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Abstract: The current paper introduces a novel controller design approach dealing with the
control of affine Linear Parameter Varying (LPV) systems using the abstract mathematical
properties of the LPV parameter space and classical state-feedback design. By the designed
controller structure the parameter dependent LPV system mimics a given selected reference
LTI system reaching given performance specifications originally prescribed for the reference
LTI system. Further, the actual feedback gains are calculated by comparison to the reference
control gains - thus, realizing a ”relative control”. The method is demonstrated on given
nonlinear biomedical problems with simulation results under MATLAB.
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1 Introduction

Nonlinear controller design is a challenging task even using current increased com-
putational power. Although the physical reality is mostly nonlinear, the most widely
used controller design approaches are based on linear controller design methodolo-
gies providing particular solutions around the favorable operating range of the origi-
nal systems. In the last decade, different controller design solutions appeared trying
to describe and handle the whole operation range of the nonlinear systems based on
optimization, iteration or else and they exploited the possibilities of the increased
numerical calculation capacities [1].
The recently developed Robust Fixed Point Transformation (RFPT)-based controller
design [2] uses inverse kinematics and dynamics to accurately approximate the sys-
tem to be controlled and formalize the control task as a fixed point problem. If the
conditions are satisfied through the convergence of Cauchy series in the Banach-
space the controller adapts itself to the requirements of the system along the prede-
fined performance specification [2].
Significant direction is the usage of the Lyapunov stability theorems combined with
Linear Parameter Varying (LPV) methodology, as the conditions of the stability are
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defined as Linear Matrix Inequalities (LMI) and the solutions, namely, the appropri-
ate controllers can be calculated through advanced LMI-optimization tools [3]. This
direction is represented by the Tensor Product (TP) transformation based controller
design which originates from the Fuzzy theorem and uses the LPV-LMI optimiza-
tion methods [4].
The current research work focuses to an other direction, namely, how can be used
the mathematical properties of the LPV parameter space in controller design re-
garding the classical state feedback control in such a way that the completed con-
troller structure handles the LPV system and through the original nonlinear system.
This approach does not require convex LMI optimization neither inverse kinemat-
ics, however, it can provide global stability.
The paper is structured, as follows: first we introduce the affine LPV systems and
the classical state feedback approaches; after, we present the proposed novel con-
trol scheme; then the method is demonstrated via a nonlinear biomedical problems;
finally, we conclude the results of the research.

2 Affine LPV Configuration

The affine LPV configuration originates from the Linear-Time Invariant (LTI) and
Variant (LTV) systems. The classical state-space representation of an LTI system
can be described as:

ẋ(t) = Ax(t)+Bu(t)+Ed(t)
y(t) =Cx(t)+Du(t)+D2d(t) , (1)

where A(t) ∈ Rn×n is the state matrix, B(t) ∈ Rn×m and E(t) ∈ Rn×l are the control
and disturbance input matrices, C(t) ∈ Rp×n is the output matrix, D(t) ∈ Rp×m and
D2(t) ∈ Rp×l are the input and disturbance feed-forward matrices. The x(t) ∈ Rn,
u(t) ∈ Rm, d(t) ∈ Rl vectors are the state, control and disturbance input vectors.
Similar to LTI systems, the parameter dependent affine LPV systems can be de-
scribed easily with their general state-space representation:

ẋ(t) = A(p(t))x(t)+B(p(t))u(t)+E(p(t))d(t)
y(t) =C(p(t))x(t)+D(p(t))u(t)+D2(p(t))d(t) . (2)

In this case, each matrix is a function of the parameter vector p(t) ∈ Rk, which is a
k-dimensional real time function and the elements of it are the scheduling variables
- the preliminary selected functions of the given nonlinear system [3]. Thus, this
configuration allows to handle the nonlinear system as a linear one by hiding the
nonlinearity of the system inside the scheduling variables. Hence, by the use of
LPV systems linear controller design methodologies can be applied on the nonlinear
systems itself.
Among different representation of LPV systems, in the affine case the scheduling
parameter is a function of the a state / states and these dependencies can be described
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as follows [3]:

A(p(t)) = A0 +
k

∑
i=1

pi(t)Ai B(p(t)) = B0 +
k

∑
i=1

pi(t)Bi

E(p(t)) = E0 +
k

∑
i=1

pi(t)Ei C(p(t)) =C0 +
k

∑
i=1

pi(t)Ci

D(p(t)) = D0 +
k

∑
i=1

pi(t)Di D2(p(t)) = D2,0 +
k

∑
i=1

pi(t)D2,i

. (3)

3 State Feedback and Gain-Scheduling Control

The idea of optimal state feedback control for LTI systems originates from the 1960s
when the cost function based optimization appeared in modern control engineering.
Over decades, different cost functions and feedback gain calculation techniques ap-
peared like quadratic regulation, energy minimization, time minimization or track-
ing error minimization, etc. [5]. Regarding to LPV systems the first generation of
gain scheduling control techniques were developed in the late 1990s [6, 7].
In case of state feedback control, the control signal occurs in the following form:

u(t) =−Kx(t) , (4)

where K ∈ Rm×n is the feedback gain matrix. K can be designed via different
iteration-based methods. For example, in case of Linear-Quadratic (LQ) control,
the control input of (4) minimizes the following cost function [8]:

J(u) =
∫

∞

0

(
xT Qx+uT Ru+2xT Nu

)
dt , (5)

and the optimal gain K can be calculated by solving the control algebraic Ricatti
equation [8]:

AT X +XA− (XB+N)R−1(BT X +NT )+Q = 0
K = R−1(BT S+NT )

. (6)

The optimal K gain provides better control performances through pole-placement
of LTI systems. In general, this configuration modifies the open-loop Aopen state
matrix into Aclosed = Aopen−BK via (4). The poles of the characteristic equation
can be calculated, as follows:

| Iλ −A+BK |= 0 . (7)

In gain-scheduling control, which is a natural choice in case of affine LPV system,
the optimal gain becomes parameter dependent [6]:

u(t) =−K(p(t))x(t) . (8)

The class of p(t) dependent controllers of (8) are similar with the class of p(t)
dependent system of (2). Since, the continuous controller design is impossible,

– 47 –



Gy. Eigner Novel LPV-based Control Approach for Nonlinear Physiological Systems

the reasonable choice is to divide the k dimensional parameter space into different
slices. Hence, different controllers have to be designed for each slice and these con-
trollers can handle the occurring LTI systems inside these slices. The drawback is
the high computational capacity, complex switching schedule (as p(t) varies over
time) and the necessary advanced methods providing global stability.
Instead of this natural, however sometimes unmanageable configuration, the poly-
topic model configuration and polytopic controller design spread out in control en-
gineering [3, 9–11].
In politopic cases, the number of necessary controllers are reduced. If, the parameter
space is handled as a vector space and the occurring LTI systems (”system trajec-
tory”) are inside a given region of the vector space, a convex hull can be designed,
which wraps the system trajectory. As a result, it is enough to design specified
number of controllers to the determining point of the p-space. Thus, if the con-
vexity properties are fulfilled, the resulting controller (as convex combination of
the designed controllers) can handle each occurring LTI system inside the poly-
tope [10,11]. The benefits of these methods are the drawbacks at the same time: the
necessary deep mathematical knowledge and understanding, high computational ca-
pacity. The global stability is only particularly true, i.e. if the system trajectory does
not exit from the convex hull (the value of p(t) cannot be higher or lower than the
predefined values) [11, 12].

4 Novel, Specific Control Scheme

We have previously investigated the opportunities of using the mathematical prop-
erties of the parameter space in order to define norm-based performance markers
for LPV systems and examined the general properties of models used in diabetes
researches [11]. However, these properties can be observed in large number of
physiological systems, as well:

• Input(s) are not affected by nonlinearities and do not have direct inputs-outputs
connection (D and D2 are persistent in time and zero matrices)

• Output(s) are not affected by nonlinearities

• Since the nonlinearities do not affect the inputs and the outputs, it is not nec-
essary to select their elements as scheduling parameters, which means that
B and C are independent from the parameter vector p; moreover, these are
usually time-independent

• The nonlinearities only appear in the state matrix A(p(t)) regarding to the
nonlinear system dynamics, nonlinear cross effects and nonlinear coupling;
the patient variabilities mostly occur in the elements of A.

The necessity, which originally brought to life the LPV methods and theories was
to handle the nonlinear systems as linear ones. Thus, each element of the time-
dependent and nonlinear A should be selected as scheduling variable.
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In our previous study [11], we have shown that every parameter dependent LPV sys-
tem can be equivocally determined by the belonging parameter vector if the above
statements are fulfilled. In other words, each p parameter vector (a point in the
parameter space) belongs to an underlying LTI system S(p), further, each S(p) is
equivocally determined by its corresponding p parameter vector.

4.1 Investigated LPV Model Class

Our investigation focuses on LPV systems that have parameter dependent elements
only in their A(p(t)), as follows:

ẋ(t) = A(p(t))x(t)+Bu(t)+Ed(t)
y(t) =Cx(t)+Du(t)+D2d(t) . (9)

If the parameter vector is persistent in time, the belonging parameter dependent LPV
system can be simplified to an LTI system. Moreover, the vary of p(t) realizes the
system trajectory, which consist of infinite number of LTI systems. In this case,
each points in the parameter space equivocally determines an underlying LTI sys-
tem. This property allows to define different norms in the parameter space on the
parameter vectors, however, most of them can be interpreted on the underlying LTI
system.
In this study, we deal with this specific model class and the proposed controller
design method is valid on this particular group of models (mostly true in case of
physiological systems).

4.2 Mathematical Background

Definition 1. Similarity of matrices [13]: A quadratic, n×n matrix A is similar to
a matrix B, if an invertible C matrix exists that A =C−1BC. Notation: A∼ B.

The definition above has wide range of applications. Two of them can be found in
the following theorems [13, 14]:

Theorem 1. Similarity invariance of the determinants of matrices: If A ∼ B, then
|A|= |B|.

Proof. Let A∼ B, namely, A =C−1BC. Then |A|= |C−1BC|= |C−1||B||C|= |B|,
since |C||C−1|= 1 [13].

Theorem 2. If A∼ B, then the characteristic polynomials of the matrices and thus,
the eigenvalues and the geometric and algebraic multiplicities of the eigenvalues of
the matrices are the same.

Proof. Let A ∼ B, namely, A = C−1BC. Then A− λ I = C−1BC− λC−1IC =
C−1(BC−λ IC) =C−1(B−λ I)C, namely, A−λ I ∼ B−λ I [13].

These mathematical tools can be used to define eigenvalues equality rules for state
feedback systems.
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4.3 The Completed Feedback Gain Matrix

Let us define the compact form of (9):

(
ẋ(t)
y(t)

)
=

(
A(p(t)) B E

C D D2

)x(t)
u(t)
d(t)

= S(p(t))

x(t)
u(t)
d(t)

 , (10)

where S(p(t)) ∈ R(n+p)×(n+m+l). When p is persistent in time, (10) simplifies to a
LTI system, which is represented by S of (11).

(
ẋ(t)
y(t)

)
= S

x(t)
u(t)
d(t)

 . (11)

Each LPV system is dependent from the parameter vector p(t), which may vary in
time. As we mentioned earlier, this variation realizes a system trajectory S(p(t))
in the parameter space, which consist of infinite number of LTI systems. These
LTI systems appear over time, during the variation of p(t). The only difference be-
tween the occurred LTI systems are the different belonging parameter vectors, if the
aforementioned requirements - each nonlinearity causing and time variant terms and
variables have to be selected as scheduling parameter in order to avoid underlying
differences, the nullspace problem, etc. [11] - are fulfilled.
From state feedback design point of view, without gain scheduling or other ad-
vanced techniques that would mean the need of infinite number of optimal gains
to handle the occurring LTI systems (in continuous time), which is obviously im-
possible. However, if we want to apply the linear state feedback controller design
techniques on the given LPV system, we can utilize this property, namely, the dif-
ference between the occurring LTI systems are only the values of the belonging
parameter vectors.
In order to embed the ”difference” into the controller scheme, we applied the re-
sults of our previous study [11]. In this study, we concluded that it is possible to
use 2-norm based difference interpreted on the space of the parameter vector to de-
fine dissimilarities between LTI systems, which belong to given parameter vectors.
For example, in case of two points a and b in the parameter space represented by
”persistent” parameter vectors, the 2-norm based difference among these is:

e = ||pa− pb|| . (12)

This difference marker allows the description of the difference between arbitrary
points in the parameter space, in other words, the dissimilarities among different
belonging LTI system (e.g. in the above mentioned case the dissimilarity between
S(pa) and S(pb). Moreover, it is possible to use e(t) as a function of time, when
we describe the difference between a reference point pre f and the p(t) and of course
the dissimilarity between the belonging underlying LTI systems, S(pre f ) and S(p(t).
In the followings a 2D parameter space example is presented: having two schedul-
ing variables p(t) ∈ R2. During the operation of the system, the p(t) varies over
time from pact(t0) to pact(tn). It is possible to describe the 2-norm based difference
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between the reference point pre f and actual parameter vector pact (and actual dis-
similarity between S(pre f ) and S(p(t)) by e(t).

S(pre f )

S(pact(t0))

S(pact(tn))

S(pact(tp))

e(tp)

p1(t)

p 2
(t
)

Figure 1
2D example of the interpretation of the 2-norm based difference between a reference point (reference

system) and the actual p(t) (actual LTI system S(p(t)) ).

Let us define a reference point in the parameter space pre f , which serves as the ref-
erence parameter vector and Sre f as its corresponding LTI reference system. Conse-
quently classical state feedback design can be applied on Sre f . Generally, the goal
of controller design in such methodologies is to provide optimal feedback gains as a
result of an integral optimization process. The appearing optimal feedback gain has
to stabilize the system, and to reach better properties for the system to be controlled.
This should be done by the new poles of characteristic equation. Let us consider that
Kre f is an eligible and optimal gain for the Sre f LTI system. In this case, the modi-
fied state matrix of the state-feedback reference system will be A(pre f )−BKre f and
the eigenvalues λre f can be calculated via solving the characteristic equation:

| Iλre f − (Are f −BKre f ) |=| Iλre f −Are f +BKre f |= 0 . (13)

In the parameter space, each underlying parameter dependent LTI system S(p) is
unequivocally determined by its belonging parameter vector p. If, the dissimilar-
ity between the parameter dependent LTI systems can be described by the 2-norm
based difference of the parameter vectors (as we have seen earlier), then it is possi-
ble to use this connection to define such kind of unique, completed state feedback
controller, which is designed for the reference LTI system S(pre f ); however, it can
deal with each occurring LTI system S(p(t)) during operation. Moreover, if this
completed controller can provide stability and good performance criteria for the ref-
erence system S(pre f ), it can provide the same properties for each occurring S(p)
(and the LPV system S(p(t))). On the other hand, that means that, if we have a
nonlinear system, we can transform it to an LPV system and with this approach,
we can design a controller handling this LPV and in ultimate sense, the nonlinear
system itself.
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First of all, we consider that the LPV system is in the form of (10); thus, only the
state matrix A(p(t)) is parameter dependent. Let consider the closed-loop system
matrix as follows:

A(p(t))−B(Kre f +Ke(t)) , (14)

where e(t) is the 2-norm based difference between the pre f and p(t) and Km×n is
a continuously calculable gain. At this point, two main considerations are needed.
The first, that this configuration has to provide the stability, namely, the state matrix
(14) of the newly defined closed-loop system should have eigenvalues with negative
real parts. The second, this criteria can be satisfied, if we apply a specific form of
the above defined Theorem (1)-(2).
Let Are f +BKre f ∼ A(p(t))−B(Kre f +Ke(t)), which means that the eigenvalues of
the two matrices are equal λ (pre f ) = λ (p(t)) at ∀p(t), if λ (p(t)) is the eigenval-
ues of (A(p(t))−B(Kre f +Ke(t))). This is only possible, if the similarity trans-
formation matrix is the In×n unity matrix. Namely, Are f −BKre f = I−1(A(p(t))−
B(Kre f +Ke(t)))I, i.e. the introduced completed gain has to provide the ”smoother”
similarity, but also the ”strict” equality criteria. Shortly, the proposed completed
feedback gain Kre f +Ke(t) has to provide the equality of not just the eigenvalues
λ (pre f ) = λ (p(t)), but also the equality of the matrices, as well:

Are f −BKre f = A(p(t))−B(Kre f +Ke(t)) . (15)

4.4 Consequences, Controller Design and Limitations

Let us consider that p(t) can be measured or estimated. In this case, the only un-
known in matrix in (15) is K. By rearranging (15), the K can be calculated at every
p(t):

K =
B−1(Are f −BKre f −A(p(t))+BKre f )

e(t)
=

B−1(Are f −A(p(t)))
e(t)

(16)

In this way:

A(p(t))−B(Kre f +Ke(t)) =

A(p(t))−B

(
Kre f +

B−1(Are f −BKre f −A(p(t))+BKre f )

e(t)
e(t)

)
, (17)

such a controller structure appears, which can provide that the LPV system S(p(t))
is going to behave as the feedback controlled LTI reference system S(pre f ) itself,
regardless from the actual value of p(t). Shortly, the LPV system will mimic the
feedback controlled reference LTI system.
Figure 2 demonstrates the completed control loop in compact form - which is neces-
sary to realize this idea in practice. Since, we considered that p(t) can be measured
or estimated, the 2-norm based difference is available at any time.

At this point, we can summarize the main steps which are needed in order to realize
the proposed controller design method:
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S(p(t))

K(pre f )+Ke(t)

z(t) x(t)

‖.‖2

p(t)

pre f

-

y(t)
r(t) u(t)

-

Figure 2
Feedback control loop with completed gain

1. Realize and validate the LPV models in appropriate form (from the original
nonlinear model),

2. Select the reference point pre f , which determines S(pre f ) reference system in
accordance to the needs of reality; namely, the selection of such a reference
LTI S(pre f ) system is needed, which can provide the best operating results
from the given application point of view.

3. State feedback controller design via linear controller design method in order
to realize the optimal Kre f gain for the S(pre f ) system.

4. Design of the eligible controller scheme, including the appropriate form of
(16).

5. Realize of the control environment.

Through the above mentioned points, the controller design is possible and easy to
handle. This novel method may provide another controller design possibility then
gain scheduling or LPV-LMI based approaches, but have limitation as well:

1. In this point, we summarized the considerations so far, which are needed in
order to use this controller design approach: the nonlinear system should be
given in form of (10) or has to be transformed to this term; only the A(p(t))
can be parameter dependent in (10); p(t) should be measurable or estimable;
S(pre f ) should be a well selected reference LTI system from the given appli-
cation point of view. Each nonlinear system which is state-space represented,
can be transformed to the form of (10), if the nonlinearities are connected to
the selected state variables.

2. The invertibility of B is a key point. Generally, Bn×m is not a square matrix
and occasionally contains dependent linearly columns, as well. Here we have
three cases: (i) B is square matrix and invertible; (ii) B is not a square matrix,
however, does not contain linearly dependent columns; (iii) B is not square
matrix and does contain linearly dependent columns. In the first (i) case, B
is invertible and (16) can be used to calculate K. For the second (ii ) case, if
B is not a square matrix, but linearly independent, the left hand side matrix
multiplication of B with BT can be a solution. In this manner, the completion
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of (15)-(16) is necessary, as follows:

Are f −BKre f = A(p(t))−B(Kre f +Ke(t))
(Are f −BKre f −A(p(t))+BKre f ) = BKe(t))
BT (Are f −A(p(t))) = BT BKe(t))

K =
(BT B)−1BT (Are f −A(p(t)))

e(t)

, (18)

where the BT B term becomes now a square matrix and without linear depen-
dency among the columns of it is invertible. The most unfavorable case is the
third (iii) case when B is not a square matrix and does have linearly depen-
dency. In this case, BT B may be singular. However, with other techniques
like singular value decomposition (SVD) [14], BT B can be approximated or
through Gram-Schmidt orthogonalization method [15], the BT B can be trans-
formed such that the linear dependency can be eliminated. However, if these
techniques are not usable the K in form of (16) cannot be calculated, only BK
can be calculated.

3. The third important point is the question of singularity. When the reference
point pre f and the actual parameter vector p(t) are equal to each other, e(t) =
0, which causes that K of (16) becomes infinite. In order to avoid this situation
in practice, a condition should be embedded into the calculation of K via (19):

K =


0 if − ε < e(t)< ε

B−1(Are f −A(p(t)))
e(t)

otherwise
, (19)

where ε is a real number. If, e(t) = 0 it means pre f = p(t) and S(pre f ) =
S(p(t)); in other words, for those LTI systems where p(t) is near to pre f ,
namely, S(p(t))|−ε<e(t)<ε we apply only the Kre f feedback gain. However,
the goal is to avoid singularity, hence ε can be as small as numerically does
not cause problems during the calculations. Rationally, the Kre f gain is the
optimal gain for S(pre f ) LTI system. In the small ”environment” of S(pre f ),
when S(p(t)) is near to equal S(pre f ), the Kre f is able to handle the system
S(p(t))|−ε<e(t)<ε (provide stability, etc.), however, approximation error can
be occur.

In the following section, we demonstrated the proposed methodology in case of
different models between various circumstances.

5 Case Studies

Two different control examples are examined on nonlinear models to demonstrate
the applicability of the presented method. The examinations are made alongside the
aforementioned main steps:

1. Realization and validation of valid LPV models in appropriate form

2. Design of the eligible controller scheme
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3. Realization of the control environment

5.1 Control of a Simple Nonlinear System

First the demonstration is done on a simply ”academic”’nonlinear system without
input-output limitations, where each state variables can be considered outputs as
well. The system dynamics are described with the following equations:

ẋ1(t) = x1(t)x2(t)+u1(t)
ẋ1(t) =−2x2(t)+4

√
x3(t)x2(t)+u2(t)

ẋ1(t) =−2x3(t)+u3(t)
. (20)

Selecting x1(t) and
√

x3(t) as scheduling variables, i.e. p(t) = [x1(t),
√

x3(t)]T the
equation can be written in form of (9):ẋ1(t)

ẋ2(t)
ẋ3(t)

= A(p(t))

x1(t)
x2(t)
x3(t)

+B

u1(t)
u2(t)
u3(t)

 , (21)

where A(p(t)),B,C and D are, if the output is x1:

A(p(t)) =

0 0 0
0 −2 0
0 0 −2

+
0 1 0

0 0 0
0 0 0

 p1(t)+

0 0 0
4 0 0
0 0 0

 p2(t) (22)

and

B =

1 0 0
0 1 0
0 0 1

 C =
[
1 0 0

]
D =

[
0 0 0

]
. (23)

We considered that there is no disturbance in the system. Considering pre f =
[−1,1]T the reference point, the underlying LTI state matrix Apre f becomes:

Apre f =

 0 −1 0
4
√

1 −2 0
0 0 −2

 . (24)

The eigenvalues of Apre f are λre f = [−1± 1.7321i,−2] meaning that the reference
LTI system is stable. However, the higher imaginary parts may cause higher oscil-
lations in the answer of the system.
In order to realize the completed controller structure, the last missing part is the ref-
erence gain Kre f , the optimal feedback gain for S(pre f ). We found that the rank of
the controllability matrix was 3, i.e. the system is controllable (n = 3). We designed
an LQ regulator via the MATLAB embedded lqr order. Our goal was to only to
introduce the completed controller design method; hence, we did not focus on the
selection of Q and R. Thus, we applied a standard rule during selection of Q and R:
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Q =CTC and R = Im (unity matrix). In the given circumstances we concluded that
the reference feedback gain was equal to:

Kre f =

0.436 −0.1 0
−0.1 0.0469 0

0 0 0

 . (25)

With this Kre f , the eigenvalues of the closed-loop reference state matrix A(pre f )−
BKre f are λre f ,closed = [−1.2415± 1.7439i,−2], which means that with this Q and
R the Kre f causes only a small improvement in the eigenvalues (smaller real and
imaginary parts).
We have applied reference compensation, namely set-point control to determine the
steady state values of the states. However, as A(p(t)) is parameter dependent and
vary in time, the necessary compensator has to follow these changes. The parameter
dependent compensator matrices can be calculated as follows [8]:

[
A(p(t))

B

][
Nx
Nu

]
=

[
On×m

Im

]
→
[

Nx
Nu

]
=

[
A(p(t))

B

]−1 [On×m
Im

]
, (26)

where On×m is the zero matrix, while Im the unity matrix. The applied reference was
persistent in time, with values of r = [10,15,14]T and the initial state values were
x0 = [20,20,20]T . In order to avoid singularity during calculation of K, we applied
ε = 1e−5 limit (−1e−5 < e(t)< 1e−5→ K = Kre f , otherwise K is calculated as
in (16).
Results can be seen on Fig. 3. The upper left figure shows the changing of the
state variables of the reference LTI system S(pre f ) in time, while the top right figure
shows the changing of the state variables of the LPV system S(p(t)) in time. The
lower left diagram shows the error between the system. Since, the order is 1e-14,
only numerical calculation error can be seen between the systems during operation.
The lower right diagram shows the parameter space. The pre f is the reference pa-
rameter vector, the ppar,start and ppar,end is the starting and ending points of p(t)
parameter vector.
One can see that the completed controller works well and the parameter dependent
LPV system mimics the behavior of the reference LTI system regardless from the
variation of p(t) over time.

5.2 Control of Nonlinear Compartment Model

In this example we demonstrated our controller solution in case of physiological
compartmental models with high nonlinearities. Compartmental modeling is ex-
tremely useful and widely used in modeling of physiological systems [16]. Since,
this example system can be handled as a physiological system, we tried the opera-
tion of the controller with ”high” saturations.
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Figure 3
Result of the simulations

Consider an arbitrary compartmental model given by the following equations:

ẋ1(t) =−k
x1(t)

1+ax1(t)
+bx2(t)− c(x2(t)+ z)x1(t)+

u1(t)
V1

ẋ2(t) =−k
x2(t)

(1+dx2(t))
−bx2(t)+

u2(t)
V2

, (27)

where a = 0.4 [L/mmol], b = 0.1 [1/min], c = 0.5 [1/min], d = 0.005 [L/mmol],
k = 0.8 [1/min], z = 0.1 [mmol/L], V1=2 [L] and V2=1 [L]. The x1(t) and x2(t) are
the states and u1 and u2 [mmol/min] are the inputs. The model has three nonlin-
earities: the natural degradations of the compartments are loaded with Michaelis-
Menten-type saturations and x2 has a coupling to an output of x1. Figure 4 shows
the graphical representation of the model.

The selected scheduling variables are p=

[
k

1+ax1(t)
,x2(t)+z,

k
1+dx2(t)

]T

. Sim-

ilarly to (20)-(21), the state-space representation of the LPV system can be written,
as follows (x1 and x2 are considered outputs as well):(

ẋ1(t)
ẋ2(t)

)
= A(p(t))

(
x1(t)
x2(t)

)
+B

(
u1(t)
u2(t)

)

A(p(t)) =
[

0 b
0 −b

]
+

[
−1 0
0 0

]
p1(t)+

[
0 0
−c 0

]
p2(t)+

[
0 0
0 −1

]
p3(t)

B =

[
1/V1 0

0 1/V2

]
C =

[
1 1

]
D =

[
0 0

]
. (28)

The selected reference parameter vector is pre f = [0.6667,0.6,0.64]T (where [x1,d ,x2,d ]
T =
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Figure 4
Nonlinear compartmental model

[0.5,0.5]T ). At the reference point, the A(pre f ) is equal to:

A(pre f ) =

[
−0.6697 0.1

0 −0.74

]
. (29)

and the eigenvalues of the A(pre f ) are λ = [−0.6697,−0.74]T , i.e. the reference LTI
system is stable, however, the poles are close to zero. The rank of the controllability
matrix is 2, i.e. the reference LTI system is controllable (n = 2). We used the
MATLAB care order to design the Kre f gain beside Q = I2 (unity matrix) and R =
0.01I2. The obtained result is:

Kre f =

[
8.7493 0.058
0.1161 9.2883

]
. (30)

This Kre f provides that the eigenvalues of the closed-loop reference state matrix
A(pre f )−BKre f are λre f ,closed = [−5.046,−10.0267]T - which is a good improve-
ment, since the new eigenvalues are much far from zero. The completed controller
structure will provides that the parameter dependent LPV system’s closed-loop state
matrix will be equal to λre f ,closed regardless from the actual value of p(t). From here,
K can be calculated at each iteration as (19).
We applied the same reference compensation as in the previous example. In order
to realize this, we used (26) to calculate the compensator matrices at each iterations
during operation. The selected reference levels were r = [8,7]T , the initial states
x0 = [20,10]T and the selected bound in order to avoid singularity was ε = 1e− 5
during calculation of K based on (19).
The results can be seen on Fig. 5. The upper left diagram shows the change of
the state variables of the reference LTI system S(pre f ) over time, while the upper
right diagram represents the simulation results over time of the state variables of the
parameter dependent LPV system S(p(t)). The difference (error) between them is
represented by the lower left diagram. However, as the p(t) varies over time (as the
lower right diagram shows), there is only numerical difference between the states
of S(pre f ) and S(p(t)). That means, the LPV system and indirectly, the original
nonlinear system, precisely mimics the behavior of the reference LTI system over
time. Since, the given example is a physiological one, we tried the accuracy of the
proposed controller structure, if there is a saturation on the control input, which
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Figure 5
Results of the simulation without control input saturations

does not allow the occurrence of physiological not relevant control inputs (control
inputs only can be positive or has to be higher than a given amount). We have found
that the results are different than the previous case, which mostly come from that
fact, that the selected scheduling variables are dependent from the actual values of
the states. Namely, the state variables are coupled to the S(p(t)) through the p(t).
However, we did not use any saturation on the values of the state variables to com-
pensate the effect of the saturation.
Figure 6 represents this latter scenario, when saturation is applied. Each parame-
ter turned to be the same during the simulation, except that we consider that the
input signal cannot be negative at all. The results shows that there is a difference
between the states of S(pre f ) and S(p(t)) over time. However, the controller can
handle the situation and can provide stable control for S(p(t)). The difference is
slowly decreasing and the state variables reach the predefined reference levels.

Conclusions

In this paper we introduced a novel LPV-based controller design approach. This
method provides a mixture of classical, optimal state-feedback control and a sup-
plementary control, which is based on the 2-norm difference between parameter
vectors (and belonging parameter dependent LTI systems) of the LPV parameter
space. The main advantage of the proposed controller structure is that it is sufficient
to design a reference controller for a reference LTI system and the actual, neces-
sary control action, over time, will be determined by comparison to this reference
controller through algebraic manipulations. Moreover, the LPV system will mimic
the behavior of the reference system over time, requiring an appropriately selected
reference LTI system. The completed controller can thus guarantee the stability of
the system. Moreover, it is enough to determine performance specifications only for
the reference LTI system - due to the completed controller forces, the LPV system
will aquire these specifications, as well.
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Figure 6
Results of the simulation with control input saturations
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