
Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 261 ‒

SLURM Deployment in Cloud Environments:
Enhancing Utilization and Scalability

Márk Emődi1,2,*, Konrád Bánfi1, József Kovács1
1 HUN-REN Institute for Computer Science and Control (HUN-REN SZTAKI),
Hungarian Research Network, Kende utca 13-17, H-1111 Budapest, Hungary;
{mark.emodi, banfi.konrad, jozsef.kovacs}@sztaki.hun-ren.hu
2 John von Neumann Faculty of Informatics, Óbuda University, Bécsi út 96/b, H-
1034 Budapest, Hungary; emodi.mark@nik.uni-obuda.hu

* Corresponding author

Abstract: Addressing the challenges of managing high-performance computing workloads in
dynamic cloud environments, this paper presents a SLURM-based reference architecture.
We elaborated Infrastructure as Code (IaC) to automate the deployment and management of
SLURM, enabling efficient resource allocation and scalability. The basic scheduler
architecture descriptor was further extended with computational tools and frameworks
required by the HUN-REN Cloud scientific community. Results from benchmark experiments
show significant performance improvement through parallelization, demonstrating
SLURM's ability to utilize cloud resources for fair workload management of calculation-
heavy tasks. Our AlphaFold protein structure prediction experiments demonstrate an 82.1%
reduction in computational runtime when scaling from 1 to 8 worker nodes, with execution
time decreasing from 3154.75 seconds to 563.75 seconds.

Keywords: SLURM; Cloud Computing; HPC; Infrastructure as Code; IAC; Scalability;
Reference Architecture

1 Introduction
The HUN-REN Cloud [1] provides high-performance scientific computing for the
Hungarian research community. This scientific cloud has already supported around
400 research projects by providing resources and support to researchers. To support
the rapid development of AI research, there is a growing demand for computational
capacities. As resources within the HUN-REN Cloud are limited, it is crucial to
ensure that researchers have equal access to them. The purpose of the job scheduler
is to enable the efficient, dynamic, and fair allocation of resources among
researchers in this multi-user computing environment.

mailto:emodi.mark@nik.uni-obuda.hu

M. Emődi et al. SLURM Deployment in Cloud Environments: Enhancing Utilization and Scalability

‒ 262 ‒

These scheduling mechanisms are critical components in modern computing
environments, particularly in HPC and distributed systems. They allocate capacities
efficiently, manage job execution sequences, and optimize system utilization. These
factors are essential to improve performance, reduce wait times, and ensure fairness
among users [2]. To understand why introducing such scheduling logic is beneficial
to workloads, we need an examination of some interconnected aspects, including
resource efficiency, adaptability to workload changes, and optimization of job
completion times, as these aspects are all influencing performance metrics in
distributed system environments.

The main purpose of job scheduling involves maximizing resource efficiency along
with reducing the duration of job waiting time. These platforms orchestrate resource
allocation and task execution, affecting overall system utilization and job
turnaround time. Zhao et al. [3] demonstrate that job scheduling effectiveness
determines QoS quality and system performance thus requiring optimal job
allocation strategies to reach high efficiency levels. The selection of job scheduling
policies through prioritization affects both user experience and resource utilization
efficiency, demonstrating direct link between scheduling methods and system
performance [4].

High-performance computing (HPC) environments excel in processing power
through optimized hardware configurations, low-latency interconnects, and system
architectures specifically designed for intensive scientific workloads. In contrast,
cloud computing platforms offer superior portability and scalability for variable
workloads. This creates a fundamental trade-off where HPC systems maximize
processing power at the expense of flexibility, whereas virtualized systems
prioritize accessibility and resource elasticity at the potential cost of peak
performance.

Our primary research objective was to create a computing platform for job
scheduling that combines the advantages of both HPC and cloud technologies. We
aimed to develop a solution that enables a more dynamic allocation of
computational resources in multi-user cloud environments, effectively minimizing
idle time (e.g. CPU, GPU) while maintaining system stability and providing access
across different user groups and research teams. To achieve this integration, we
implemented SLURM [5] (Simple Linux Utility for Resource Management) as a
reference architecture (see the specification in next section), providing a robust on-
demand deployment management layer that bridges traditional HPC workload
management with cloud elasticity. According to current studies, SLURM remains
an ideal solution for HPC environments, based on its workload management
efficiency and parallel execution criteria [6].
To enhance automation, scalability, provide configuration consistency and maintain
deployment reproducibility across our computing platform, we adopted the
Infrastructure as Code (IaC) paradigm. This methodology allowed us to define and
manage our entire infrastructure through machine-readable definition files rather
than physical hardware configuration or interactive configuration tools.

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 263 ‒

By codifying our system specifications, we achieved greater consistency between
deployments, so the SLURM platform could be further developed, tested and
maintained more efficiently, and rolled back when necessary.

The rest of the paper is organized as follows: Section 2 presents the bridging of
traditional HPC and cloud environments, followed by the reference architecture
implementation. Section 3 describes our measurement methodology and
experimental results using AlphaFold protein structure prediction as a benchmark
across varying node configurations. Section 4 reviews related work in container
orchestration and HPC workload management, comparing our approach with
existing Kubernetes and SLURM implementations.

2 SLURM Architecture and Cloud Integration

2.1 Bridging Traditional HPC and Cloud Environments
High-performance computing (HPC) infrastructures are widely used in scientific
communities. Traditionally, these systems have been deployed to execute
calculation-heavy tasks, such as genome sequencing [7], neural network pre-
training [8], and quantum simulations [9] in multi-user environments where
performance and execution speed are crucial. In these settings, programs run as
close to the hardware as possible, avoiding virtualization layers that would
otherwise compromise performance.

Cloud computing represents a paradigm shift in how computational assets are
utilized. It offers on-demand access to a shared pool of configurable computing
resources that can be rapidly provisioned with minimal management effort.
The evolution of processing environments has transformed HPC from isolated
computing clusters to more distributed and accessible systems, creating new
opportunities for scientific research. Traditional HPC environments are
characterized by fixed resources, specialized hardware, and batch-oriented
workloads. Users would submit jobs to a queue system and wait for resources to
become available. In contrast, cloud environments offer dynamic provisioning,
scalability, and better availability, which has fundamentally changed the way
processing assets are used. These platforms enable researchers to dynamically
adjust processing capacities based on workload requirements [10]. This elasticity
allows efficient handling of burst computing needs without the constraints of
physical system limitations. These infrastructures allow researchers to access
computational resources regardless of geographical location, providing access to
high-performance computing capabilities that were previously limited by several
factors.

M. Emődi et al. SLURM Deployment in Cloud Environments: Enhancing Utilization and Scalability

‒ 264 ‒

Despite the potential benefits, several challenges persist in using cloud resources
for high-performance computing workloads. Configuration complexity represents a
significant barrier, as cloud environments offer numerous configuration options that
can dramatically affect performance and cost. Navigating these options requires
specialized knowledge that may not be common among traditional HPC users.
The abstraction layers inherent in cloud computing introduce performance penalties
that can be particularly problematic for communication-intensive applications.
Virtualization overhead, shared resources, and network virtualization can all
contribute to decreased performance compared to bare-metal deployments. These
layers also introduce variability in performance that complicates benchmarking and
optimization efforts.

2.2 Slurm Reference Architecture
Reference Architectures (RAs), also known as Blueprints1, are recurring patterns
and best practices that can be reused across different contexts with minimal
configuration but customization ability. They simplify the deployment of complex
architectures and offer user-friendly customization options to enhance flexibility
and ease of use. One of the main goals of the RA is to provide a scalable and flexible
approach to managing on-demand computational resources for high-performance
computing workloads, combining the cloud versatility with the higher resource
utilization that job scheduling might offer. Figure 1 illustrates the high-level
architecture of the workload manager deployed within a virtualized infrastructure.
A central SLURM controller node contains the main components of SLURM:
slurmdbd, slurmd, and slurctld daemons, and manages one or more compute nodes.
(i) Slurmdbd is responsible for managing the SLURM database. This database stores
historical and current information about job accounting, resource usage, and cluster
status. (ii) Slurmd runs on each compute node in the SLURM cluster. Its primary
role is to manage the resources (CPU, memory, GPUs, etc.) on its local node and
execute the tasks assigned to it by the SLURM controller. (iii) Slurmctld is the
central management process for the entire cluster. It receives job submission
requests, makes scheduling decisions, allocates resources, and monitors the overall
health and status of the cluster. Typically, there are one primary slurmctld and
optionally one backup for high availability.

The deployment steps were the following: First, we defined the required cloud
resources in Terraform files and built the infrastructure accordingly. Once the
deployment was complete, Terraform automatically updated the hosts file inventory
used by Ansible. As a second step, Ansible then executed the installation and
configuration tasks needed by SLURM. During the design phase, several critical
challenges had to be addressed to ensure a robust and functional architecture. One
major concern was data synchronization between nodes, which is essential to

1 https://doc.slices-sc.eu/blueprint/

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 265 ‒

maintain consistency and enable coordinated processing in distributed
environments. Another key challenge we faced is the synchronization of the
configuration, that is, ensuring that all nodes share identical system settings,
environment variables, and software configurations to avoid runtime issues, as
described in our earlier work [11]. Establishing a reliable mechanism for service
synchronization was also necessary, particularly to start, stop, and monitor services
in a coordinated manner across the cluster. Furthermore, implementing secure
network firewalling between nodes was crucial to restrict unauthorized access and
protect internal communication channels. The system also required installation of
global components, such as container runtime environments, which needed to be
deployed and accessible from all nodes. Finally, service-level authorization had to
be established to enforce proper access controls and ensure that only trusted
components could interact within the system.

Figure 1

SLURM reference architecture

To resolve the issues related to data synchronization, we configured a central NFS
server for data storage purposes. To resolve configuration synchronization, we used
the Infrastructure as Code paradigm. IaC transforms traditional manual
provisioning into programmable, version-controlled processes. It provides
automation of deployment workflows, on-demand resource utilization,
provisioning, scalability, reproducibility and the mitigation of human errors. When
selecting appropriate IaC tools for the deployment and configuration of the
workload manager, many factors were considered. We aimed for cloud agnosticism
to prevent vendor lock-in and open-source solutions to benefit the academic and
scientific communities. The efficiency and performance of deployment were also
considered. Based on these criteria, our implementation leverages Terraform for
infrastructure provisioning and Ansible for configuration management. Terraform

M. Emődi et al. SLURM Deployment in Cloud Environments: Enhancing Utilization and Scalability

‒ 266 ‒

provides declarative configuration for creating and managing the core infrastructure
components, including virtual machine instances as computation nodes, persistent
storage devices for data management and security groups for defining network
policies. A significant challenge in traditional SLURM deployments is the static
nature of configuration files. Our solution implements template-based configuration
files and automated service restart mechanisms managed through Ansible. This
dynamic approach allows administrators to modify SLURM configurations without
manual intervention across multiple nodes, significantly reducing management
overhead while improving reliability. Continuous Integration and Continuous
Deployment (CI-CD) pipelines play a crucial role in modern infrastructure
management by automating testing, validation, and deployment processes, thereby
reducing human error and ensuring consistent system behaviour across different
environments. Our CI-CD pipeline uses GitLab runners to perform periodic, weekly
automated tests for streamlined SLURM infrastructure deployment, configuration,
and deletion with the help of the Infrastructure as Code repository.

Our workload-management implementation incorporates several complementary
technologies to extend its functionality. While it runs natively on the provisioned
virtual machines, Singularity [12] [13] container integration provides user-level
dependency management, application isolation and the portability of computational
workloads across different infrastructures. In comparison to Docker, Singularity is
more suitable for HPC workloads due to its seamless integration with existing HPC
schedulers and resource managers such as SLURM. In addition, the rootless
execution model eliminates security vulnerabilities associated with privileged
container operations.

To support interactive computing workflows, we also integrated JupyterLab
environments, packaged as Singularity containers. These workflows serve as web-
based development interfaces accessible through the SLURM scheduling system.
The solution also incorporates robust support for parallel computing paradigms
through OpenMP integration for shared-memory parallelism and OpenMPI
configuration for distributed-memory parallel computing. The integration of MPI
with SLURM is facilitated through the Process Management Interface for Exascale
(PMIx) framework, which enables direct communication between the SLURM
scheduler and MPI runtime environments, allowing for interprocess communication
management across compute nodes. Furthermore, Singularity containers support
MPI workloads by maintaining compatibility with the host system's MPI
implementation. Through bind mounting of necessary libraries and communication
endpoints, MPI processes can execute within isolated container environments while
preserving the low-latency, high-bandwidth communication essential for scalable
distributed computing applications.

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 267 ‒

2.3 Operational Management and Monitoring
Cloud-based HPC systems present unique security challenges at both system and
user levels that require comprehensive management approaches. Our SLURM
reference architecture addresses these challenges through integrated security,
resource management, and monitoring frameworks. Data privacy is enforced
through strict file system permissions, ensuring that each user can only access
designated folders and project directories. This isolation prevents unauthorized
access to sensitive research data and maintains confidentiality across different
research groups. The Infrastructure as Code (IaC) paradigm enhances security
management by providing consistent and auditable infrastructure configurations.
Security patches and system updates are systematically deployed across the cluster
through automated Ansible playbooks, ensuring that all nodes maintain the same
security baseline. This approach eliminates configuration drift and reduces potential
security vulnerabilities caused by inconsistent manual updates.

The architecture also incorporates Quality of Service policies to ensure fair resource
allocation among users and research groups. QoS configurations define priority
levels, resource limits, and scheduling preferences that govern job execution order
and resource consumption, preventing individual users or projects from
monopolizing cluster resources while guaranteeing minimum service levels for
critical research activities. Storage quota management on the NFS server enforces
disk usage limits for individual users and projects, preventing storage exhaustion
and ensuring equitable access to shared storage resources. These quotas are
dynamically configurable based on project requirements and available storage
capacity. Partition visibility configuration controls which computational resources
are accessible to different user groups, enabling administrators to reserve
specialized hardware for specific research domains or priority projects.

To ensure optimal resource utilization and system health, our solution implements
a containerized monitoring framework. Due to Docker Compose qualities, the
management and version control of monitoring services became more streamlined
and transparent. This approach significantly improves service scalability and
maintainability compared to traditional monitoring deployments. The monitoring
architecture implements Dockerized node-exporter and slurm-exporter agents
across computing nodes, Prometheus time-series database for metrics collection and
Grafana dashboards for visualization of resource utilization patterns. The Docker
files were also deployed and managed through Ansible template modules to
enhance automation and to reduce manual administration overhead. The SLURM
exporter metrics provide detailed insights into job scheduling efficiency, queue
states, and node utilization patterns specific to the workload manager. These metrics
are essential for understanding cluster performance and identifying potential
bottlenecks in the scheduling process. Customized Grafana dashboards were
developed to present comprehensive visualizations of processing power utilization
across the entire cluster. These dashboards display real-time metrics including
GPU, CPU and memory usage, job completion rates, and queue wait times, enabling

M. Emődi et al. SLURM Deployment in Cloud Environments: Enhancing Utilization and Scalability

‒ 268 ‒

administrators to make informed decisions about infrastructure scaling and system
configuration. The containerized monitoring approach ensures that the monitoring
infrastructure can scale alongside the computational resources while maintaining
consistent configuration management through Infrastructure as Code principles.

3 Measurement
As an experiment, the aim was to create a parallel execution platform for AlphaFold
[14]. We investigated the runtime speedup and node resource utilization efficiency
using node level parallelism across the SLURM computing cluster. The experiment
examined CPU utilization and scaling efficiency by doubling the number of
compute nodes from 1 to 8 (1n, 2n, 4n, and 8n configurations) while using Round-
Robin scheduling logic. During the measurement process, we had a maximum of 8
nodes to run the experiment. Each experimental configuration was executed five
times, and the results were averaged to ensure statistical reliability. Computational
resources were standardized with each node allocated 4 vCPUs, and the SLURM
parameter --cpus-per-task set to 4 to maintain thread level parallelism across all
nodes consistently. The workload consisted of 403 separate Protein Data Bank
(PDB) files, distributed between all nodes. In other words, 403 individual job steps
were scheduled against the computational cluster. Each prediction task included the
extraction and analysis of predicted Local Distance Difference Test (pLDDT)
confidence scores to assess prediction quality. These scores were visualized and
statistically analysed to assess the structural reliability of the predicted models. For
our parallel execution experiments, we used organism proteomes, specifically the
Homo sapiens proteome dataset, which contains 23,391 predicted protein structures
[14].

AlphaFold, developed by DeepMind, has revolutionized the field of three-
dimensional protein structure analysis by achieving unprecedented accuracy in
predicting protein structures from amino acid sequences [15]. However, the
processing demands of AlphaFold are substantial, particularly when processing
large datasets of protein sequences. PDB files contain the structural information of
proteins, including 3D atomic coordinates. In the context of AlphaFold, these files
store predicted protein structures along with confidence metrics such as pLDDT
scores. These confidence scores are crucial for researchers to evaluate the reliability
of predictions before applying them in downstream analyses or experimental
validation. Since the computational demands of such operations are intensive,
optimizing execution efficiency through parallel computing strategies is essential
to make AlphaFold more accessible and practical for biological research.

The data presented in Table 2 provides a quantitative analysis of the performance
scaling of a benchmark task, executed using a SLURM scheduler across varying
numbers of worker nodes.

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 269 ‒

Table 2
PERFORMANCE METRICS WITH VARYING NUMBER OF NODES

Number of
nodes

Average
execution
time

Average
CPU
utilization

Median
CPU
utilization

CPU P90

1 3154.75 s 74.45 % 78.90 % 81.50 %
2 2186 s 72.25 % 81.50 % 86.80 %
4 1144.50 s 56.51 % 57.20 % 82.10 %
8 563.75 s 49.86 % 51.10 % 76.97 %

The table details the average execution time, average CPU utilization, median CPU
utilization, and the 90th percentile CPU utilization for node configurations of 1, 2,
4, and 8. Examining the CPU utilization metrics offers further insight into the
resource usage efficiency across different node configurations. The average CPU
utilization generally shows a decreasing trend as the number of nodes increases.
The single-node configuration exhibited the highest average CPU utilization at
74.45%, suggesting a more intensive use of the available resources on that single
machine. The median CPU utilization provides a measure of the central tendency
of CPU usage, which is less susceptible to outliers. The 90th percentile CPU
utilization offers a view of the peak resource consumption. The values suggest that
while the average utilization decreases with more nodes, the peak utilization can
still be relatively high, particularly for the two and four-node configurations. This
information is crucial for understanding potential bottlenecks and ensuring
sufficient resource provisioning.

Figure 2 presents the mean computational runtime as a function of the number of
active worker nodes (1, 2, 4, and 8) used by a SLURM scheduler for the benchmark
task. The y-axis indicates the average runtime in seconds, while the x-axis displays
the node configurations. Each bar represents the mean runtime derived from
multiple measurements for that specific node count. Error bars surmounting each
bar denote the standard deviation of the runtimes, illustrating the variability across
trials. Data labels are provided above each error bar, indicating the precise mean
runtime value.

An inverse relationship between the number of active worker nodes and the mean
runtime is noticeable. The single-node configuration (Node 1) exhibited the longest
mean runtime at 3154.75±68.15 seconds. Increasing the worker count to two nodes
(Node 2) reduced the mean runtime to 2186.00±60.08 seconds. A further increase
to four nodes (Node 4) resulted in a mean runtime of 1144.50±43.08 seconds.
The shortest mean runtime was achieved with eight nodes (Node 8), recording
563.75±28.18 seconds. The absolute magnitude of the standard deviation also
decreased with an increasing number of nodes, suggesting a reduction in the
absolute spread of execution times as parallelism increased.

M. Emődi et al. SLURM Deployment in Cloud Environments: Enhancing Utilization and Scalability

‒ 270 ‒

Figure 2
Relationship between the number of worker nodes and average computational runtime. The average
speedup value, relative to the baseline (1 node) runtime, is indicated by an ’X’ sign within each bar

When distributing calculation-heavy tasks across multiple worker nodes, several
factors can lead to diminishing returns in parallelization efficiency. As the number
of nodes increases, the certain bottlenecks often emerge. For example, when
multiple nodes simultaneously attempt to access shared storage resources,
contention for read/write operations can severely limit performance. This
bottleneck is particularly pronounced in data-intensive applications where file
access becomes the limiting factor rather than computational capacity. Potential
solutions include implementing distributed file systems such as GlusterFS or Lustre,
deploying multiple NFS servers, or using parallel file systems to distribute I/O load
across multiple storage nodes. As the node count increases, communication
overhead grows significantly. The network fabric connecting nodes can also
become saturated with inter-node messages, leading to increased latency and
reduced throughput. As the node count increases, communication overhead grows
significantly. The network fabric connecting nodes can also become saturated with
inter-node messages, leading to increased latency and reduced throughput. This is
especially problematic in tightly coupled parallel applications that require frequent
synchronization. Furthermore, when individual tasks are too small, the
administrative overhead of task management can exceed the processing benefits of
parallelization. Heterogeneous task durations can lead to substantial idle time on
some nodes while others continue processing. For example, if some PDB files
require significantly more analysis time than others, nodes that finish early must
wait for the slowest tasks to complete before the entire job can finalize effectively
limiting parallelization benefits.

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 271 ‒

4 Related Work
The integration of container technologies with HPC environments represents a
significant technological advancement in scientific computing. Multiple research
teams have explored various orchestration solutions for containerized HPC
workloads, each with their unique advantages and limitations.

Milroy et al. [16] made substantial progress in addressing Kubernetes scalability for
HPC applications. The team enhanced the MPI Operator to achieve an impressive
3,000-rank scale, representing a 100× improvement over previous implementations.
This advancement is particularly significant as MPI remains the dominant
programming model for distributed memory parallel computing in scientific
domains. Their Fluence scheduler plugin demonstrated up to 3× better performance
for scientific workflows compared to standard Kubernetes scheduling, optimizing
placement based on node proximity, network topology, and specialized handling of
GPU resources and Infiniband networking. Despite these improvements,
Kubernetes in HPC environments still faces challenges. Milroy's work revealed a
persistent scheduling overhead of 10-15%, increased configuration complexity, and
integration difficulties with existing HPC infrastructure. Kubernetes provides
superior high availability and redundancy through self-healing and replication
mechanisms but introduces these operational complexities that must be carefully
managed.

Aydin et al. [6] offered valuable insights into the fault-tolerance mechanisms of
both Kubernetes and SLURM systems. Their analysis highlighted a critical trade-
off: Kubernetes demonstrated 40-60% faster recovery times for node failures
through its automated mechanisms but consistently imposed higher operational
overhead (10-15%) compared to SLURM's 5-10%. Their error distribution analysis
revealed that SLURM faced challenges primarily with node errors and job
initialization failures, while Kubernetes struggled most with networking issues and
resource contention. SLURM operates closer to the hardware with lower overhead,
making it more efficient for compute-intensive workloads. However, it required
significantly more manual intervention for fault recovery, with an average of 7.4
administrator actions per major failure compared to Kubernetes' 2.1 actions.
SLURM provides efficient resource management but faces scalability issues
compared to Kubernetes' more flexible architecture.

The proposed solution bridges the gap between Kubernetes and SLURM by
implementing SLURM on native VMs with Singularity support and Infrastructure
as Code (IaC) deployment. This approach maintains SLURM's performance
efficiency while addressing its scalability limitations. The IaC methodology
automates configuration management, reducing the manual intervention that Aydin
et al. [6] identified as a significant limitation in traditional SLURM deployments.
This hybrid approach represents a promising direction for HPC container
orchestration, combining SLURM's resource efficiency with improved automation
and scalability features inspired by Kubernetes. By addressing the limitations of

M. Emődi et al. SLURM Deployment in Cloud Environments: Enhancing Utilization and Scalability

‒ 272 ‒

both systems, this solution offers a balanced approach for modern scientific
computing workloads that demand both performance and flexibility.

Lupión et al. [17] addressed accessibility challenges through S-TFManager, a
lightweight open-source web manager that simplifies the training of TensorFlow
neural network models in SLURM-based HPC environments. This tool offers
researchers without extensive system administration expertise a user-friendly
interface with built-in visualization and hyperparameter exploration capabilities,
streamlining the management of multiple training jobs on shared computing
clusters.

The reference architecture further enhances S-TFManager by integrating
JupyterLab environments through Singularity containers directly within the
SLURM scheduling system. This integration enables researchers to deploy
customized and more robust development environments with their specific
dependencies while leveraging SLURM's resource allocation and scheduling
capabilities.

Conclusion

In this study, we demonstrated the effectiveness of deploying SLURM in a cloud
environment to manage HPC workloads efficiently. The utilization of SLURM,
automated through the Infrastructure as Code paradigm, enables scalable and
reproducible resource allocation. To promote transparency and reproducibility, the
source code developed for this work has been released as open-source software and
is freely accessible2. Our results show significant performance improvements with
the increased utilization of worker nodes, highlighting SLURM's capability to
handle parallel computing tasks. Future work will focus on analysing the scaling
limitations and overheads to further optimize performance.

The results shown in Figure 2. demonstrate that increasing the number of active
worker nodes leads to a substantial reduction in the mean computational runtime
for the benchmarked task under the SLURM scheduler. Specifically, scaling from
a single node to eight nodes decreased the average execution time by approximately
82.1%, from 3154.75 seconds to 563.75 seconds.

Although the experiment results are promising, we observed that as the bottlenecks
(I/O, network contention and workload imbalance) compound, the theoretical linear
speedup promised by parallel computing gives way to sublinear scaling, where
adding more nodes yields progressively smaller performance improvements,
eventually reaching a point of diminishing returns. As emerging heterogeneous
computing architectures, smart workload distribution algorithms, and specialized
interconnect technologies push the boundaries of efficient parallelization, the
analysis of these bottlenecks represent potent ground for future research.

2 https://git.sztaki.hu/science-cloud/reference-architectures

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 273 ‒

In conclusion, we deployed a SLURM scheduler and workload manager platform
in a cloud environment, using Infrastructure as Code. The utilization of such a
system provides computational task execution benefits for scientific projects and
communities. The observed scaling behaviour suggests that the workload is
amenable to parallel processing up to at least 8 nodes, though with inherent
overheads preventing ideal linear speedup. Further research might explore the
specific sources of this overhead and assess automated scaling in relation to the
utilization of computational cluster resources. The ongoing research in this field
continues to drive innovation at the intersection of HPC and cloud-native
technologies with each advancement bringing us closer to converged computing
platforms that serve diverse scientific workloads efficiently. As container
technologies and orchestration solutions evolve, we can expect further
improvements in scalability, fault tolerance, and usability for containerized HPC
environments.

As future work, the aim is to conduct a similar experiment on both a traditional HPC
environment and a cloud computing platform for comparative analysis. This
comparative study will assess MLOps integration capabilities across different
infrastructures and evaluate the effectiveness of both container orchestration and
traditional workload management systems in that regard. The analysis will focus on
processing efficiency, application portability, and I/O performance penalties
inherent to containerized workloads. During the measurement process, energy and
cost analysis might also be assessed as it is always a critical parameter in the HPC
and cloud hardware system analysis. This study will provide empirical evidence to
guide optimal deployment strategies for scientific computing applications across
heterogeneous computing environments.

Acknowledgement

The authors thankfully acknowledge the support of the Doctoral School of Applied
Informatics and Applied Mathematics, Óbuda University. On behalf of the
“Modelling of orchestration methods with machine learning” project, we are
grateful for the possibility of using HUN-REN Cloud (see https://science-
cloud.hu/), which helped us achieve the results published in this paper. This work
was partially funded by the Hungarian Ministry of Innovation and Technology
NRDI Office within the framework of the Artificial Intelligence National
Laboratory Program.

References

[1] M. Héder et al., ‘The Past, Present and Future of the ELKH Cloud’, Inf.
Társad., Vol. 22, No. 2, p. 128, Aug. 2022, doi:
10.22503/inftars.XXII.2022.2.8

[2] I. Ullah, M. S. Khan, M. Amir, J. Kim, and S. M. Kim, ‘LSTPD: Least Slack
Time-Based Preemptive Deadline Constraint Scheduler for Hadoop
Clusters’, IEEE Access, Vol. 8, pp. 111751-111762, 2020, doi:
10.1109/ACCESS.2020.3002565

M. Emődi et al. SLURM Deployment in Cloud Environments: Enhancing Utilization and Scalability

‒ 274 ‒

[3] ‘(PDF) A Novel Optimization Strategy for Job Scheduling based on Double
Hierarchy’, ResearchGate, doi: 10.25103/jestr.101.10

[4] Q. Li, W. Wu, X. Zhou, Z. Sun, and J. Huang, ‘R-FirstFit: A Reservation
Based First Fit Priority Job Scheduling Strategy and Its Application for
Rendering’, in 2014 IEEE 17th International Conference on Computational
Science and Engineering, Dec. 2014, pp. 1078-1085, doi:
10.1109/CSE.2014.213

[5] A. B. Yoo, M. A. Jette, and M. Grondona, ‘SLURM: Simple Linux Utility
for Resource Management’, in Job Scheduling Strategies for Parallel
Processing, D. Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds., Berlin,
Heidelberg: Springer, 2003, pp. 44-60, doi: 10.1007/10968987_3

[6] ‘(PDF) Comparing Fault-tolerance in Kubernetes and Slurm in HPC
Infrastructure’, in ResearchGate, Jun. 2025, Accessed: Aug. 07, 2025,
[Online] Available: https://www.researchgate.net/publication/384455176
_Comparing_Fault-tolerance_in_Kubernetes_and_Slurm_in_HPC
_Infrastructure

[7] B. Schmidt and A. Hildebrandt, ‘Next-generation sequencing: big data meets
high performance computing’, Drug Discov. Today, Vol. 22, No. 4, pp. 712-
717, Apr. 2017, doi: 10.1016/j.drudis.2017.01.014

[8] B. Van Essen, H. Kim, R. Pearce, K. Boakye, and B. Chen, ‘LBANN:
livermore big artificial neural network HPC toolkit’, in Proceedings of the
Workshop on Machine Learning in High-Performance Computing
Environments, in MLHPC ’15. New York, NY, USA: Association for
Computing Machinery, 0 2015, pp. 1-6, doi: 10.1145/2834892.2834897

[9] J. Doi, H. Takahashi, R. Raymond, T. Imamichi, and H. Horii, ‘Quantum
computing simulator on a heterogenous HPC system’, in Proceedings of the
16th ACM International Conference on Computing Frontiers, in CF ’19. New
York, NY, USA: Association for Computing Machinery, Apr. 2019, pp. 85-
93, doi: 10.1145/3310273.3323053

[10] E. Roloff, M. Diener, A. Carissimi, and P. O. A. Navaux, ‘High Performance
Computing in the cloud: Deployment, performance and cost efficiency’, in
4th IEEE International Conference on Cloud Computing Technology and
Science Proceedings, Dec. 2012, pp. 371-378, doi:
10.1109/CloudCom.2012.6427549

[11] J. Kovács, B. Ligetfalvi, and R. Lovas, ‘Automated Debugging Mechanisms
for Orchestrated Cloud Infrastructures with Active Control and Global
Evaluation’, IEEE Access, Vol. 12, pp. 143193-143214, 2024, doi:
10.1109/ACCESS.2024.3467228

[12] G. M. Kurtzer, V. Sochat, and M. W. Bauer, ‘Singularity: Scientific
containers for mobility of compute’, PLOS ONE, Vol. 12, No. 5, p.
e0177459, May 2017, doi: 10.1371/journal.pone.0177459

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 275 ‒

[13] G. Hu, Y. Zhang, and W. Chen, ‘Exploring the Performance of Singularity
for High Performance Computing Scenarios’, in 2019 IEEE 21st
International Conference on High Performance Computing and
Communications; IEEE 17th International Conference on Smart City; IEEE
5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), Aug. 2019, pp. 2587-2593, doi:
10.1109/HPCC/SmartCity/DSS.2019.00362

[14] ‘UniProt’, UniProt. Accessed: Aug. 07, 2025 [Online] Available:
https://www.uniprot.org/proteomes/UP000005640

[15] J. Jumper et al., ‘Highly accurate protein structure prediction with
AlphaFold’, Nature, Vol. 596, No. 7873, pp. 583-589, Aug. 2021, doi:
10.1038/s41586-021-03819-2

[16] D. J. Milroy et al., ‘One Step Closer to Converged Computing: Achieving
Scalability with Cloud-Native HPC’, in 2022 IEEE/ACM 4th International
Workshop on Containers and New Orchestration Paradigms for Isolated
Environments in HPC (CANOPIE-HPC), Nov. 2022, pp. 57-70, doi:
10.1109/CANOPIE-HPC56864.2022.00011

[17] M. Lupión, N. C. Cruz, F. Romero, J. F. Sanjuan, and P. M. Ortigosa, ‘A
Lightweight Execution Manager for Training TensorFlow Models under the
Slurm Queuing System’, Acta Polytech. Hung., Vol. 22, No. 3, pp. 63-78,
2025, doi: 10.12700/APH.22.3.2025.3.4

	1 Introduction
	2 SLURM Architecture and Cloud Integration
	2.1 Bridging Traditional HPC and Cloud Environments
	2.2 Slurm Reference Architecture
	2.3 Operational Management and Monitoring

	3 Measurement
	4 Related Work

