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Abstract: In microservice architectures, a core operational challenge lies in effectively 
monitoring the system. This involves aggregating diverse data types including logs, metrics, 
traces, events, and topology from every service and its individual instances. To tackle these 
issues, an experimental framework is introduced that applies macrostep debugging 
principles within a service mesh environment. This novel approach enables more controlled 
and systematic analysis of microservice communication and operation. The effectiveness of 
this system is validated through a resource allocation problem, showcasing its ability to 
detect and actively control an application in a failure state. Furthermore, a performance 
evaluation demonstrates that although the debugging framework introduces additional 
overhead in terms of latency and throughput, it remains effective for analyzing and 
reproducing faulty states in distributed environments. These results confirm that the 
approach provides valuable debugging insights at the cost of moderate but manageable 
performance trade-offs. 
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1 Introduction 

The challenge of debugging a microservice environment is significant and induced 
by the complexity and distribution inherent in such systems. In monolithic 
architectures, it is easier to analyze the entire application as a single unit than to 
work with multiple small components that are independently deployed and may 
make network calls to interact with each other. This increases the degree of 
difficulty in detecting faults. 
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One of the main issues is the magnitude of logs produced by microservices. 
Developers must frequently sift through vast amounts of log data to identify faults 
[1], a time-consuming activity that requires extensive developer knowledge. This is 
especially problematic, in large systems that can produce millions of traces per 
second, which makes it difficult to distinguish real signals from the noise [2].  
A large number of trace data may also slow down the process of fault analysis and 
debugging. 

Moreover, the dynamic nature of microservice interactions introduces additional 
layers of challenge. Each microservice may communicate with numerous other 
services, resulting in complex call chains that make it difficult to pinpoint the source 
of a failure [3] [4]. The decentralized nature of microservice architecture also 
implies that issues can stem from various origins, including hardware failures, 
implementation flaws, or even incorrect service coordination. 

Further complicating matters are technological aspects relating to observability and 
instrumentation. Effective debugging relies on robust observability measures, yet 
instrumentation can introduce performance overheads that complicate the 
debugging process [5]. Developers often struggle with balancing the need for 
detailed monitoring with the overhead induced by gathering such metrics [6].  
The result is a landscape where the efficiency of debugging tools is crucial, yet often 
insufficient. 

Additionally, as highlighted in [7], integration challenges and configuration errors 
are prevalent issues in microservice environments, which further complicates 
debugging efforts. This multifaceted landscape requires a systematic approach to 
analyze potential faults, emphasizing the need for sophisticated tools capable of 
managing distributed systems effectively. 

In summary, debugging microservice architectures is inherently complex due to 
high log volume, complex inter-service interactions, and the challenge of achieving 
deep observability without incurring significant performance trade-offs. Addressing 
these challenges requires not only sophisticated tracing and monitoring techniques 
but also robust organizational strategies to effectively manage the system’s 
complexity. In this paper, the challenges are explained in detail and a possible 
solution is proposed to enhance the reliability of microservice debugging combining 
previous debugging methods with this architectural approach. The paper presents a 
structured approach to detailing the methodology and demonstrates the proposed 
solution. 

This work is structured as follows. Section 2 reviews related work in microservice 
debugging, examining existing approaches for fault detection and their limitations 
in distributed environments. Section 3 presents our methodology and introducing 
macrostep-based debugging principles adapted for service mesh architectures. 
Section 4 outlines the overall concept of our experimental framework, describing 
the integration of WebAssembly filters and active control mechanisms. Section 5 
details the operational flow of our approach, illustrating how network requests are 
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intercepted, controlled, and analyzed within the service mesh environment. Section 
6 evaluates the performance impact of our debugging framework through 
comprehensive testing and analysis. Finally, Section 7, concludes the paper with a 
summary of contributions and directions for future work. 

2 Related Work 

Microservice architectures have transformed the development and deployment of 
software applications, promoting scalability and modularity. However, they also 
introduce substantial challenges in debugging due to their inherent complexity. In a 
microservice system, each node deploys one or more containers that are grouped 
into pods. Each service may have multiple instances, and services communicate 
with each other over the network. Zhang et al. [8] categorize failure diagnosis into 
three levels:(i) Service level, (ii) Instance level, and (iii) Component level. Service-
level and instance-level detection help identify which service or which instance 
within a service is the root cause of a failure. However, component-level 
localization offers a more granular diagnosis by not only identifying the problematic 
service or instance but also identifying the specific component within it.  
The effectiveness of this granularity largely depends on whether the solution 
handles the service or instance as a single unit or examines its internal structure. 

Yu et al. [9] introduced a tracing-based approach designed to identify root causes 
of latency issues in microservice environments. Their system extracts service 
latency information from tracing data and applies anomaly detection techniques. 
However, if latency is not a factor in the fault condition, the method may fail to 
identify the underlying issue. 

Wu et al. [10] propose a solution that utilize service dependency graphs to model 
service interactions, enabling the identification of faulty services based on their 
relationships. Their approach constructs causality graphs that represent both 
communicating and non-communicating dependencies, which are critical for 
tracing fault propagation paths. The culprit metric localization method is 
constrained to detecting root causes that exhibit noticeable deviations from 
expected or normal values. 

One prominent method for debugging in microservices is delta debugging, as 
proposed by Zhou et al. [1]. They suggest representing microservice system settings 
as different scenarios and applying delta debugging to isolate failure-inducing 
conditions within these contexts. This approach simplifies the process by allowing 
developers to identify the minimal change required to reproduce a fault, facilitating 
faster diagnosis and rectification of issues within microservices. Limitations of this 
method can arise when applying this method in larger microservices networks, as 
the interactions between services complicate the detection of failure causes. 
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Liu et al. [11] explore anomaly propagation via dynamic service call graphs, ranking 
potential root causes with a combination of machine learning and statistical 
methods. Demonstrated substantial efficiency improvements. Their approach 
demonstrated significant efficiency gains, reducing localization time from 30 
minutes to 5 minutes. However, its reliance on comprehensive multi-source data 
collection infrastructure in cloud-edge environments and the computational 
overhead of maintaining heterogeneous dynamic topology stacks, which may limit 
scalability and efficiency in large-scale or frequently changing topologies. 

Lee et al. [12] utilizes trace logs and ML models to predict latent errors, pinpoint 
faulty microservices, and identify fault types with high precision and recall in 
benchmarks, such as Sock Shop and Train Ticket. The main limitation of their 
solution is its heavy dependency on comprehensive multi-source data collection 
infrastructure and substantial labeled training data, making it challenging to deploy 
in real production environments where such resources may not be readily available. 

3 Methodology 

3.1 Debugging Across System Phases 

During debugging, it is important to distinguish between two types of phases: (i) 
the deployment phase, where the application begins its operation, and (ii) the 
operational (runtime) phase, when it is running in a production environment. 

In the deployment phase, the intervention toolkit is significantly broader. In this 
state, there are more opportunities to observe and analyze the application’s behavior 
in detail. Various diagnostic tools, such as debuggers, profilers, extended logging 
levels, and trace and metrics collection, can be more easily applied or injected. 
Using an agent also offers greater flexibility, as it is not constrained by the strict 
performance, security, or availability requirements of a live environment. As a 
result, the identification of issues and the analysis of cause-and-effect relationships 
can be performed more efficiently and quickly. 

In contrast, during the operational phase, debugging is carried out with a much more 
limited toolkit. At this stage, the application is already running, and any disruption 
of service, decrease in performance, or damage to data integrity can have severe 
consequences. Therefore, intervention options are minimized, and most monitoring 
capabilities must be provided in advance (e.g., proper logging, integration of 
monitoring systems), so that any potential issues can be traced afterward. 

Our research focused on the system’s operational phase, during which the 
components are already running and active communication takes place between 
them. In this operational, stable state, examining network traffic is particularly 
relevant, as the observation has a smaller impact on the system’s performance.  
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The data packets and protocols operate according to the normal behavior of the 
system, enabling clear identification of communication patterns. This creates an 
opportunity for effectively detecting and interpreting any anomalies or 
irregularities. 

3.2 Macrostep-based Debugging 

Parallel and distributed systems create unique challenges in debugging due to their 
inherently non-deterministic nature. Variability in runtime conditions, such as 
differing CPU/memory speeds, operating system scheduling, and network latencies, 
can cause the same program to behave differently across executions. This non-
determinism significantly complicates the debugging process, particularly when 
attempting to reproduce erroneous behavior.  

Traditional sequential debugging methodologies, which rely heavily on 
deterministic execution and stepwise control using breakpoints, are less suitable for 
such environments. Early approaches to debugging parallel systems often used the 
"monitor and replay" technique [13]. During the monitoring (or recording) phase, 
the tool captures information about the parallel program to enable a deterministic 
reproduction of the execution. In the subsequent replay phase, the program’s 
execution is reproduced based on the previously collected data. While this approach 
offers a way to debug parallel programs, it introduces a new issue known as the 
probe effect. This occurs when the act of monitoring alters the program’s timing 
behavior. Although reducing the amount of data collected during monitoring can 
lessen the impact, the probe effect itself cannot be fully eliminated. 

Another method for debugging parallel programs is the "control and replay" 
technique (also called active control) [13] [14]. In this approach, systematically 
generated test cases are used to exhaustively cover all possible timing conditions in 
the program. Replay is driven not by previously collected data but by these 
generated test cases. The central challenge of this method lies in developing an 
effective way to generate such test cases. 

To overcome the monitor and replay limitations, macrostep debugging introduces a 
comprehensive, reproducible, and systematic approach for identifying and 
analyzing faults in message-passing programs. It combines the rigor of formal 
execution models with the practicality of breakpoint-based debugging, extending 
well-understood sequential techniques into the more complex domain of concurrent 
systems. In macrostep debugging, test cases are actively generated to steer program 
execution. These test cases are constructed systematically to exhaustively explore 
all possible timing conditions and execution sequences. The replay phase is driven 
by these test cases, enabling exhaustive and reproducible coverage of the program’s 
non-deterministic behavior. A central controller orchestrates execution, enforcing 
specific timing scenarios and coordinating process states in accordance with the 
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generated test cases. This approach ensures that all possible overlaps and race 
conditions can be systematically evaluated. 

Macrostep debugging is built around several fundamental concepts. It distinguishes 
between the local level and the global level. Local breakpoints operate at the 
individual process level and halt execution when a predefined program state is 
reached. A collective breakpoint consists of a coordinated set of local breakpoints, 
ideally including one from each process involved in the computation. A collective 
breakpoint is said to be complete if it contains a local breakpoint from every active 
process and strongly complete if it accounts for all alternative execution paths across 
processes, ensuring comprehensive coverage of concurrency scenarios. 

Execution between two collective breakpoints defines a macrostep. A macrostep 
represents a semantically meaningful unit of execution that abstracts away fine-
grained thread or message-level interactions. Macrosteps are further classified 
based on the nature of their operations. A pure macrostep is one in which 
communication-related operations occur only at the end of the step, thereby 
preserving clean boundaries for analysis. The original macrostep-debugging 
concept differentiates between pure and compound macrosteps. A macrostep is 
considered pure if communication-related code appears only at its final element; 
otherwise, it is classified as compound. By requiring macrosteps to be pure and 
collective breakpoints to be strongly complete, macrostep debugging ensures a 
reliable approach. This allows the traditional breakpoint-to-breakpoint debugging 
method, commonly used in sequential programs, to be effectively extended to 
parallel execution. This facilitates macrostep-by-macrostep debugging, offering a 
clearer understanding of concurrent behavior and enabling step-by-step reasoning 
about distributed system execution. 

To manage the combinatorial complexity of parallel execution paths, macrostep 
debugging introduces the concept of an execution tree. This tree encapsulates all 
feasible execution paths and timing conditions in a program. In this structure, nodes 
represent collective breakpoints, while edges denote macrosteps. The root node 
marks the program’s starting point, and each path through the tree corresponds to a 
specific sequence of collective breakpoint activations, or an execution path.  
The tree incorporates three distinct types of nodes: 

1. Deterministic nodes, which transition to exactly one next state without 
branching into multiple execution paths, 

2. Alternative nodes, which represent mutually exclusive decisions that lead 
to different outcomes depending on the timing of events or the order of 
message receptions, 

3. Fork nodes, which introduce true concurrency by allowing the program 
to branch into multiple parallel threads of execution. 

This hierarchical representation allows developers to systematically navigate, 
visualize, and manipulate the program's state space. Furthermore, meta-breakpoints 
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can be strategically placed within the execution tree to steer the program toward 
specific states or to force the evaluation of certain timing scenarios. These meta-
breakpoints act as high-level control constructs, enabling selective exploration of 
the execution tree without the need to exhaustively traverse all paths in each 
debugging session. 

The primary goal of macrostep debugging is to expose and analyze concurrency-
induced faults by discovering different timing combinations among concurrent 
operations in distributed environments. This technique enables a controlled and 
comprehensive exploration of execution paths. As a result, it supports the 
reproducible detection of difficult-to-trace errors such as race conditions and 
deadlocks. Unlike ad hoc testing or trace-based analysis, macrostep debugging 
provides a structured method in which every potential execution order can be 
systematically tested and verified. 

3.2 Macrostep-based Debugging in Service Mesh 

Figure 1 illustrates a complex synthetic example designed for demonstration 
purposes, featuring several collective breakpoints such as  
NAR1

1–NAS1
2–NAS1

3–NAR1
4. These breakpoints are positioned on inter-MS 

(Microservice) communication primitives related to the sender (NAS), receiver 
(NAR), or alternative/collective receiver (NACR) methods within each MS 
communication process. Inter-MS communications are typically synchronized 
actions, indexed by the corresponding MS communication process number 
(subscript) and a serial number (superscript), as shown in Figure 1. The series of 
upper-level communication steps executed between two consecutive collective 
breakpoints is referred to as a macrostep. 

A single breakpoint within a collective breakpoint is considered active if it is 
triggered during a macrostep and its associated inter-MS communication completes 
successfully (e.g., NAS2

2 in Figure 1). Conversely, a breakpoint is classified as 
sleeping if it is triggered but its corresponding notification cannot be completed in 
the current macrostep, thus carrying over to the next collective breakpoint. 

For example, consider a send instruction (NAS2
1) from one MS process (MS1) 

attempting synchronous communication with another process (MS4). If MS4 is 
already engaged with a third MS process (MS3), the breakpoint at NAS2

1 becomes 
a sleeping breakpoint and will appear in the subsequent collective breakpoint. 
Similarly, NAS3

4 is also a sleeping breakpoint, as it must wait for NAS4
5 to proceed. 
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Illustration for the macrostep-based execution of complex deployment with MS based communication 

Microservice architectures can involve numerous services, frequently deployed and 
scaled, making it difficult to analyze errors due to the non-deterministic nature of 
cloud resources. Factors, such as varying service configurations, diverse 
dependencies, and fluctuations in resource load (CPU, memory, network) can all 
affect timing during communication and operation. This complexity often leads to 
situations where errors are hard to reproduce consistently. 

Istio [15] built on the top of Kubernetes delivers sophisticated traffic management 
capabilities and precise control over service-to-service interactions. We built our 
solution by leveraging the flexibility of the network layer. Through its integration 
with Kubernetes’ native functionalities, Istio strengthens the network layer, 
scalability, and maintainability of distributed applications in cloud-native 
ecosystems. 

Applying the macrostep debugging methodology to microservice orchestration is 
promising. In this context, the "processes" are the individual microservices. By 
inserting local breakpoints within each microservice's network communication, a 
debugger can pause network communication for analysis and control. 

These local breakpoints can be grouped into collective breakpoints, where each 
collective breakpoint represents a synchronized pause across all relevant 
microservices. Reaching a collective breakpoint signifies a consistent global state 
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of the microservice system, allowing for inspection of each service's state. If the 
debugger has a choice of which microservice to allow to proceed, it's an alternative 
collective breakpoint. If there is only one service that can continue, then the 
breakpoint is deterministic. 

The execution tree represents all possible execution paths and timing scenarios 
during the microservice communication and operation.  The root node of this tree 
is the set of initial local breakpoints for each microservice. Connections between 
nodes are macrosteps, representing the execution between two collective 
breakpoints. This approach enables debugging of microservice network and 
operation step-by-step, moving from one collective breakpoint to the next. 

4 Overall Concept 

We present an experimental framework that leverages a WebAssembly (WASM) 
filter and Python to implement an active control mechanism for network requests 
within a controlled test environment. The framework consists of multiple 
components that integrate with the service mesh, facilitating the evaluation of 
various use cases. To extend the capabilities of the service mesh experiment system, 
we designed and incorporated additional components that enable precise traffic 
manipulation within the architecture. By leveraging the extended network layer of 
the service mesh, our approach introduces custom components that support traffic 
blocking and order manipulation, which enhances the flexibility and functionality 
of the proposed architecture. 

An example application was created to demonstrate the benefits of macrostep 
debugging. It is based on a resource allocation problem, the dining philosophers 
[16]. The dining philosopher’s problem is a classical synchronization problem that 
models resource allocation in concurrent computing. Reflecting on this problem, it 
becomes indisputable that efficient resource allocation is critical to ensuring that 
philosophers can utilize resources ("eat") without causing deadlocks or resource 
starvation. Deadlock happens when each philosopher picks up one fork and then 
waits for the other. This creates a circular wait where no one can continue, so all 
progress stops.  

The application is built on microservice architecture, where distinct services and 
interfaces communicate with each other to manage resource allocation. Each service 
allocates resources and releases them after a randomized duration. The core 
philosophy of the application is to simulate resource consumption based on real-life 
use cases. 

In certain scenarios, a service may require multiple resources simultaneously. If 
components behave greedily, demanding additional resources to complete tasks 
(such as calculations), the risk of potential deadlocks could increase. This risk is 
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further amplified by increasing the number of components competing for resources 
and reducing the time spent on computation, leading to more frequent resource 
allocation attempts. 

The demo application demonstrates this behavior described above and is written in 
Go. It consists of six processes and six resources, with each process requiring 
exactly two resources to operate. Resource allocation is determined at runtime, 
making the order of allocation significant. Although this configuration typically 
functions without issues, deadlock occurs when all processes simultaneously hold 
exactly one resource while waiting indefinitely for their second required resource. 

Our solution successfully identified the resource allocation issue in the application 
based on the monitored states and actively guided toward the faulty condition at 
runtime through active control. Beyond the experimental dining philosopher’s 
application, the proposed framework is applicable to other real-world microservice 
scenarios where concurrency and timing issues frequently arise. To mitigate this, 
various algorithms and frameworks from cloud computing, notably those that utilize 
dynamic resource allocation strategies, provide valuable insight. For example, in 
cloud-based job scheduling on platforms like Kubernetes or SLURM, multiple 
services may race for CPU or GPU resources, and subtle race conditions in 
allocation may cause starvation or indefinite waiting. These scenarios highlight how 
systematic, macrostep-based debugging in a service mesh can move beyond theory 
by uncovering and reproducing resource contention, race conditions, and deadlocks 
in distributed environments. 

5 Operational Flow 

Figure 2 illustrates a microservices-based application consisting of two independent 
services that communicate with each other. In a service mesh environment, this 
communication is handled by sidecar components (such as the Envoy Proxy), which 
are responsible for managing the networking layer. The sidecars discover 
destination addresses and route traffic to the designated services. The proxy layer 
also offers various capabilities to influence traffic behavior, including monitoring, 
controlling, and mirroring traffic. To enable traffic monitoring and control, an 
external component has been developed, making use of the sidecar's extensibility. 



Acta Polytechnica Hungarica Vol. 22, No. 12, 2025 

‒ 19 ‒ 

 
Figure 2 

The proposed architecture outlines the flow of network requests 

When Application A initiates communication with Application B, the message 
exchange proceeds through the following steps: 

1. Message Preparation and Transmission: Application A prepares the 
message request and sends it to the destination. (Step 1) 

2. Interception by Sidecar: The request is intercepted by the local sidecar 
proxy (e.g., Envoy), which operates transparently alongside the 
application. (Step 2) 

3. Forwarding to Destination Sidecar: The message is forwarded to the 
sidecar proxy of Application B. (Step 3) 

4. Custom Processing via WASM Filter: The receiving sidecar is extended 
with a WASM filter (implemented using the Go SDK), which enables the 
injection of custom logic. In our implementation, this filter notifies a 
controller component about the incoming message, logs the network 
request, and actively control its delivery. (Step 4) 
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5. Conditional Delivery: Until the controller approves the connection, 
message delivery is delayed. To accommodate this, timeouts should be 
disabled on the application side to prevent timeout request termination. 
(Step 7) 

6. Acknowledgment and Final Delivery: Once approved, an 
acknowledgment is sent, and the proxy delivers the message to Application 
B. (Step 8) 

7. Response Handling: Application B processes the message and generates 
a response, which is intercepted by its sidecar, forwarded to Application 
A’s sidecar, and finally delivered to Application A. (Step 9-13) 

Based on the methodology described above, the system was utilized to address a 
resource allocation problem, specifically the Dining Philosophers scenario.  
The faulty state was successfully identified by our solution through the mapping of 
system states, taking into account external timing parameters. Furthermore, through 
active control, the system is capable of steering the application toward this state for 
further evaluation. 

6 Performance Evaluation 

When considering a debugging tool, evaluating its performance is essential, since 
the speed and effectiveness of identifying and resolving issues depend directly on 
how well the tool performs. A reliable tool ensures accurate results, supports 
efficient workflows, and contributes to overall software quality instead of creating 
obstacles. 

Table 1 
Performance comparison of Controlled and Normal services 

However, it is important to highlight the limitations of the current implementation. 
At present, the component represents a single point of failure within the system. If 
a failure occurs, Kubernetes is expected to redeploy the application. In the case of 
a node-level failure, the redeployment might occur on a different node. When using 
distributed storage solutions (e.g., Rook), this process should ensure that no data is 
lost. 

Metrics Normal service Controlled service 
Avg Latency (ms) 1.63 16.81 
Latency Stdev (ms) 0.95 80.62 
Total Requests/sec 4958.00 1120.37 
Requests (30s) 148818 33649 
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The impact on the network was evaluated using the WRK tool, and the 
measurements were repeated five times and the average was represented. In our 
measurements, we ignored node-level scheduling and instead allowed Kubernetes 
to manage component scheduling. This approach lets Kubernetes operate as it 
would in normal scenarios, making placement decisions based on resource 
availability and policies. As a result, the measurements more accurately represent 
ordinary behavior, reduce bias from manual scheduling, and provide a clearer 
evaluation of system performance. 

Table 1 presents a comparison of system performance under normal and controlled 
service conditions. Under normal service, the average latency was 1.63 ms with a 
standard deviation of 0.95 ms, while under controlled service, the average latency 
increased significantly to 16.81 ms with a much higher standard deviation of 
80.62 ms, indicating greater variability in response times. The total throughput also 
decreased substantially under controlled service, with the system handling 4958 
requests per second in normal service versus 1120.37 requests per second in 
controlled service. Over a 30-second interval, this corresponds to 148818 requests 
processed under normal conditions compared to 33649 requests under controlled 
conditions, demonstrating a marked reduction in processing capacity. Evaluating 
the network metrics, the source of the additional overhead is that during control and 
monitoring, an extra packet is created for the controller, which adds extra network 
latency and decrease the throughput of the system. Since the examined application 
did not contain significant business logic and was written in go, very low latency 
values were achieved during normal operation. Therefore, it can be assumed that in 
a real-world usage scenario with multiple microservices, the latency of the normal 
service would be higher, while the latency of the controlled service would remain 
unchanged. In our future work, we plan to conduct a more detailed analysis of the 
performance aspect. 

Figure 3 illustrates the latency distribution for the normal and controlled service 
across selected percentiles (P50, P75, P90, and P99). The results show that the 
normal service maintains consistently low latency values, ranging from 1.47 ms at 
the 50th percentile to 3.49 ms at the 99th percentile. In contrast, the controlled service 
exhibits noticeably higher latency across all percentiles, with values of 6.96 ms 
(P50), 10.15 ms (P75), and 12.75 ms (P90). A significant divergence is observed at 
P99. These results indicate that while the overhead introduced by the control 
mechanism is moderate under typical conditions, it can lead to substantial latency 
outliers in extreme cases. 
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Figure 3 

Latency comparison between normal and controlled services 

Conclusions 

In this paper, we have addressed the key challenges associated with debugging 
microservice architectures, emphasizing the complexities arising from distributed 
systems, high log volumes and intricate service interactions. 

We designed an experimental framework that leverages macrostep debugging 
principles within a service mesh environment, for error detection, with active 
monitoring and controlling. We devised and realized an experimental framework 
that leverages macrostep debugging principles within a service mesh environment 
for error detection with active monitoring and controlling. In this resource allocation 
scenario, we successfully achieved error detection by actively monitoring and 
controlling microservice interactions. Through the integration of multiple 
components, our system was able to intercept and manipulate network requests, 
enabling us to identify faulty states that would otherwise be difficult to detect using 
conventional debugging methods. The approach proved valuable in a dynamic and 
timing-sensitive environment like the Dining Philosophers problem, where time 
conditions and resource allocations are critical. In addition, a performance 
evaluation was carried out, which showed that the framework introduces additional 
latency and reduces throughput compared to normal operation. 

Our current implementation, necessitates disabling application-side timeouts, to 
accommodate debugging delays, which introduces a trade-off that requires careful 
management of potential indefinite wait scenarios. To address this limitation, we 
are exploring alternative approaches, such as application-side instrumentation.  
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We demonstrated the effectiveness of our system on a resource allocation problem 
by successfully detecting and actively controlling the application in a failure state. 
This approach enables a more controlled and systematic analysis of microservice 
communication and operation, as demonstrated by our implementation using the 
Dining Philosophers problem. By integrating a WASM filter and utilizing a 
controller for active network request control, our framework offers a promising way 
of enhancing the reliability and debuggability of microservice-based applications. 

Future work will aim to refine the framework further, investigate its applicability to 
a wider variety of complex microservice scenarios and provide a more 
comprehensive performance evaluation. 
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