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Abstract: Addressing the challenges of managing high-performance computing workloads in 
dynamic cloud environments, this paper presents a SLURM-based reference architecture. 
We elaborated Infrastructure as Code (IaC) to automate the deployment and management of 
SLURM, enabling efficient resource allocation and scalability. The basic scheduler 
architecture descriptor was further extended with computational tools and frameworks 
required by the HUN-REN Cloud scientific community. Results from benchmark experiments 
show significant performance improvement through parallelization, demonstrating 
SLURM's ability to utilize cloud resources for fair workload management of calculation-
heavy tasks. Our AlphaFold protein structure prediction experiments demonstrate an 82.1% 
reduction in computational runtime when scaling from 1 to 8 worker nodes, with execution 
time decreasing from 3154.75 seconds to 563.75 seconds. 
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1 Introduction 
The HUN-REN Cloud [1] provides high-performance scientific computing for the 
Hungarian research community. This scientific cloud has already supported around 
400 research projects by providing resources and support to researchers. To support 
the rapid development of AI research, there is a growing demand for computational 
capacities. As resources within the HUN-REN Cloud are limited, it is crucial to 
ensure that researchers have equal access to them. The purpose of the job scheduler 
is to enable the efficient, dynamic, and fair allocation of resources among 
researchers in this multi-user computing environment. 
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These scheduling mechanisms are critical components in modern computing 
environments, particularly in HPC and distributed systems. They allocate capacities 
efficiently, manage job execution sequences, and optimize system utilization. These 
factors are essential to improve performance, reduce wait times, and ensure fairness 
among users [2]. To understand why introducing such scheduling logic is beneficial 
to workloads, we need an examination of some interconnected aspects, including 
resource efficiency, adaptability to workload changes, and optimization of job 
completion times, as these aspects are all influencing performance metrics in 
distributed system environments. 

The main purpose of job scheduling involves maximizing resource efficiency along 
with reducing the duration of job waiting time. These platforms orchestrate resource 
allocation and task execution, affecting overall system utilization and job 
turnaround time. Zhao et al. [3] demonstrate that job scheduling effectiveness 
determines QoS quality and system performance thus requiring optimal job 
allocation strategies to reach high efficiency levels. The selection of job scheduling 
policies through prioritization affects both user experience and resource utilization 
efficiency, demonstrating direct link between scheduling methods and system 
performance [4]. 

High-performance computing (HPC) environments excel in processing power 
through optimized hardware configurations, low-latency interconnects, and system 
architectures specifically designed for intensive scientific workloads. In contrast, 
cloud computing platforms offer superior portability and scalability for variable 
workloads. This creates a fundamental trade-off where HPC systems maximize 
processing power at the expense of flexibility, whereas virtualized systems 
prioritize accessibility and resource elasticity at the potential cost of peak 
performance. 

Our primary research objective was to create a computing platform for job 
scheduling that combines the advantages of both HPC and cloud technologies. We 
aimed to develop a solution that enables a more dynamic allocation of 
computational resources in multi-user cloud environments, effectively minimizing 
idle time (e.g. CPU, GPU) while maintaining system stability and providing access 
across different user groups and research teams. To achieve this integration, we 
implemented SLURM [5] (Simple Linux Utility for Resource Management) as a 
reference architecture (see the specification in next section), providing a robust on-
demand deployment management layer that bridges traditional HPC workload 
management with cloud elasticity. According to current studies, SLURM remains 
an ideal solution for HPC environments, based on its workload management 
efficiency and parallel execution criteria [6]. 
To enhance automation, scalability, provide configuration consistency and maintain 
deployment reproducibility across our computing platform, we adopted the 
Infrastructure as Code (IaC) paradigm. This methodology allowed us to define and 
manage our entire infrastructure through machine-readable definition files rather 
than physical hardware configuration or interactive configuration tools.  
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By codifying our system specifications, we achieved greater consistency between 
deployments, so the SLURM platform could be further developed, tested and 
maintained more efficiently, and rolled back when necessary. 

The rest of the paper is organized as follows: Section 2 presents the bridging of 
traditional HPC and cloud environments, followed by the reference architecture 
implementation. Section 3 describes our measurement methodology and 
experimental results using AlphaFold protein structure prediction as a benchmark 
across varying node configurations. Section 4 reviews related work in container 
orchestration and HPC workload management, comparing our approach with 
existing Kubernetes and SLURM implementations. 

2 SLURM Architecture and Cloud Integration 

2.1 Bridging Traditional HPC and Cloud Environments 
High-performance computing (HPC) infrastructures are widely used in scientific 
communities. Traditionally, these systems have been deployed to execute 
calculation-heavy tasks, such as genome sequencing [7], neural network pre-
training [8], and quantum simulations [9] in multi-user environments where 
performance and execution speed are crucial. In these settings, programs run as 
close to the hardware as possible, avoiding virtualization layers that would 
otherwise compromise performance. 

Cloud computing represents a paradigm shift in how computational assets are 
utilized. It offers on-demand access to a shared pool of configurable computing 
resources that can be rapidly provisioned with minimal management effort.  
The evolution of processing environments has transformed HPC from isolated 
computing clusters to more distributed and accessible systems, creating new 
opportunities for scientific research. Traditional HPC environments are 
characterized by fixed resources, specialized hardware, and batch-oriented 
workloads. Users would submit jobs to a queue system and wait for resources to 
become available. In contrast, cloud environments offer dynamic provisioning, 
scalability, and better availability, which has fundamentally changed the way 
processing assets are used. These platforms enable researchers to dynamically 
adjust processing capacities based on workload requirements [10]. This elasticity 
allows efficient handling of burst computing needs without the constraints of 
physical system limitations. These infrastructures allow researchers to access 
computational resources regardless of geographical location, providing access to 
high-performance computing capabilities that were previously limited by several 
factors. 
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Despite the potential benefits, several challenges persist in using cloud resources 
for high-performance computing workloads. Configuration complexity represents a 
significant barrier, as cloud environments offer numerous configuration options that 
can dramatically affect performance and cost. Navigating these options requires 
specialized knowledge that may not be common among traditional HPC users.  
The abstraction layers inherent in cloud computing introduce performance penalties 
that can be particularly problematic for communication-intensive applications. 
Virtualization overhead, shared resources, and network virtualization can all 
contribute to decreased performance compared to bare-metal deployments. These 
layers also introduce variability in performance that complicates benchmarking and 
optimization efforts. 

2.2 Slurm Reference Architecture 
Reference Architectures (RAs), also known as Blueprints1, are recurring patterns 
and best practices that can be reused across different contexts with minimal 
configuration but customization ability. They simplify the deployment of complex 
architectures and offer user-friendly customization options to enhance flexibility 
and ease of use. One of the main goals of the RA is to provide a scalable and flexible 
approach to managing on-demand computational resources for high-performance 
computing workloads, combining the cloud versatility with the higher resource 
utilization that job scheduling might offer. Figure 1 illustrates the high-level 
architecture of the workload manager deployed within a virtualized infrastructure. 
A central SLURM controller node contains the main components of SLURM: 
slurmdbd, slurmd, and slurctld daemons, and manages one or more compute nodes. 
(i) Slurmdbd is responsible for managing the SLURM database. This database stores 
historical and current information about job accounting, resource usage, and cluster 
status. (ii) Slurmd runs on each compute node in the SLURM cluster. Its primary 
role is to manage the resources (CPU, memory, GPUs, etc.) on its local node and 
execute the tasks assigned to it by the SLURM controller. (iii) Slurmctld is the 
central management process for the entire cluster. It receives job submission 
requests, makes scheduling decisions, allocates resources, and monitors the overall 
health and status of the cluster. Typically, there are one primary slurmctld and 
optionally one backup for high availability. 

The deployment steps were the following: First, we defined the required cloud 
resources in Terraform files and built the infrastructure accordingly. Once the 
deployment was complete, Terraform automatically updated the hosts file inventory 
used by Ansible. As a second step, Ansible then executed the installation and 
configuration tasks needed by SLURM. During the design phase, several critical 
challenges had to be addressed to ensure a robust and functional architecture. One 
major concern was data synchronization between nodes, which is essential to 

 
1  https://doc.slices-sc.eu/blueprint/ 
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maintain consistency and enable coordinated processing in distributed 
environments. Another key challenge we faced is the synchronization of the 
configuration, that is, ensuring that all nodes share identical system settings, 
environment variables, and software configurations to avoid runtime issues, as 
described in our earlier work [11]. Establishing a reliable mechanism for service 
synchronization was also necessary, particularly to start, stop, and monitor services 
in a coordinated manner across the cluster. Furthermore, implementing secure 
network firewalling between nodes was crucial to restrict unauthorized access and 
protect internal communication channels. The system also required installation of 
global components, such as container runtime environments, which needed to be 
deployed and accessible from all nodes. Finally, service-level authorization had to 
be established to enforce proper access controls and ensure that only trusted 
components could interact within the system.  

 
Figure 1 

SLURM reference architecture 

To resolve the issues related to data synchronization, we configured a central NFS 
server for data storage purposes. To resolve configuration synchronization, we used 
the Infrastructure as Code paradigm. IaC transforms traditional manual 
provisioning into programmable, version-controlled processes. It provides 
automation of deployment workflows, on-demand resource utilization, 
provisioning, scalability, reproducibility and the mitigation of human errors. When 
selecting appropriate IaC tools for the deployment and configuration of the 
workload manager, many factors were considered. We aimed for cloud agnosticism 
to prevent vendor lock-in and open-source solutions to benefit the academic and 
scientific communities. The efficiency and performance of deployment were also 
considered. Based on these criteria, our implementation leverages Terraform for 
infrastructure provisioning and Ansible for configuration management. Terraform 
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provides declarative configuration for creating and managing the core infrastructure 
components, including virtual machine instances as computation nodes, persistent 
storage devices for data management and security groups for defining network 
policies. A significant challenge in traditional SLURM deployments is the static 
nature of configuration files. Our solution implements template-based configuration 
files and automated service restart mechanisms managed through Ansible. This 
dynamic approach allows administrators to modify SLURM configurations without 
manual intervention across multiple nodes, significantly reducing management 
overhead while improving reliability. Continuous Integration and Continuous 
Deployment (CI-CD) pipelines play a crucial role in modern infrastructure 
management by automating testing, validation, and deployment processes, thereby 
reducing human error and ensuring consistent system behaviour across different 
environments. Our CI-CD pipeline uses GitLab runners to perform periodic, weekly 
automated tests for streamlined SLURM infrastructure deployment, configuration, 
and deletion with the help of the Infrastructure as Code repository. 

Our workload-management implementation incorporates several complementary 
technologies to extend its functionality. While it runs natively on the provisioned 
virtual machines, Singularity [12] [13] container integration provides user-level 
dependency management, application isolation and the portability of computational 
workloads across different infrastructures. In comparison to Docker, Singularity is 
more suitable for HPC workloads due to its seamless integration with existing HPC 
schedulers and resource managers such as SLURM. In addition, the rootless 
execution model eliminates security vulnerabilities associated with privileged 
container operations. 

To support interactive computing workflows, we also integrated JupyterLab 
environments, packaged as Singularity containers. These workflows serve as web-
based development interfaces accessible through the SLURM scheduling system. 
The solution also incorporates robust support for parallel computing paradigms 
through OpenMP integration for shared-memory parallelism and OpenMPI 
configuration for distributed-memory parallel computing. The integration of MPI 
with SLURM is facilitated through the Process Management Interface for Exascale 
(PMIx) framework, which enables direct communication between the SLURM 
scheduler and MPI runtime environments, allowing for interprocess communication 
management across compute nodes. Furthermore, Singularity containers support 
MPI workloads by maintaining compatibility with the host system's MPI 
implementation. Through bind mounting of necessary libraries and communication 
endpoints, MPI processes can execute within isolated container environments while 
preserving the low-latency, high-bandwidth communication essential for scalable 
distributed computing applications.  
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2.3 Operational Management and Monitoring 
Cloud-based HPC systems present unique security challenges at both system and 
user levels that require comprehensive management approaches. Our SLURM 
reference architecture addresses these challenges through integrated security, 
resource management, and monitoring frameworks. Data privacy is enforced 
through strict file system permissions, ensuring that each user can only access 
designated folders and project directories. This isolation prevents unauthorized 
access to sensitive research data and maintains confidentiality across different 
research groups. The Infrastructure as Code (IaC) paradigm enhances security 
management by providing consistent and auditable infrastructure configurations. 
Security patches and system updates are systematically deployed across the cluster 
through automated Ansible playbooks, ensuring that all nodes maintain the same 
security baseline. This approach eliminates configuration drift and reduces potential 
security vulnerabilities caused by inconsistent manual updates. 

The architecture also incorporates Quality of Service policies to ensure fair resource 
allocation among users and research groups. QoS configurations define priority 
levels, resource limits, and scheduling preferences that govern job execution order 
and resource consumption, preventing individual users or projects from 
monopolizing cluster resources while guaranteeing minimum service levels for 
critical research activities. Storage quota management on the NFS server enforces 
disk usage limits for individual users and projects, preventing storage exhaustion 
and ensuring equitable access to shared storage resources. These quotas are 
dynamically configurable based on project requirements and available storage 
capacity. Partition visibility configuration controls which computational resources 
are accessible to different user groups, enabling administrators to reserve 
specialized hardware for specific research domains or priority projects. 

To ensure optimal resource utilization and system health, our solution implements 
a containerized monitoring framework. Due to Docker Compose qualities, the 
management and version control of monitoring services became more streamlined 
and transparent. This approach significantly improves service scalability and 
maintainability compared to traditional monitoring deployments. The monitoring 
architecture implements Dockerized node-exporter and slurm-exporter agents 
across computing nodes, Prometheus time-series database for metrics collection and 
Grafana dashboards for visualization of resource utilization patterns. The Docker 
files were also deployed and managed through Ansible template modules to 
enhance automation and to reduce manual administration overhead. The SLURM 
exporter metrics provide detailed insights into job scheduling efficiency, queue 
states, and node utilization patterns specific to the workload manager. These metrics 
are essential for understanding cluster performance and identifying potential 
bottlenecks in the scheduling process. Customized Grafana dashboards were 
developed to present comprehensive visualizations of processing power utilization 
across the entire cluster. These dashboards display real-time metrics including 
GPU, CPU and memory usage, job completion rates, and queue wait times, enabling 
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administrators to make informed decisions about infrastructure scaling and system 
configuration. The containerized monitoring approach ensures that the monitoring 
infrastructure can scale alongside the computational resources while maintaining 
consistent configuration management through Infrastructure as Code principles. 

3 Measurement 
As an experiment, the aim was to create a parallel execution platform for AlphaFold 
[14]. We investigated the runtime speedup and node resource utilization efficiency 
using node level parallelism across the SLURM computing cluster. The experiment 
examined CPU utilization and scaling efficiency by doubling the number of 
compute nodes from 1 to 8 (1n, 2n, 4n, and 8n configurations) while using Round-
Robin scheduling logic. During the measurement process, we had a maximum of 8 
nodes to run the experiment. Each experimental configuration was executed five 
times, and the results were averaged to ensure statistical reliability. Computational 
resources were standardized with each node allocated 4 vCPUs, and the SLURM 
parameter --cpus-per-task set to 4 to maintain thread level parallelism across all 
nodes consistently. The workload consisted of 403 separate Protein Data Bank 
(PDB) files, distributed between all nodes. In other words, 403 individual job steps 
were scheduled against the computational cluster. Each prediction task included the 
extraction and analysis of predicted Local Distance Difference Test (pLDDT) 
confidence scores to assess prediction quality. These scores were visualized and 
statistically analysed to assess the structural reliability of the predicted models. For 
our parallel execution experiments, we used organism proteomes, specifically the 
Homo sapiens proteome dataset, which contains 23,391 predicted protein structures 
[14]. 

AlphaFold, developed by DeepMind, has revolutionized the field of three-
dimensional protein structure analysis by achieving unprecedented accuracy in 
predicting protein structures from amino acid sequences [15]. However, the 
processing demands of AlphaFold are substantial, particularly when processing 
large datasets of protein sequences. PDB files contain the structural information of 
proteins, including 3D atomic coordinates. In the context of AlphaFold, these files 
store predicted protein structures along with confidence metrics such as pLDDT 
scores. These confidence scores are crucial for researchers to evaluate the reliability 
of predictions before applying them in downstream analyses or experimental 
validation. Since the computational demands of such operations are intensive, 
optimizing execution efficiency through parallel computing strategies is essential 
to make AlphaFold more accessible and practical for biological research.  

The data presented in Table 2 provides a quantitative analysis of the performance 
scaling of a benchmark task, executed using a SLURM scheduler across varying 
numbers of worker nodes. 
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Table 2 
PERFORMANCE METRICS WITH VARYING NUMBER OF NODES 

Number of 
nodes 

Average 
execution 
time 

Average 
CPU 
utilization 

Median 
CPU 
utilization 

CPU P90 

1 3154.75 s 74.45 % 78.90 % 81.50 % 
2 2186 s 72.25 % 81.50 % 86.80 % 
4 1144.50 s 56.51 % 57.20 % 82.10 % 
8 563.75 s 49.86 % 51.10 % 76.97 % 

The table details the average execution time, average CPU utilization, median CPU 
utilization, and the 90th percentile CPU utilization for node configurations of 1, 2, 
4, and 8. Examining the CPU utilization metrics offers further insight into the 
resource usage efficiency across different node configurations. The average CPU 
utilization generally shows a decreasing trend as the number of nodes increases. 
The single-node configuration exhibited the highest average CPU utilization at 
74.45%, suggesting a more intensive use of the available resources on that single 
machine. The median CPU utilization provides a measure of the central tendency 
of CPU usage, which is less susceptible to outliers. The 90th percentile CPU 
utilization offers a view of the peak resource consumption. The values suggest that 
while the average utilization decreases with more nodes, the peak utilization can 
still be relatively high, particularly for the two and four-node configurations. This 
information is crucial for understanding potential bottlenecks and ensuring 
sufficient resource provisioning. 

Figure 2 presents the mean computational runtime as a function of the number of 
active worker nodes (1, 2, 4, and 8) used by a SLURM scheduler for the benchmark 
task. The y-axis indicates the average runtime in seconds, while the x-axis displays 
the node configurations. Each bar represents the mean runtime derived from 
multiple measurements for that specific node count. Error bars surmounting each 
bar denote the standard deviation of the runtimes, illustrating the variability across 
trials. Data labels are provided above each error bar, indicating the precise mean 
runtime value. 

An inverse relationship between the number of active worker nodes and the mean 
runtime is noticeable. The single-node configuration (Node 1) exhibited the longest 
mean runtime at 3154.75±68.15 seconds. Increasing the worker count to two nodes 
(Node 2) reduced the mean runtime to 2186.00±60.08 seconds. A further increase 
to four nodes (Node 4) resulted in a mean runtime of 1144.50±43.08 seconds.  
The shortest mean runtime was achieved with eight nodes (Node 8), recording 
563.75±28.18 seconds. The absolute magnitude of the standard deviation also 
decreased with an increasing number of nodes, suggesting a reduction in the 
absolute spread of execution times as parallelism increased. 
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Figure 2 
Relationship between the number of worker nodes and average computational runtime. The average 
speedup value, relative to the baseline (1 node) runtime, is indicated by an ’X’ sign within each bar 

When distributing calculation-heavy tasks across multiple worker nodes, several 
factors can lead to diminishing returns in parallelization efficiency. As the number 
of nodes increases, the certain bottlenecks often emerge. For example, when 
multiple nodes simultaneously attempt to access shared storage resources, 
contention for read/write operations can severely limit performance. This 
bottleneck is particularly pronounced in data-intensive applications where file 
access becomes the limiting factor rather than computational capacity. Potential 
solutions include implementing distributed file systems such as GlusterFS or Lustre, 
deploying multiple NFS servers, or using parallel file systems to distribute I/O load 
across multiple storage nodes. As the node count increases, communication 
overhead grows significantly. The network fabric connecting nodes can also 
become saturated with inter-node messages, leading to increased latency and 
reduced throughput. As the node count increases, communication overhead grows 
significantly. The network fabric connecting nodes can also become saturated with 
inter-node messages, leading to increased latency and reduced throughput. This is 
especially problematic in tightly coupled parallel applications that require frequent 
synchronization. Furthermore, when individual tasks are too small, the 
administrative overhead of task management can exceed the processing benefits of 
parallelization. Heterogeneous task durations can lead to substantial idle time on 
some nodes while others continue processing. For example, if some PDB files 
require significantly more analysis time than others, nodes that finish early must 
wait for the slowest tasks to complete before the entire job can finalize effectively 
limiting parallelization benefits. 
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4 Related Work 
The integration of container technologies with HPC environments represents a 
significant technological advancement in scientific computing. Multiple research 
teams have explored various orchestration solutions for containerized HPC 
workloads, each with their unique advantages and limitations. 

Milroy et al. [16] made substantial progress in addressing Kubernetes scalability for 
HPC applications. The team enhanced the MPI Operator to achieve an impressive 
3,000-rank scale, representing a 100× improvement over previous implementations. 
This advancement is particularly significant as MPI remains the dominant 
programming model for distributed memory parallel computing in scientific 
domains. Their Fluence scheduler plugin demonstrated up to 3× better performance 
for scientific workflows compared to standard Kubernetes scheduling, optimizing 
placement based on node proximity, network topology, and specialized handling of 
GPU resources and Infiniband networking. Despite these improvements, 
Kubernetes in HPC environments still faces challenges. Milroy's work revealed a 
persistent scheduling overhead of 10-15%, increased configuration complexity, and 
integration difficulties with existing HPC infrastructure. Kubernetes provides 
superior high availability and redundancy through self-healing and replication 
mechanisms but introduces these operational complexities that must be carefully 
managed. 

Aydin et al. [6] offered valuable insights into the fault-tolerance mechanisms of 
both Kubernetes and SLURM systems. Their analysis highlighted a critical trade-
off: Kubernetes demonstrated 40-60% faster recovery times for node failures 
through its automated mechanisms but consistently imposed higher operational 
overhead (10-15%) compared to SLURM's 5-10%. Their error distribution analysis 
revealed that SLURM faced challenges primarily with node errors and job 
initialization failures, while Kubernetes struggled most with networking issues and 
resource contention. SLURM operates closer to the hardware with lower overhead, 
making it more efficient for compute-intensive workloads. However, it required 
significantly more manual intervention for fault recovery, with an average of 7.4 
administrator actions per major failure compared to Kubernetes' 2.1 actions. 
SLURM provides efficient resource management but faces scalability issues 
compared to Kubernetes' more flexible architecture. 

The proposed solution bridges the gap between Kubernetes and SLURM by 
implementing SLURM on native VMs with Singularity support and Infrastructure 
as Code (IaC) deployment. This approach maintains SLURM's performance 
efficiency while addressing its scalability limitations. The IaC methodology 
automates configuration management, reducing the manual intervention that Aydin 
et al. [6] identified as a significant limitation in traditional SLURM deployments. 
This hybrid approach represents a promising direction for HPC container 
orchestration, combining SLURM's resource efficiency with improved automation 
and scalability features inspired by Kubernetes. By addressing the limitations of 
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both systems, this solution offers a balanced approach for modern scientific 
computing workloads that demand both performance and flexibility. 

Lupión et al. [17] addressed accessibility challenges through S-TFManager, a 
lightweight open-source web manager that simplifies the training of TensorFlow 
neural network models in SLURM-based HPC environments. This tool offers 
researchers without extensive system administration expertise a user-friendly 
interface with built-in visualization and hyperparameter exploration capabilities, 
streamlining the management of multiple training jobs on shared computing 
clusters. 

The reference architecture further enhances S-TFManager by integrating 
JupyterLab environments through Singularity containers directly within the 
SLURM scheduling system. This integration enables researchers to deploy 
customized and more robust development environments with their specific 
dependencies while leveraging SLURM's resource allocation and scheduling 
capabilities. 

Conclusion 

In this study, we demonstrated the effectiveness of deploying SLURM in a cloud 
environment to manage HPC workloads efficiently. The utilization of SLURM, 
automated through the Infrastructure as Code paradigm, enables scalable and 
reproducible resource allocation. To promote transparency and reproducibility, the 
source code developed for this work has been released as open-source software and 
is freely accessible2. Our results show significant performance improvements with 
the increased utilization of worker nodes, highlighting SLURM's capability to 
handle parallel computing tasks. Future work will focus on analysing the scaling 
limitations and overheads to further optimize performance. 

The results shown in Figure 2. demonstrate that increasing the number of active 
worker nodes leads to a substantial reduction in the mean computational runtime 
for the benchmarked task under the SLURM scheduler. Specifically, scaling from 
a single node to eight nodes decreased the average execution time by approximately 
82.1%, from 3154.75 seconds to 563.75 seconds. 

Although the experiment results are promising, we observed that as the bottlenecks 
(I/O, network contention and workload imbalance) compound, the theoretical linear 
speedup promised by parallel computing gives way to sublinear scaling, where 
adding more nodes yields progressively smaller performance improvements, 
eventually reaching a point of diminishing returns. As emerging heterogeneous 
computing architectures, smart workload distribution algorithms, and specialized 
interconnect technologies push the boundaries of efficient parallelization, the 
analysis of these bottlenecks represent potent ground for future research. 

 
2  https://git.sztaki.hu/science-cloud/reference-architectures 
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In conclusion, we deployed a SLURM scheduler and workload manager platform 
in a cloud environment, using Infrastructure as Code. The utilization of such a 
system provides computational task execution benefits for scientific projects and 
communities. The observed scaling behaviour suggests that the workload is 
amenable to parallel processing up to at least 8 nodes, though with inherent 
overheads preventing ideal linear speedup. Further research might explore the 
specific sources of this overhead and assess automated scaling in relation to the 
utilization of computational cluster resources. The ongoing research in this field 
continues to drive innovation at the intersection of HPC and cloud-native 
technologies with each advancement bringing us closer to converged computing 
platforms that serve diverse scientific workloads efficiently. As container 
technologies and orchestration solutions evolve, we can expect further 
improvements in scalability, fault tolerance, and usability for containerized HPC 
environments. 

As future work, the aim is to conduct a similar experiment on both a traditional HPC 
environment and a cloud computing platform for comparative analysis. This 
comparative study will assess MLOps integration capabilities across different 
infrastructures and evaluate the effectiveness of both container orchestration and 
traditional workload management systems in that regard. The analysis will focus on 
processing efficiency, application portability, and I/O performance penalties 
inherent to containerized workloads. During the measurement process, energy and 
cost analysis might also be assessed as it is always a critical parameter in the HPC 
and cloud hardware system analysis. This study will provide empirical evidence to 
guide optimal deployment strategies for scientific computing applications across 
heterogeneous computing environments. 
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