
Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 9 ‒

Mesh-Aware Debugging: Identifying Resource
Allocation Issues in Distributed Microservices

Márk Emődi1,2,*, József Kovács1 and Róbert Lovas1,2
1HUN-REN Institute for Computer Science and Control (HUN-REN SZTAKI),
Hungarian Research Network, Kende utca 13-17, H-1111 Budapest, Hungary;
{mark.emodi, jozsef.kovacs, robert.lovas}@sztaki.hun-ren.hu
2John von Neumann Faculty of Informatics, Óbuda University, Bécsi út 96/b, H-
1034 Budapest, Hungary; {emodi.mark, lovas.robert}@nik.uni-obuda.hu

* Corresponding author

Abstract: In microservice architectures, a core operational challenge lies in effectively
monitoring the system. This involves aggregating diverse data types including logs, metrics,
traces, events, and topology from every service and its individual instances. To tackle these
issues, an experimental framework is introduced that applies macrostep debugging
principles within a service mesh environment. This novel approach enables more controlled
and systematic analysis of microservice communication and operation. The effectiveness of
this system is validated through a resource allocation problem, showcasing its ability to
detect and actively control an application in a failure state. Furthermore, a performance
evaluation demonstrates that although the debugging framework introduces additional
overhead in terms of latency and throughput, it remains effective for analyzing and
reproducing faulty states in distributed environments. These results confirm that the
approach provides valuable debugging insights at the cost of moderate but manageable
performance trade-offs.

Keywords: Service mesh; Debugging; Distributed systems; Istio; Kubernetes; Resource
allocation

1 Introduction

The challenge of debugging a microservice environment is significant and induced
by the complexity and distribution inherent in such systems. In monolithic
architectures, it is easier to analyze the entire application as a single unit than to
work with multiple small components that are independently deployed and may
make network calls to interact with each other. This increases the degree of
difficulty in detecting faults.

M. Emődi et al. Mesh-Aware Debugging: Identifying Resource Allocation Issues in Distributed Microservices

‒ 10 ‒

One of the main issues is the magnitude of logs produced by microservices.
Developers must frequently sift through vast amounts of log data to identify faults
[1], a time-consuming activity that requires extensive developer knowledge. This is
especially problematic, in large systems that can produce millions of traces per
second, which makes it difficult to distinguish real signals from the noise [2].
A large number of trace data may also slow down the process of fault analysis and
debugging.

Moreover, the dynamic nature of microservice interactions introduces additional
layers of challenge. Each microservice may communicate with numerous other
services, resulting in complex call chains that make it difficult to pinpoint the source
of a failure [3] [4]. The decentralized nature of microservice architecture also
implies that issues can stem from various origins, including hardware failures,
implementation flaws, or even incorrect service coordination.

Further complicating matters are technological aspects relating to observability and
instrumentation. Effective debugging relies on robust observability measures, yet
instrumentation can introduce performance overheads that complicate the
debugging process [5]. Developers often struggle with balancing the need for
detailed monitoring with the overhead induced by gathering such metrics [6].
The result is a landscape where the efficiency of debugging tools is crucial, yet often
insufficient.

Additionally, as highlighted in [7], integration challenges and configuration errors
are prevalent issues in microservice environments, which further complicates
debugging efforts. This multifaceted landscape requires a systematic approach to
analyze potential faults, emphasizing the need for sophisticated tools capable of
managing distributed systems effectively.

In summary, debugging microservice architectures is inherently complex due to
high log volume, complex inter-service interactions, and the challenge of achieving
deep observability without incurring significant performance trade-offs. Addressing
these challenges requires not only sophisticated tracing and monitoring techniques
but also robust organizational strategies to effectively manage the system’s
complexity. In this paper, the challenges are explained in detail and a possible
solution is proposed to enhance the reliability of microservice debugging combining
previous debugging methods with this architectural approach. The paper presents a
structured approach to detailing the methodology and demonstrates the proposed
solution.

This work is structured as follows. Section 2 reviews related work in microservice
debugging, examining existing approaches for fault detection and their limitations
in distributed environments. Section 3 presents our methodology and introducing
macrostep-based debugging principles adapted for service mesh architectures.
Section 4 outlines the overall concept of our experimental framework, describing
the integration of WebAssembly filters and active control mechanisms. Section 5
details the operational flow of our approach, illustrating how network requests are

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 11 ‒

intercepted, controlled, and analyzed within the service mesh environment. Section
6 evaluates the performance impact of our debugging framework through
comprehensive testing and analysis. Finally, Section 7, concludes the paper with a
summary of contributions and directions for future work.

2 Related Work

Microservice architectures have transformed the development and deployment of
software applications, promoting scalability and modularity. However, they also
introduce substantial challenges in debugging due to their inherent complexity. In a
microservice system, each node deploys one or more containers that are grouped
into pods. Each service may have multiple instances, and services communicate
with each other over the network. Zhang et al. [8] categorize failure diagnosis into
three levels:(i) Service level, (ii) Instance level, and (iii) Component level. Service-
level and instance-level detection help identify which service or which instance
within a service is the root cause of a failure. However, component-level
localization offers a more granular diagnosis by not only identifying the problematic
service or instance but also identifying the specific component within it.
The effectiveness of this granularity largely depends on whether the solution
handles the service or instance as a single unit or examines its internal structure.

Yu et al. [9] introduced a tracing-based approach designed to identify root causes
of latency issues in microservice environments. Their system extracts service
latency information from tracing data and applies anomaly detection techniques.
However, if latency is not a factor in the fault condition, the method may fail to
identify the underlying issue.

Wu et al. [10] propose a solution that utilize service dependency graphs to model
service interactions, enabling the identification of faulty services based on their
relationships. Their approach constructs causality graphs that represent both
communicating and non-communicating dependencies, which are critical for
tracing fault propagation paths. The culprit metric localization method is
constrained to detecting root causes that exhibit noticeable deviations from
expected or normal values.

One prominent method for debugging in microservices is delta debugging, as
proposed by Zhou et al. [1]. They suggest representing microservice system settings
as different scenarios and applying delta debugging to isolate failure-inducing
conditions within these contexts. This approach simplifies the process by allowing
developers to identify the minimal change required to reproduce a fault, facilitating
faster diagnosis and rectification of issues within microservices. Limitations of this
method can arise when applying this method in larger microservices networks, as
the interactions between services complicate the detection of failure causes.

M. Emődi et al. Mesh-Aware Debugging: Identifying Resource Allocation Issues in Distributed Microservices

‒ 12 ‒

Liu et al. [11] explore anomaly propagation via dynamic service call graphs, ranking
potential root causes with a combination of machine learning and statistical
methods. Demonstrated substantial efficiency improvements. Their approach
demonstrated significant efficiency gains, reducing localization time from 30
minutes to 5 minutes. However, its reliance on comprehensive multi-source data
collection infrastructure in cloud-edge environments and the computational
overhead of maintaining heterogeneous dynamic topology stacks, which may limit
scalability and efficiency in large-scale or frequently changing topologies.

Lee et al. [12] utilizes trace logs and ML models to predict latent errors, pinpoint
faulty microservices, and identify fault types with high precision and recall in
benchmarks, such as Sock Shop and Train Ticket. The main limitation of their
solution is its heavy dependency on comprehensive multi-source data collection
infrastructure and substantial labeled training data, making it challenging to deploy
in real production environments where such resources may not be readily available.

3 Methodology

3.1 Debugging Across System Phases

During debugging, it is important to distinguish between two types of phases: (i)
the deployment phase, where the application begins its operation, and (ii) the
operational (runtime) phase, when it is running in a production environment.

In the deployment phase, the intervention toolkit is significantly broader. In this
state, there are more opportunities to observe and analyze the application’s behavior
in detail. Various diagnostic tools, such as debuggers, profilers, extended logging
levels, and trace and metrics collection, can be more easily applied or injected.
Using an agent also offers greater flexibility, as it is not constrained by the strict
performance, security, or availability requirements of a live environment. As a
result, the identification of issues and the analysis of cause-and-effect relationships
can be performed more efficiently and quickly.

In contrast, during the operational phase, debugging is carried out with a much more
limited toolkit. At this stage, the application is already running, and any disruption
of service, decrease in performance, or damage to data integrity can have severe
consequences. Therefore, intervention options are minimized, and most monitoring
capabilities must be provided in advance (e.g., proper logging, integration of
monitoring systems), so that any potential issues can be traced afterward.

Our research focused on the system’s operational phase, during which the
components are already running and active communication takes place between
them. In this operational, stable state, examining network traffic is particularly
relevant, as the observation has a smaller impact on the system’s performance.

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 13 ‒

The data packets and protocols operate according to the normal behavior of the
system, enabling clear identification of communication patterns. This creates an
opportunity for effectively detecting and interpreting any anomalies or
irregularities.

3.2 Macrostep-based Debugging

Parallel and distributed systems create unique challenges in debugging due to their
inherently non-deterministic nature. Variability in runtime conditions, such as
differing CPU/memory speeds, operating system scheduling, and network latencies,
can cause the same program to behave differently across executions. This non-
determinism significantly complicates the debugging process, particularly when
attempting to reproduce erroneous behavior.

Traditional sequential debugging methodologies, which rely heavily on
deterministic execution and stepwise control using breakpoints, are less suitable for
such environments. Early approaches to debugging parallel systems often used the
"monitor and replay" technique [13]. During the monitoring (or recording) phase,
the tool captures information about the parallel program to enable a deterministic
reproduction of the execution. In the subsequent replay phase, the program’s
execution is reproduced based on the previously collected data. While this approach
offers a way to debug parallel programs, it introduces a new issue known as the
probe effect. This occurs when the act of monitoring alters the program’s timing
behavior. Although reducing the amount of data collected during monitoring can
lessen the impact, the probe effect itself cannot be fully eliminated.

Another method for debugging parallel programs is the "control and replay"
technique (also called active control) [13] [14]. In this approach, systematically
generated test cases are used to exhaustively cover all possible timing conditions in
the program. Replay is driven not by previously collected data but by these
generated test cases. The central challenge of this method lies in developing an
effective way to generate such test cases.

To overcome the monitor and replay limitations, macrostep debugging introduces a
comprehensive, reproducible, and systematic approach for identifying and
analyzing faults in message-passing programs. It combines the rigor of formal
execution models with the practicality of breakpoint-based debugging, extending
well-understood sequential techniques into the more complex domain of concurrent
systems. In macrostep debugging, test cases are actively generated to steer program
execution. These test cases are constructed systematically to exhaustively explore
all possible timing conditions and execution sequences. The replay phase is driven
by these test cases, enabling exhaustive and reproducible coverage of the program’s
non-deterministic behavior. A central controller orchestrates execution, enforcing
specific timing scenarios and coordinating process states in accordance with the

M. Emődi et al. Mesh-Aware Debugging: Identifying Resource Allocation Issues in Distributed Microservices

‒ 14 ‒

generated test cases. This approach ensures that all possible overlaps and race
conditions can be systematically evaluated.

Macrostep debugging is built around several fundamental concepts. It distinguishes
between the local level and the global level. Local breakpoints operate at the
individual process level and halt execution when a predefined program state is
reached. A collective breakpoint consists of a coordinated set of local breakpoints,
ideally including one from each process involved in the computation. A collective
breakpoint is said to be complete if it contains a local breakpoint from every active
process and strongly complete if it accounts for all alternative execution paths across
processes, ensuring comprehensive coverage of concurrency scenarios.

Execution between two collective breakpoints defines a macrostep. A macrostep
represents a semantically meaningful unit of execution that abstracts away fine-
grained thread or message-level interactions. Macrosteps are further classified
based on the nature of their operations. A pure macrostep is one in which
communication-related operations occur only at the end of the step, thereby
preserving clean boundaries for analysis. The original macrostep-debugging
concept differentiates between pure and compound macrosteps. A macrostep is
considered pure if communication-related code appears only at its final element;
otherwise, it is classified as compound. By requiring macrosteps to be pure and
collective breakpoints to be strongly complete, macrostep debugging ensures a
reliable approach. This allows the traditional breakpoint-to-breakpoint debugging
method, commonly used in sequential programs, to be effectively extended to
parallel execution. This facilitates macrostep-by-macrostep debugging, offering a
clearer understanding of concurrent behavior and enabling step-by-step reasoning
about distributed system execution.

To manage the combinatorial complexity of parallel execution paths, macrostep
debugging introduces the concept of an execution tree. This tree encapsulates all
feasible execution paths and timing conditions in a program. In this structure, nodes
represent collective breakpoints, while edges denote macrosteps. The root node
marks the program’s starting point, and each path through the tree corresponds to a
specific sequence of collective breakpoint activations, or an execution path.
The tree incorporates three distinct types of nodes:

1. Deterministic nodes, which transition to exactly one next state without
branching into multiple execution paths,

2. Alternative nodes, which represent mutually exclusive decisions that lead
to different outcomes depending on the timing of events or the order of
message receptions,

3. Fork nodes, which introduce true concurrency by allowing the program
to branch into multiple parallel threads of execution.

This hierarchical representation allows developers to systematically navigate,
visualize, and manipulate the program's state space. Furthermore, meta-breakpoints

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 15 ‒

can be strategically placed within the execution tree to steer the program toward
specific states or to force the evaluation of certain timing scenarios. These meta-
breakpoints act as high-level control constructs, enabling selective exploration of
the execution tree without the need to exhaustively traverse all paths in each
debugging session.

The primary goal of macrostep debugging is to expose and analyze concurrency-
induced faults by discovering different timing combinations among concurrent
operations in distributed environments. This technique enables a controlled and
comprehensive exploration of execution paths. As a result, it supports the
reproducible detection of difficult-to-trace errors such as race conditions and
deadlocks. Unlike ad hoc testing or trace-based analysis, macrostep debugging
provides a structured method in which every potential execution order can be
systematically tested and verified.

3.2 Macrostep-based Debugging in Service Mesh

Figure 1 illustrates a complex synthetic example designed for demonstration
purposes, featuring several collective breakpoints such as
NAR1

1–NAS1
2–NAS1

3–NAR1
4. These breakpoints are positioned on inter-MS

(Microservice) communication primitives related to the sender (NAS), receiver
(NAR), or alternative/collective receiver (NACR) methods within each MS
communication process. Inter-MS communications are typically synchronized
actions, indexed by the corresponding MS communication process number
(subscript) and a serial number (superscript), as shown in Figure 1. The series of
upper-level communication steps executed between two consecutive collective
breakpoints is referred to as a macrostep.

A single breakpoint within a collective breakpoint is considered active if it is
triggered during a macrostep and its associated inter-MS communication completes
successfully (e.g., NAS2

2 in Figure 1). Conversely, a breakpoint is classified as
sleeping if it is triggered but its corresponding notification cannot be completed in
the current macrostep, thus carrying over to the next collective breakpoint.

For example, consider a send instruction (NAS2
1) from one MS process (MS1)

attempting synchronous communication with another process (MS4). If MS4 is
already engaged with a third MS process (MS3), the breakpoint at NAS2

1 becomes
a sleeping breakpoint and will appear in the subsequent collective breakpoint.
Similarly, NAS3

4 is also a sleeping breakpoint, as it must wait for NAS4
5 to proceed.

M. Emődi et al. Mesh-Aware Debugging: Identifying Resource Allocation Issues in Distributed Microservices

‒ 16 ‒

Illustration for the macrostep-based execution of complex deployment with MS based communication

Microservice architectures can involve numerous services, frequently deployed and
scaled, making it difficult to analyze errors due to the non-deterministic nature of
cloud resources. Factors, such as varying service configurations, diverse
dependencies, and fluctuations in resource load (CPU, memory, network) can all
affect timing during communication and operation. This complexity often leads to
situations where errors are hard to reproduce consistently.

Istio [15] built on the top of Kubernetes delivers sophisticated traffic management
capabilities and precise control over service-to-service interactions. We built our
solution by leveraging the flexibility of the network layer. Through its integration
with Kubernetes’ native functionalities, Istio strengthens the network layer,
scalability, and maintainability of distributed applications in cloud-native
ecosystems.

Applying the macrostep debugging methodology to microservice orchestration is
promising. In this context, the "processes" are the individual microservices. By
inserting local breakpoints within each microservice's network communication, a
debugger can pause network communication for analysis and control.

These local breakpoints can be grouped into collective breakpoints, where each
collective breakpoint represents a synchronized pause across all relevant
microservices. Reaching a collective breakpoint signifies a consistent global state

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 17 ‒

of the microservice system, allowing for inspection of each service's state. If the
debugger has a choice of which microservice to allow to proceed, it's an alternative
collective breakpoint. If there is only one service that can continue, then the
breakpoint is deterministic.

The execution tree represents all possible execution paths and timing scenarios
during the microservice communication and operation. The root node of this tree
is the set of initial local breakpoints for each microservice. Connections between
nodes are macrosteps, representing the execution between two collective
breakpoints. This approach enables debugging of microservice network and
operation step-by-step, moving from one collective breakpoint to the next.

4 Overall Concept

We present an experimental framework that leverages a WebAssembly (WASM)
filter and Python to implement an active control mechanism for network requests
within a controlled test environment. The framework consists of multiple
components that integrate with the service mesh, facilitating the evaluation of
various use cases. To extend the capabilities of the service mesh experiment system,
we designed and incorporated additional components that enable precise traffic
manipulation within the architecture. By leveraging the extended network layer of
the service mesh, our approach introduces custom components that support traffic
blocking and order manipulation, which enhances the flexibility and functionality
of the proposed architecture.

An example application was created to demonstrate the benefits of macrostep
debugging. It is based on a resource allocation problem, the dining philosophers
[16]. The dining philosopher’s problem is a classical synchronization problem that
models resource allocation in concurrent computing. Reflecting on this problem, it
becomes indisputable that efficient resource allocation is critical to ensuring that
philosophers can utilize resources ("eat") without causing deadlocks or resource
starvation. Deadlock happens when each philosopher picks up one fork and then
waits for the other. This creates a circular wait where no one can continue, so all
progress stops.

The application is built on microservice architecture, where distinct services and
interfaces communicate with each other to manage resource allocation. Each service
allocates resources and releases them after a randomized duration. The core
philosophy of the application is to simulate resource consumption based on real-life
use cases.

In certain scenarios, a service may require multiple resources simultaneously. If
components behave greedily, demanding additional resources to complete tasks
(such as calculations), the risk of potential deadlocks could increase. This risk is

M. Emődi et al. Mesh-Aware Debugging: Identifying Resource Allocation Issues in Distributed Microservices

‒ 18 ‒

further amplified by increasing the number of components competing for resources
and reducing the time spent on computation, leading to more frequent resource
allocation attempts.

The demo application demonstrates this behavior described above and is written in
Go. It consists of six processes and six resources, with each process requiring
exactly two resources to operate. Resource allocation is determined at runtime,
making the order of allocation significant. Although this configuration typically
functions without issues, deadlock occurs when all processes simultaneously hold
exactly one resource while waiting indefinitely for their second required resource.

Our solution successfully identified the resource allocation issue in the application
based on the monitored states and actively guided toward the faulty condition at
runtime through active control. Beyond the experimental dining philosopher’s
application, the proposed framework is applicable to other real-world microservice
scenarios where concurrency and timing issues frequently arise. To mitigate this,
various algorithms and frameworks from cloud computing, notably those that utilize
dynamic resource allocation strategies, provide valuable insight. For example, in
cloud-based job scheduling on platforms like Kubernetes or SLURM, multiple
services may race for CPU or GPU resources, and subtle race conditions in
allocation may cause starvation or indefinite waiting. These scenarios highlight how
systematic, macrostep-based debugging in a service mesh can move beyond theory
by uncovering and reproducing resource contention, race conditions, and deadlocks
in distributed environments.

5 Operational Flow

Figure 2 illustrates a microservices-based application consisting of two independent
services that communicate with each other. In a service mesh environment, this
communication is handled by sidecar components (such as the Envoy Proxy), which
are responsible for managing the networking layer. The sidecars discover
destination addresses and route traffic to the designated services. The proxy layer
also offers various capabilities to influence traffic behavior, including monitoring,
controlling, and mirroring traffic. To enable traffic monitoring and control, an
external component has been developed, making use of the sidecar's extensibility.

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 19 ‒

Figure 2

The proposed architecture outlines the flow of network requests

When Application A initiates communication with Application B, the message
exchange proceeds through the following steps:

1. Message Preparation and Transmission: Application A prepares the
message request and sends it to the destination. (Step 1)

2. Interception by Sidecar: The request is intercepted by the local sidecar
proxy (e.g., Envoy), which operates transparently alongside the
application. (Step 2)

3. Forwarding to Destination Sidecar: The message is forwarded to the
sidecar proxy of Application B. (Step 3)

4. Custom Processing via WASM Filter: The receiving sidecar is extended
with a WASM filter (implemented using the Go SDK), which enables the
injection of custom logic. In our implementation, this filter notifies a
controller component about the incoming message, logs the network
request, and actively control its delivery. (Step 4)

M. Emődi et al. Mesh-Aware Debugging: Identifying Resource Allocation Issues in Distributed Microservices

‒ 20 ‒

5. Conditional Delivery: Until the controller approves the connection,
message delivery is delayed. To accommodate this, timeouts should be
disabled on the application side to prevent timeout request termination.
(Step 7)

6. Acknowledgment and Final Delivery: Once approved, an
acknowledgment is sent, and the proxy delivers the message to Application
B. (Step 8)

7. Response Handling: Application B processes the message and generates
a response, which is intercepted by its sidecar, forwarded to Application
A’s sidecar, and finally delivered to Application A. (Step 9-13)

Based on the methodology described above, the system was utilized to address a
resource allocation problem, specifically the Dining Philosophers scenario.
The faulty state was successfully identified by our solution through the mapping of
system states, taking into account external timing parameters. Furthermore, through
active control, the system is capable of steering the application toward this state for
further evaluation.

6 Performance Evaluation

When considering a debugging tool, evaluating its performance is essential, since
the speed and effectiveness of identifying and resolving issues depend directly on
how well the tool performs. A reliable tool ensures accurate results, supports
efficient workflows, and contributes to overall software quality instead of creating
obstacles.

Table 1
Performance comparison of Controlled and Normal services

However, it is important to highlight the limitations of the current implementation.
At present, the component represents a single point of failure within the system. If
a failure occurs, Kubernetes is expected to redeploy the application. In the case of
a node-level failure, the redeployment might occur on a different node. When using
distributed storage solutions (e.g., Rook), this process should ensure that no data is
lost.

Metrics Normal service Controlled service
Avg Latency (ms) 1.63 16.81
Latency Stdev (ms) 0.95 80.62
Total Requests/sec 4958.00 1120.37
Requests (30s) 148818 33649

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 21 ‒

The impact on the network was evaluated using the WRK tool, and the
measurements were repeated five times and the average was represented. In our
measurements, we ignored node-level scheduling and instead allowed Kubernetes
to manage component scheduling. This approach lets Kubernetes operate as it
would in normal scenarios, making placement decisions based on resource
availability and policies. As a result, the measurements more accurately represent
ordinary behavior, reduce bias from manual scheduling, and provide a clearer
evaluation of system performance.

Table 1 presents a comparison of system performance under normal and controlled
service conditions. Under normal service, the average latency was 1.63 ms with a
standard deviation of 0.95 ms, while under controlled service, the average latency
increased significantly to 16.81 ms with a much higher standard deviation of
80.62 ms, indicating greater variability in response times. The total throughput also
decreased substantially under controlled service, with the system handling 4958
requests per second in normal service versus 1120.37 requests per second in
controlled service. Over a 30-second interval, this corresponds to 148818 requests
processed under normal conditions compared to 33649 requests under controlled
conditions, demonstrating a marked reduction in processing capacity. Evaluating
the network metrics, the source of the additional overhead is that during control and
monitoring, an extra packet is created for the controller, which adds extra network
latency and decrease the throughput of the system. Since the examined application
did not contain significant business logic and was written in go, very low latency
values were achieved during normal operation. Therefore, it can be assumed that in
a real-world usage scenario with multiple microservices, the latency of the normal
service would be higher, while the latency of the controlled service would remain
unchanged. In our future work, we plan to conduct a more detailed analysis of the
performance aspect.

Figure 3 illustrates the latency distribution for the normal and controlled service
across selected percentiles (P50, P75, P90, and P99). The results show that the
normal service maintains consistently low latency values, ranging from 1.47 ms at
the 50th percentile to 3.49 ms at the 99th percentile. In contrast, the controlled service
exhibits noticeably higher latency across all percentiles, with values of 6.96 ms
(P50), 10.15 ms (P75), and 12.75 ms (P90). A significant divergence is observed at
P99. These results indicate that while the overhead introduced by the control
mechanism is moderate under typical conditions, it can lead to substantial latency
outliers in extreme cases.

M. Emődi et al. Mesh-Aware Debugging: Identifying Resource Allocation Issues in Distributed Microservices

‒ 22 ‒

Figure 3

Latency comparison between normal and controlled services

Conclusions

In this paper, we have addressed the key challenges associated with debugging
microservice architectures, emphasizing the complexities arising from distributed
systems, high log volumes and intricate service interactions.

We designed an experimental framework that leverages macrostep debugging
principles within a service mesh environment, for error detection, with active
monitoring and controlling. We devised and realized an experimental framework
that leverages macrostep debugging principles within a service mesh environment
for error detection with active monitoring and controlling. In this resource allocation
scenario, we successfully achieved error detection by actively monitoring and
controlling microservice interactions. Through the integration of multiple
components, our system was able to intercept and manipulate network requests,
enabling us to identify faulty states that would otherwise be difficult to detect using
conventional debugging methods. The approach proved valuable in a dynamic and
timing-sensitive environment like the Dining Philosophers problem, where time
conditions and resource allocations are critical. In addition, a performance
evaluation was carried out, which showed that the framework introduces additional
latency and reduces throughput compared to normal operation.

Our current implementation, necessitates disabling application-side timeouts, to
accommodate debugging delays, which introduces a trade-off that requires careful
management of potential indefinite wait scenarios. To address this limitation, we
are exploring alternative approaches, such as application-side instrumentation.

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 23 ‒

We demonstrated the effectiveness of our system on a resource allocation problem
by successfully detecting and actively controlling the application in a failure state.
This approach enables a more controlled and systematic analysis of microservice
communication and operation, as demonstrated by our implementation using the
Dining Philosophers problem. By integrating a WASM filter and utilizing a
controller for active network request control, our framework offers a promising way
of enhancing the reliability and debuggability of microservice-based applications.

Future work will aim to refine the framework further, investigate its applicability to
a wider variety of complex microservice scenarios and provide a more
comprehensive performance evaluation.

Acknowledgements

Project no. 149909 has been implemented with the support provided by the Ministry
of Culture and Innovation of Hungary from the National Research, Development
and Innovation Fund, financed under the MEC_R funding scheme. The authors
thankfully acknowledge the support of the Doctoral School of Applied Informatics
and Applied Mathematics, Óbuda University. On behalf of the ”Modelling of
orchestration methods with machine learning” project, we are grateful for the
possibility of using HUN-REN Cloud (see [17]; https://science-cloud.hu/), which
helped us achieve the results published in this paper.

References

[1] X. Zhou et al., “Delta Debugging Microservice Systems with Parallel
Optimization,” IEEE Trans. Serv. Comput., Vol. 15, No. 1, pp. 16-29, Jan.
2022, doi: 10.1109/TSC.2019.2919823

[2] B. Li et al., “Enjoy your observability: an industrial survey of microservice
tracing and analysis,” Empir. Softw. Eng., Vol. 27, No. 1, p. 25, Jan. 2022,
doi: 10.1007/s10664-021-10063-9

[3] M. Ekhlasi, F. F. Daneshgar, M. Dagenais, M. Lamothe, N. Ezzati-Jivan, and
M. Khouzam, “DTraComp: Comparing distributed execution traces for
understanding intermittent latency sources,” Oct. 18, 2023, Preprints. doi:
10.22541/au.169762695.52482914/v1

[4] Z. H. Zhiqiang Hao, X. Z. Zhiqiang Hao, J. L. Xufan Zhang, and Q. W. Jia
Liu, “Service Call Chain Analysis for Microservice Systems,” J. Internet
Technol., Vol. 23, No. 6, pp. 1203-1211, Nov. 2022, doi:
10.53106/160792642022112306004

[5] H. M. Kabamba, M. Khouzam, and M. R. Dagenais, “Vnode: Low-Overhead
Transparent Tracing of Node.js-Based Microservice Architectures,” Future
Internet, Vol. 16, No. 1, p. 13, Dec. 2023, doi: 10.3390/fi16010013

[6] L. Wu, J. Bogatinovski, S. Nedelkoski, J. Tordsson, and O. Kao,
“Performance Diagnosis in Cloud Microservices Using Deep Learning,” in
Service-Oriented Computing – ICSOC 2020 Workshops, Vol. 12632, H.

M. Emődi et al. Mesh-Aware Debugging: Identifying Resource Allocation Issues in Distributed Microservices

‒ 24 ‒

Hacid, F. Outay, H. Paik, A. Alloum, M. Petrocchi, M. R. Bouadjenek, A.
Beheshti, X. Liu, and A. Maaradji, Eds., in Lecture Notes in Computer
Science, Vol. 12632, Cham: Springer International Publishing, 2021, pp. 85-
96, doi: 10.1007/978-3-030-76352-7_13

[7] M. Waseem et al., “Understanding the Issues, Their Causes and Solutions in
Microservices Systems: An Empirical Study,” July 11, 2023, arXiv:
arXiv:2302.01894. doi: 10.48550/arXiv.2302.01894

[8] S. Zhang et al., “Failure Diagnosis in Microservice Systems: A
Comprehensive Survey and Analysis,” Jan. 14, 2025, arXiv:
arXiv:2407.01710, doi: 10.48550/arXiv.2407.01710

[9] G. Yu et al., “MicroRank: End-to-End Latency Issue Localization with
Extended Spectrum Analysis in Microservice Environments,” in
Proceedings of the Web Conference 2021, Ljubljana Slovenia: ACM, Apr.
2021, pp. 3087-3098, doi: 10.1145/3442381.3449905

[10] L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “MicroRCA: Root Cause
Localization of Performance Issues in Microservices,” in NOMS 2020 - 2020
IEEE/IFIP Network Operations and Management Symposium, Budapest,
Hungary: IEEE, Apr. 2020, pp. 1-9, doi:
10.1109/NOMS47738.2020.9110353

[11] D. Liu et al., “MicroHECL: High-Efficient Root Cause Localization in
Large-Scale Microservice Systems,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), Madrid, ES: IEEE, May 2021, pp. 338-347, doi:
10.1109/ICSE-SEIP52600.2021.00043.

[12] C. Lee, T. Yang, Z. Chen, Y. Su, and M. R. Lyu, “Eadro: An End-to-End
Troubleshooting Framework for Microservices on Multi-source Data,” in
2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE), Melbourne, Australia: IEEE, May 2023, pp. 1750-1762, doi:
10.1109/ICSE48619.2023.00150

[13] P. Kacsuk, R. Lovas, and J. Kovács, “Systematic Debugging of Parallel
Programs in DIWIDE Based on Collective Breakpoints and Macrosteps1,”
in Euro-Par’99 Parallel Processing, vol. 1685, Springer Berlin Heidelberg,
1999, pp. 90-97, Accessed: Dec. 01, 2020 [Online] Available:
https://doi.org/10.1007/3-540-48311-X_8

[14] R. Lovas and B. Vécsei, “Integration of Formal Verification and Debugging
Methods in P-GRADE Environment,” in Distributed and Parallel Systems,
Vol. 777, Z. Juhász, P. Kacsuk, and D. Kranzlmüller, Eds., in The
International Series in Engineering and Computer Science, Vol. 777, Boston:
Kluwer Academic Publishers, 2005, pp. 83-92, doi: 10.1007/0-387-23096-
3_10

[15] “Istio,” Istio. Accessed: July 31, 2025 [Online] Available: https://istio.io/

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 25 ‒

[16] D. Lehmann and M. O. Rabin, “On the advantages of free choice: a
symmetric and fully distributed solution to the dining philosophers problem,”
in Proceedings of the 8th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages - POPL ’81, Williamsburg, Virginia: ACM
Press, 1981, pp. 133-138, doi: 10.1145/567532.567547

[17] M. Héder et al., “The Past, Present and Future of the ELKH Cloud,” Inf.
Társad., Vol. 22, No. 2, p. 128, Aug. 2022, doi:
10.22503/inftars.XXII.2022.2.8

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Debugging Across System Phases
	3.2 Macrostep-based Debugging
	3.2 Macrostep-based Debugging in Service Mesh

	4 Overall Concept
	5 Operational Flow
	6 Performance Evaluation

