be assigned to resources and scheduled in time, while,
e.g. in software project scheduling project-tasks have to be scheduled mainly on a
human-based resource set usually in a dynamic manner. The different application
areas differ in their requirements and have their own specialities.

Nevertheless, the complexity of the basic problem remains, what necessitates the
usage of heuristics. Votava [14] simulated two heuristic algorithms (named HEFT
and CPOP) for task scheduling in a networking subsystem. Alba and Chicano [1]
shown that GA is an appropriate tool for project scheduling and can be applied
efficiently for automated task assignment. Chang et al. [4] - extending their former
work [3] - presented a GA with improved representation and parameters, which
took into account more human resource factors. Moreover, as the representation
introduced a timeline axis as a third dimension (next to tasks and resources), it
made possible the suspension and resumption of tasks and the reassignment of
resources.

Sadegheih used simulated annealing for determining the effect of GA parameters
on the schedule [13]. In his work he dealt with 8-jobs and 7-machines problems
and found the importance of mutation rate and not significant effect of crossover
rate.

Joo et al. [8] dealt with multi-project scheduling with multimode resources and
applied activity splitting and simulated annealing. In this paper, a genetic
algorithm for scheduling in multi-project environment is presented, where
resources may have multiple functions, so they can substitute each other. The
representation of a schedule is shown, the developed crossover and mutation
genetic operators are introduced. The algorithm is able to cover the whole feasible
search space during its operation. The paper emphasizes the method for
guarantying the feasibility of the schedule by eliminating possible time loops what
could arise after applying genetic operators.

Pongcharoen et al. [12] dealt with similar sized problem as ours (similar number
of resources and tasks), too, however, their problem had not such a complex
structure. They investigated population size, generation number, mutation and
crossover rates. While determining optimal parameters of GA they also described
how they face and eliminate time-loop (they called it deadlock). If they got an
infeasible schedule, they swapped the problematic action with a random one. In
our paper we handle this problem in other way.

 – 102 –

Acta Polytechnica Hungarica Vol. 15, No. 4, 2018

In Section 2 the model of the problem is introduced and described formally.
Section 3 presents the genetic algorithm and its operators we applied. In Section 4
we summarize the computational results, while Section 5 concludes our work.

2 The Example Processes and the Model of the
Problem

2.1 The Basic Example Processes
This subsection introduces the problem we worked on, for illustrative purposes. In
our simulations we used two kinds of processes: the tested production of 15 pieces
of sensor type I and 20 pieces of sensor type II. Altogether, it means that we deal
with 35 processes, parallel. The processes of producing one of each types of these
products are illustrated in Figure 1.

Figure 1

The two types of our example processes

In the figure we can see the sequence of tasks in processes. Tasks without caption
are transportation tasks from one resource to another. The initial and final
destination is the depot. The duration time of each task depends on the resource
which operates, as Table 1 shows. In the table Tr. marks transportation task, Tr.d.
holds for a transportation device followed by the abbreviated places of work
phases (moreover d stands for the depot). In our example all the transportation
devices have to get back to their starting place if we want to reuse them, and it
takes the same time as to carry the materials to a place of work. For example, a
transportation device can transfer a material from the depot to the place of
temperature test in 3 time units, however, we have to wait 6 time units if we want
to reuse it. The table also contains how many pieces of the different resources are
available at all.

In our example we apply setup time only in case of temperature chamber and
vibration chamber. If they change their operation mode between temperature test
and vibration test, symmetrical setup times are used. For temperature chamber we
defined 5 time units as setup time and for the vibration chamber we determined
the setup time as 6 time units.

 – 103 –

T. Dulai et al. Multi-Project Optimization with Multi-Functional Resources by a Genetic Scheduling Algorithm

Table 1
Duration time of each task related to its resource usage /in time units/

 Tr.
d-t

Temp.
test

Tr.
t-s

Solde-
ring

Tr.
s-d

Tr.
d-c

Cab-
ling

Tr.
c-s

Tr.
t-v

Vibr.
test

Tr.
v-s

Temperature
chamber (3
pieces)

- 6 - - - - - - - 10 -

Cable
producer (2
pieces)

- - - - - - 6 - - - -

Vibration
chamber (1
piece)

- 10 - - - - - - - 6 -

Solderer (2
pieces)

- - - 4 - - - - - - -

Tr.d. d-t (1
piece)

3 - - - - - - - - - -

Tr.d. d-c (1
piece)

- - - - - 5 - - - - -

Tr.d. t-s (1
piece)

- - 4 - - - - - - - -

Tr.d. t-v (1
piece)

- - - - - - - - 3 - -

Tr.d. c-s (1
piece)

- - - - - - - 3 - - -

Tr.d. v-s (1
piece)

- - - - - - - - - - 5

Tr.d. s-d (1
piece)

- - - - 4 - - - - - -

Tr: transport; Tr.d.: transportation device; d: depot; c: cable producing; t: temperature test;
v: vibration test; s: soldering

An example for a schedule can be seen in Figure 2 for a scenario where 3
processes exist: 2 of them test and produce sensor type I and 1 of them tests and
produces sensor type II. In the figure (Figure 2) each rectangle of a task contains
its process ID. Moreover, empty boxes represent the duration while a
transportation device reaches back to its start place.

Figure 2

A simple schedule as a result of our algorithm

Several similar problems − with the same process structure, conditions and
constraints − can be found in real-life practice (e.g. producing and packing a

 – 104 –

Acta Polytechnica Hungarica Vol. 15, No. 4, 2018

porcelain in a manufacture requires parallel execution of tasks packaging material
preparation and creation of the porcelain). There can be orders that require pure
sculpted porcelain, while other orders necessitate paint. Human resources of the
manufacture are specialized: there are potters and painters. Painters are better (and
quicker) in paint and potters are better in sculpting. However, they can execute the
task of the other specialists, too, but significantly slower. When both the porcelain
and the packaging material are ready, the porcelain has to be packaged by a third
type of specialist of the company.

Next to this second example, other industrial/business processes may have the
same characteristics.

2.2 Difficulties of the Problem
The complexity of the algorithm showed in this paper origins from the properties
of the problem that we intend to solve. The problem class is a scheduling problem
where resources have to be allocated to carry out the tasks of a process and the
allocations have to be ordered in the time domain. However, as common practical
scheduling problems, the basic problem has some other properties:

• we deal with multiple processes parallel, which may share in the
resources they use,

• each process can include parallel substructure(s) of tasks instead of a
fully sequential order of its ingredient tasks,

• resources can operate in different operation modes. There are tasks,
which can be carried out by more than one resources (usually with
different parameters like operation time), and there are resources, which
are able to do different tasks. It results in resource-substitution
possibilities.

These properties make the problem extremely complex, e.g. related to the
common NP-hard Pm||Cmax problems.

2.3 Notations
The input is given as follows:

• P = {p1, ..., pn} is the set of processes.

• Ti = {ti,1, ..., ti,m} is the set of tasks of process pi.

• T = ᴗn
i=1Ti is the set of the tasks of all processes.

• Pre(ti,j) С Ti is the subset of the tasks of process pi (what can be an empty
set) which are direct prior tasks to task ti,j in process pi. This set may have

 – 105 –

T. Dulai et al. Multi-Project Optimization with Multi-Functional Resources by a Genetic Scheduling Algorithm

more than one element because of the possible parallel structure of
processes.

• allPre(ti,j) С Ti is the subset of the tasks of process pi (what can be an
empty set) which are prior tasks to task ti,j in process pi. E.g. if ti,b є
Pre(ti,c) and ti,a є Pre(ti,b) then ti,a є allPre(ti,c).

• R = {r1, ..., ro} is the set of resources.

• capable: R x T → {0,1} is a function which describes whether a resource
is able to carry out a task.

• dur(ti,j,rk) є Nshows the duration time of carrying out task ti,j by resource
rk, where capable(rk,ti,j) = 1.

The schedule-related variables are:

• allocatedRes(ti,j) є R is the resource which is assigned by the scheduler to
task ti,j.

• start(ti,j) є N is the start time of task ti,j of process pi.

• end(ti,j) є N is the end time of task ti,j of process pi.

• makespan(P) = max(end(ti,j)) - min(start(tk,l)) for all ti,j, tk,l є T.

2.4 Constraints
The constraints for determining start(ti,j) and end(ti,j) for all ti,j є T are:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑖𝑖,𝑗𝑗) ≠ ∅,∀𝑡𝑡𝑖𝑖,𝑗𝑗 ∈ 𝑇𝑇 (2.1)

So, each task has to be carried out by a resource.

𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡𝑖𝑖,𝑗𝑗) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑖𝑖,𝑗𝑗) + 𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑖𝑖,𝑗𝑗 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑖𝑖,𝑗𝑗)),∀𝑡𝑡𝑖𝑖,𝑗𝑗 ∈ 𝑇𝑇 (2.2)

The above constraint represents the connection between the start and finish time
of a task regarding the related operation time.

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑡𝑡𝑙𝑙,𝑚𝑚� ≥ 𝑒𝑒𝑒𝑒𝑒𝑒�𝑡𝑡𝑖𝑖,𝑗𝑗�𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒�𝑡𝑡𝑙𝑙,𝑚𝑚� ≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑡𝑡𝑖𝑖,𝑗𝑗�,∀𝑡𝑡𝑖𝑖,𝑗𝑗, 𝑡𝑡𝑙𝑙,𝑚𝑚 ∈ 𝑇𝑇, 𝑖𝑖𝑖𝑖 𝑡𝑡𝑖𝑖,𝑗𝑗 ≠
𝑡𝑡𝑙𝑙,𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑡𝑡𝑖𝑖,𝑗𝑗� ≡ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑡𝑡𝑙𝑙,𝑚𝑚� (2.3)

This constraint specifies that the tasks allocated to the same resource can not
overlap each other.

𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡𝑖𝑖,𝑎𝑎) ≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑖𝑖,𝑏𝑏),∀1 ≤ 𝑖𝑖 ≤ 𝑛𝑛,∀𝑡𝑡𝑖𝑖,𝑎𝑎, 𝑡𝑡𝑖𝑖,𝑏𝑏 ∈ 𝑇𝑇𝑖𝑖 , 𝑖𝑖𝑖𝑖 𝑡𝑡𝑖𝑖,𝑎𝑎 ∈ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑖𝑖,𝑏𝑏) (2.4)

The final constraint describes that a task of a process can not start before its prior
tasks of the same process are not finished.

We look for a schedule where all constraints 2.1-2.4 are satisfied and the
makespan(P) is minimal.

 – 106 –

Acta Polytechnica Hungarica Vol. 15, No. 4, 2018

3 The Genetic Algorithm
The scheduling of real workflows − especially in multi-project environment −
requires more and more computational power regarding the increasing of the
number and complexity of the processes. It is the reason for preferring heuristics
to exact solvers for solving them. This paper presents a genetic algorithm which
was developed for scheduling workflows/processes even if they have the
properties introduced in Section 2.

Genetic Scheduler (GS):

The GS has the following steps:

Step 1. An initial population is filled up by random instances.

Step 2. Evaluation of the instances of the initial population (a fitness value is
calculated for each of the instances of the population).

Step 3. Applying elitism the best x percent of the generation is copied into the
new generation.

Step 4. The remaining instances of the new generation are selected and copied
randomly from the previous generation.

Step 5. We apply crossover genetic operator to the new generation: a randomly
selected instance of the new generation will be replaced by the resulted child
instance.

Step 6. We apply mutation genetic operator to the instances of the new generation.

Step 7. Fitness value is calculated for each of the instances of the new generation.

Step 8. While the desired generation number is not reached: GOTO Step 3.

The details of the algorithm are presented in the following subsections.

3.1 Representation
The genetic algorithm requires a solution − a schedule − to be represented by a
coding technique that results a coded instance, on what, it is easy to apply the
genetic operators and what is unambiguous. Since an instance is unambiguously
described by the resource-assignment and the sequence of the tasks at each of the
resources − what clearly defines the timing of the task as we intend to minimize
the makespan so start each task as soon as possible −, it is enough only to store
these data as an instance representation. We chose a two dimensional data
structure (PS) for this type of representation: the first dimension represents the
resources while the second dimension shows the sequenced tasks assigned to the
resources.

PS is a pseudo-instance of a schedule, where

 – 107 –

T. Dulai et al. Multi-Project Optimization with Multi-Functional Resources by a Genetic Scheduling Algorithm

𝑃𝑃𝑃𝑃𝑖𝑖𝐶𝐶 𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑡𝑡𝑘𝑘,𝑙𝑙� = 𝑟𝑟𝑖𝑖 ∀𝑡𝑡𝑘𝑘,𝑙𝑙 ∈ 𝑃𝑃𝑃𝑃𝑖𝑖 ,∀1 ≤ 𝑖𝑖 ≤ 𝑜𝑜
𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑖𝑖 ≠ 𝑃𝑃𝑃𝑃𝑗𝑗 𝑖𝑖𝑖𝑖 𝑖𝑖 ≠ 𝑗𝑗,

moreover PSi,jє T means that this task is assigned to resource ri and is the jth
ordered element among the tasks assigned to ri.

Figure 3

The representation of an instance

Figure 3 illustrates a simple instance as an example for the coding we apply. As
we have introduced, ti,j signs the jth task of the ith process. For the sake of
perspicuity, we used for the illustration of the tasks which belong to the same
process the same color. As the coding schema shows, the representation includes
only sequences, it has not exact timing data neither task duration.

3.2 Population
We create the initial population of the genetic algorithm populated by instances
presented in subsection 3.1. The cardinality of the population is determined by an
a priori set variable (populationSize).

All of the instances are created as follows:

Step 1. Select randomly one of the unscheduled processes until there exist at least
one of them.

Step 2. For each task of the selected process, starting from the first one taking into
account the sequence of the tasks, do the followings:

Step 2.1. Collect all the resource which are capable to carry out the task.

Step 2.2. Select randomly one of these resources.

Step 2.3. Select a random feasible position between the ordered tasks of the
selected resource.

Step 2.4. Place the task at the selected position (update the instance.)

Step 3. GOTO Step 1.

The result of the algorithm is an instance. The number of the instances to create is
shown by the population size parameter of the genetic algorithm.

 – 108 –

Acta Polytechnica Hungarica Vol. 15, No. 4, 2018

However, step 2.3 is critical: the generated instance has to be feasible. By
selecting a nonlegal position for the task to insert a time-loop may evolve. It can
happen in two ways:

A In the ordered sequence of the tasks of a resource a later task of a process has
the position with a smaller index than an earlier task of the same process. A
simple example for it can be seen in Figure 4.

Figure 4

Time-loop related to one resource

B Time-loops may occur involving more than one resource, too. Figure 5
illustrates this kind of time-loop related to two resources, however, the number of
the affected resources and tasks can be higher. Since, on one hand task t2,1 is
executed by resource rx later than task t1,3, on the other hand task t2,2 - what has to
be executed after task t2,1of the second process had been finished - is carried out
earlier by resource ry than task t1,2. Although task t1,3 should have been processed
after task t1,2 regarding the sequence of the tasks of the first process. If the
insertion of a task triggers a situation similar to this, a time-loop occurs.

Figure 5

Time-loop related to one process

After the creation of the initial generation whose population is filled up by
random, feasible instances, further generations are generated by using genetic
operators on the actual generation. The number of generations is also given by the
preset value of a variable.

3.3 Fitness Function
For being able to decide which instances are better, we have to qualify them by a
numeric value. In our case the fitness value of an instance is the makespan. It
shows how does it take to do all the tasks of the schedule, starting from the
beginning of the earliest task until the finishing of the latest one. In this work we
deal only with time aspects, however, other parameters also can be involved into
the creation of the fitness functions, e.g. the cost of the applied resources, creating
a multi-objective problem. For calculating the fitness value of an instance it is
important to know that the instance describes the order of the tasks for each
resource. This sequence and the knowledge about process-related constraints and
the operation times, determine the optimal timing unambiguously. We have to

 – 109 –

T. Dulai et al. Multi-Project Optimization with Multi-Functional Resources by a Genetic Scheduling Algorithm

know the start and finish time of all the tasks for calculating the makespan − the
fitness value of a schedule.

For timing three basic ideas have to be followed:

• Each task as to be started as early as possible.
• A task cannot be started until its direct prior task in the queue of the

resource is not finished and the resource has not been transferred to the
state in which it is ready for doing the new task (the latter duration is
called setup time).

• A task can not be started until all of its prior tasks in its process have not
been finished.

Keeping these constraints − which result a greedy scheduling − all the tasks are
timed. After that the makespan can be calculated, obtaining the fitness value of the
instance.

3.4 Elitism
The use of elitism on a generation of the genetic algorithm depends on a
parameter of our algorithm, see subsection 3.7. When elitism is applied, then the
best instances − instances with the lowest makespan − of the previous generation
are copied to the next generation. The quantity of the instances which are handled
as elites are set by a parameter of the algorithm. As the cardinality of a generation
is unchanged, the remaining part of the new generation has to be filled up by
random instances of the previous generation. In our case, other parameter signs
whether any member − also the elites − can be selected during this random fill up
without return.

3.5 Crossover
After the initial instances of the new generation are determined, our algorithm
applies crossover genetic operation on the instances with a priori set probability. If
crossover is applied, another parameter shows how percent of the population is
created by crossover. Supposing that the value of this parameter is c, the following
steps are iterated c times:

Step 1. Select two different instances randomly from the new generation (parent1
and parent2)

Step 2. There is a parameter of the algorithm which shows what percent of the
processes are inherited from parent1 and how much from parent2. Based on the
value of this parameter:

Step 2.1. Select randomly so many processes from parent1 that it meets the value
of the parameter.

 – 110 –

Acta Polytechnica Hungarica Vol. 15, No. 4, 2018

Step 2.2. Create a new instance, where the resource assignment for each task of
the selected processes is the same as in parent1. The position of the tasks in the
row of their resources is random, but taking care of avoiding the creation of time-
loops.

Step 2.3. The resource assignment of the tasks of the remaining processes is the
same as in parent2. The position of these tasks in the row of their resources is also
random, but prevents the creation of time-loops.

The created c pieces of child instances are first put into a temporary storage, then
randomly selected instances of the generation is replaced by these children, taking
care of not to select an instance which was put into the generation in this phase as
a child. There is a parameter of the algorithm that controls whether an elite can be
replaced by a child who was created by crossover.

3.6 Mutation
After the possible crossover over the new generation, mutation genetic operator
can be applied on the population of the new generation. There is a parameter
which shows the probability of whether applying mutation on this generation. If it
is applied, another parameter determines the probability of using mutation for
each instance of the generation, separately.

Mutating an instance covers the following steps:

Step 1. Select a process randomly from the schedule.

Step 2. Delete all of the tasks of the selected process from the instance.

Step 3. Do the following steps for each task of the process - starting from the first
task of the process and processing them in order:

Step 3.1. Collect all the resources which are able to carry out the task.

Step 3.2. Select randomly one from these resources.

Step 3.3. Insert the task into a random, but feasible position of the row of the
selected resource.

After all of these operations, the finalized population of the new generation is
created. The fitness value of each created instance has to be calculated for
qualifying the instances of the new generation and being able to inherit more
generations based on the presented rules.

3.7 Parameters of the Algorithm
The developed genetic algorithm has several parameters. These are:

• The size of a population (sizeofPopulation).

 – 111 –

T. Dulai et al. Multi-Project Optimization with Multi-Functional Resources by a Genetic Scheduling Algorithm

• The number of the generations.
• The percent of the instances of a population obtained by elitism (elites).
• When selecting the other (1-elites)*sizeofPopulation instances, whether

we can reselect elites, too?
• The possibility for applying crossover on a generation.
• How percent of a generation should be resulted by crossover?
• How percent of the processes origins from the first parent in case of

crossover?
• Whether only the instances with the worst fitness values should be

replaced by the results of the crossover or any random instances?
• The possibility for applying mutation for a generation.
• The possibility for mutation in case of an instance of a generation which

lets mutation to be applied.
• Whether crossover and mutation can influence elites, too?

In our work the execution of the algorithm always happens as long as the
parameter of the generation number indicates and does not stop even if it realizes
convergence of the results before the preset generation number is reached.

4 Results
The presented algorithm was applied for two kinds of problems. Both of them
were based on the problem presented in subsection 2.1, but differ in the
definiteness of the process number and the operation time. The first problem
realizes exactly the same problem as subsection 2.1 presents. The second one
applies stochastic operation time and process number.

4.1 Results for the Deterministic Problem
First, we run several times the algorithm for exactly the same problem presented
in subsection 2.1 (with 35 processes) with the following parameter settings:

• sizeofPopulation: 60.
• The number of the generations: 400.
• elites: 0.2.
• When selecting the other instances, we can reselect elites, too.
• The possibility for applying crossover on a generation: 1.
• The percent of a generation should be resulted by crossover: 0.7.
• The percent of the processes origins from the first parent in case of

crossover: 0.5.
• Only the instances with the worst fitness values should be replaced by the

results of the crossover.
• The possibility for applying mutation for a generation: 1.

 – 112 –

Acta Polytechnica Hungarica Vol. 15, No. 4, 2018

• The possibility for mutation in case of an instance: 0.18.
• Crossover and mutation can not influence elites.

Some of the parameters − e.g. 0.18 mutation rate − were based on the values
Pongcharoen et al. [12] found to be optimal.

Figure 6 shows that even in case of 400 generation the results (the best makespan)
differ significantly.

Figure 6

Some results in case of the deterministic problem, applying GA with 400 generation and
60 population size

After we found this fact, we intended to analyze the effect of the other important
parameters both on the makespan of the resulted solution and the convergence of
the results we obtained.

In the next step, we changed the value of the population size while all the other
parameters of the genetic algorithm stayed unchanged. The results are illustrated
in Table 2.

Table 2
Makespan results for the genetic scheduler with variable population size /in time units/

generation: 400, crossover rate: 0.7, mutation rate: 0.18, population size: p
 p:10 p:20 p:30 p:40 p:50 p:60 p:80 p:100 p:150
Test 1. 857 802 832 802 780 740 770 790 734
Test 2. 854 796 779 796 767 796 743 779 760
Test 3. 834 812 797 844 803 799 775 756 732
Test 4. 876 823 824 792 774 799 761 732 752
Test 5. 829 818 826 804 782 758 808 762 744
The best 829 796 779 792 767 740 743 732 732
Avg. 850 810.2 811.6 807.6 781.2 778.4 771.4 763.8 744.4
Deviation 16.96 9.97 20.26 18.70 12.09 24.69 21.30 19.96 10.61

 – 113 –

T. Dulai et al. Multi-Project Optimization with Multi-Functional Resources by a Genetic Scheduling Algorithm

Table 3
Makespan results for the genetic scheduler with variable crossover rate /in time units/

generation: 400, population size: 100, mutation rate: 0.18, crossover rate: c
 c: 0.7 c: 0.5 c: 0.3 c: 0.1
Test 1. 790 708 723 684
Test 2. 779 689 660 710
Test 3. 756 711 683 720
Test 4. 732 708 688 704
Test 5. 762 718 684 700
The best 732 689 660 684
Avg. 763.8 706.8 687.6 703.6
Deviation 19.96 9.62 20.24 11.89

As it can be seen, the higher the cardinality of the population is the better the
results we got for the same generation number, however after population size 100
the best makespan does not improve.

In the followings, we fixed the value of the population size 100 and investigated
the effect of smaller crossover rates. We collected the results in Table 3.

The results show that crossover rate 0.3 resulted the best makespan and the best
average makespan, too. For our further investigation we fixed crossover rate at
value 0.3. At this point, we found the importance of well determined crossover
rate, unlike in paper by Pongcharoen et al. [12]. The difference may origin from
the difference of the design of the genetic operators. The final important parameter
we dealt was the mutation rate. Its effect on the efficiency of the genetic algorithm
is illustrated in Table 4.

Table 4
Makespan results for the genetic scheduler with variable mutation rate /in time units/

generation: 400, population size: 100, crossover rate: 0.3, mutation rate: m
 m: 0.08 m: 0.18 m: 0.28 m: 0.38 m: 0.48
Test 1. 887 723 692 678 682
Test 2. 751 660 674 648 648
Test 3. 707 683 680 676 692
Test 4. 708 688 736 672 674
Test 5. 698 684 692 661 675
The best 698 660 674 648 648
Avg. 750.2 687.6 694.8 667 674.2
Deviation 70.83 20.24 21.75 11.17 14.59

The results show that a higher mutation rate (0.38) has positive effect on the
genetic algorithm. Its reason can be that it makes the algorithm jump out of local

 – 114 –

Acta Polytechnica Hungarica Vol. 15, No. 4, 2018

optimum more often, but the construction of the algorithm does not let it to leave a
better part of the search space for the worse part of that.

4.2 Results for Stochastic Problem
Based on the parameters we determined in the previous subsection, we applied our
genetic algorithm on a problem, where operation time and process number are
stochastic. The problem includes the same type of processes presented in
subsection 2.1. However, the number of processes was changed as follows: the
problem produces x pieces of sensor type I where x є [10,20] and y pieces of
sensor type II where y є [15,25]. For different executions we selected x and y from
their interval based on uniform distribution.

Moreover, the operation times are also stochastic variables, following uniform
distribution from the interval presented in Table 5.

Table 5
Duration time selection interval of each task /in time units/ in case of the stochastic problem

 Tr.
d-t

Temp
. test

Tr.
t-s

Solde
-ring

Tr.
s-d

Tr.
d-c

Cab
-
ling

Tr.
c-s

Tr.
t-v

Vibr.
test

Tr.
v-s

Temperatur
e chamber

- [4,8] - - - - - - - [8,12
]

-

Cable
producer

- - - - - - [4,8
]

- - - -

Vibration
chamber

- [8,12] - - - - - - - [4,8] -

Solderer - - - [3,5] - - - - - - -
Tr.d. d-t [2,4

]
- - - - - - - - - -

Tr.d. d-c - - - - - [3,7
]

- - - - -

Tr.d. t-s - - [3,5
]

- - - - - - - -

Tr.d. t-v - - - - - - - - [2,4
]

- -

Tr.d. c-s - - - - - - - [2,4
]

- - -

Tr.d. v-s - - - - - - - - - - [3,7
]

Tr.d. s-d - - - - [3,5
]

- - - - - -

Tr: transport; Tr.d.: transportation device; d: depot; c: cable producing; t: temperature test;
v: vibration test; s: soldering

We applied our genetic algorithm with the following parameter settings:

• sizeofPopulation: 100.
• The number of the generations: 400.

 – 115 –

T. Dulai et al. Multi-Project Optimization with Multi-Functional Resources by a Genetic Scheduling Algorithm

• elites: 0.2.
• When selecting the other instances, we can reselect elites, too.
• The possibility for applying crossover on a generation: 1.
• The percent of a generation should be resulted by crossover: 0.3.
• The percent of the processes origins from the first parent in case of

crossover: 0.5.
• Only the instances with the worst fitness values should be replaced by the

results of the crossover.
• The possibility for applying mutation for a generation: 1.
• The possibility for mutation in case of an instance: 0.38.
• Crossover and mutation can not influence elites.

For this problem the random selected values of 6 test cases are represented in
Table 6 and the results of our algorithm for these cases are shown in Table 7.

Table 6
Random selected process numbers and operation time of the resources (the latter in time units,

related to their actions, which are illustrated in Table 5 in case of the 6 presented stochastic examples)

 1. test 2. test 3. test 4. test 5. test 6. test
sensor type I (pieces) 17 16 13 14 13 18
sensor type II (pieces) 17 23 21 22 15 21
Temperature chamber
(temp./vibr. test)

8/11 6/10 6/10 8/12 5/9 6/11

Cable producer 10 11 12 10 11 9
Vibration chamber(temp./vibr.
test)

5/6 4/7 4/6 5/7 4/5 3/6

Solderer 2 4 4 2 2 2
Tr.d. d-t 5 5 5 4 5 3
Tr.d. d-c 4 5 4 3 4 3
Tr.d. t-s 3 3 5 3 4 4
Tr.d. t-v 4 7 4 8 6 6
Tr.d. c-s 2 2 4 4 4 2
Tr.d. v-s 2 2 2 4 4 3
Tr.d. s-d 7 6 3 6 4 4
Tr: transport; Tr.d.: transportation device; d: depot; c: cable producing; t: temperature test;
v: vibration test; s: soldering

The velocity of convergence of the algorithm for our tests is illustrated in
Figure 7.

As the tables show, we got reasonable results. The makespan we got for the
stochastic cases where the average values are the same as in case of the original
problem, are around the values that we got for the original problem. Moreover, it
can be seen that the results depend on the input values.

 – 116 –

Acta Polytechnica Hungarica Vol. 15, No. 4, 2018

It is almost impossible to carry out sensitivity analysis for heuristic methods.
However, we investigated how small changes in the input values influence our
genetic algorithm. We chose an initial input, then we changed one-by-one only
one operation time from the possible 8 (transportation operation times were
treated together). Results are presented in Table 8. It can be realized that changes
of originally higher values have bigger impact on the makespan.

Table 7
Makespan results for the genetic scheduler applied for the stochastic problem /in time units/

generation: 400, population size: 100, crossover rate: 0.3, mutation rate: 0.38
Test 1. 567
Test 2. 700
Test 3. 724
Test 4. 658
Test 5. 529
Test 6. 630

Figure 7

Some results in case of the stochastic problem, applying GA with the determined parameter values

 – 117 –

T. Dulai et al. Multi-Project Optimization with Multi-Functional Resources by a Genetic Scheduling Algorithm

Table 8
Makespan results for the genetic scheduler for small changes in input values /in time units/

init. 1. 2. 3. 4. 5. 6. 7. 8.
580 566 583 553 550 573 562 619 732
init: initial parameter values
1. cabling: 8→7
2. soldering: 4→5
3. temp.test by temp. chamber: 8→7
4. temp.test by vibr. chamber: 9→10

5. vibr.test by vibr.chamber: 4→5
6. vibr.test by temp.chamber: 10→9
7. transportation from depot to temperature test:
3→4
8. each transportation is increased by 1 time unit

Conclusions

In this paper we introduced a genetic algorithm-based scheduler, which is able to
handle multiple projects with shared resource. These resources can be multi-
functional. The processes to schedule can have parallel structured parts. The
genetic operators were created to result only feasible schedule.

We found that in case of our model problem, minimum 400 generations, about
100 instances of a population is needed, and both the crossover rate and the
mutation rate have important role. Our test results for the static problem were the
best with crossover rate 0.3 and mutation rate 0.38 by applying coarse resolution.
When the problem was changed to be a stochastic one by using variables for
operation times and process number − taking care for being their average value the
same as in case of the static problem − the results indicated that the algorithm
parameters have the same impact. Future works can determine in more detail how
the results depend on the input.

Acknowledgement

The authors wish to thank Prof. Katalin M. Hangos from Computer and
Automation Research Institute, Budapest, Hungary, for her advice during the
creation of this paper. We acknowledge the financial support of Széchenyi 2020
under the EFOP-3.6.1-16-2016-00015. We are also thankful for the helpful
comments of the referee.

References

[1] Alba, E. and Chicano, J. F.: Software project management with GAs,
InformationSciences, 177 (2007) No. 11, pp. 2380-2401

[2] Brucker, P.: Scheduling Algorithms, Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2001, 3rd edn

[3] Chang, C., Christensen, M., and Zhang, T.: Genetic algorithms for project
management, Annals of Software Engineering, 11 (2001) No. 1, pp. 107-
139

[4] Chang, C. K., Jiang, H.-y., Di, Y., Zhu, D., and Ge, Y.: Time-line based
model for software project scheduling with genetic algorithms, Inf. Softw.
Technol., 50 (2008) No. 11, pp. 1142-1154

 – 118 –

Acta Polytechnica Hungarica Vol. 15, No. 4, 2018

[5] Chen, P., Wen, L., Li, R., and Li, X.: A hybrid backtracking search
algorithm for permutation flow-shop scheduling problem minimizing
makespan and energy consumption, in: 2017 IEEE International
Conference on Industrial Engineering and Engineering Management
(IEEM) 2017, pp. 1611-1615

[6] Garey, M. R., Johnson, D. S., and Sethi, R.: The complexity of flowshop
and jobshop scheduling, Mathematics of Operations Research, 1 (1976) No.
2, pp. 117-129

[7] Glover, F.: Tabu search-part i, ORSA Journal on computing, 1 (1989) No.
3, pp. 190-206

[8] Joo, B. J. and Chua, P. C.: Multimode resource-constrained multi-project
scheduling with ad hoc activity splitting, in: 2017 IEEE International
Conference on Industrial Engineering and Engineering Management
(IEEM) 2017, pp. 2261-2265

[9] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P.: Optimization by simulated
annealing, Science, 220 (1983) No. 4598, pp. 671-680

[10] Pavol, S. and Vladimír, M.: A comparison of constructive heuristics with
the objective of minimizing makespan in the flow-shop scheduling
problem, Acta Polytechnica Hungarica, 9 (2012) No. 5, pp. 177-190

[11] Pinedo, M. L.: Scheduling: Theory, Algorithms, and Systems, Springer
Publishing Company, Incorporated, 2008, 3rd edn.

[12] Pongcharoen, P., Hicks, C., Braiden, P. M., and Stewardson, D. J.:
Determining optimum genetic algorithm parameters for scheduling the
manufacturing and assembly of complex products, International Journal of
Production Economics, 78 (2002) No. 3, pp. 311-322

[13] Sadegheih, A.: Scheduling problem using genetic algorithm, simulated
annealing and the effects of parameter values on GA performance, Applied
Mathematical Modelling, 30 (2006) pp. 147-154

[14] Votava, O.: A network simulation tool for task scheduling, Acta
Polytechnica, 52 (2012) No. 5, pp. 112-119

[15] Zhang, G., Gao, L., and Shi, Y.: An effective genetic algorithm for the
flexible job-shop scheduling problem, Expert Syst. Appl., 38 (2011) No. 4,
pp. 3563-3573

 – 119 –

	1 Introduction
	2 The Example Processes and the Model of the Problem
	2.1 The Basic Example Processes
	2.2 Difficulties of the Problem
	2.3 Notations
	2.4 Constraints

	3 The Genetic Algorithm
	3.1 Representation
	3.2 Population
	3.3 Fitness Function
	3.4 Elitism
	3.5 Crossover
	3.6 Mutation
	3.7 Parameters of the Algorithm

	4 Results
	4.1 Results for the Deterministic Problem
	4.2 Results for Stochastic Problem

