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Abstract: Due to the direct observation of the Heat Transfer Coefficient at the surface of the
metallic components under quenching is practically impossible, indirect methods based on
measuring the cooling curves in certain points inside the workpieces, and numerical integra-
tion of their thermodynamic model mean a viable approach. The complexity of the necessary
calculations can be considerably reduced by the use of symmetric cylindrical samples made of
an alloy of particularly simple thermal properties defined in the standard ISO 9950. In spite
of that the complexity is still large enough. In the present approach it is reduced by apply-
ing a simple formal, qualitative model of the cooling process, the efficient Newton-Raphson
algorithm and a Fixed Point Iteration approach to obtain approximate preliminary results.
This approach requires only very limited computational capacities. Besides for making rough
estimations, due to its simplicity, the method may be useful in the education.
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1 Introduction
In many technical applications rigorous deduction of the results on the basis of the
available physical models and fundamental principles is impossible due to the high
complexity of these tasks. In quenching of metallic components this complexity of-
ten roots in the complicated initial and boundary conditions, the turbulent flow of the
cooling fluid, phase transitions in the fluid as condensation, evaporation that brings
about heat insulating gas bubbles at the surface of the quenched components. Phase
transitions and simultaneous chemical reactions within the solid sample may serve
as heat sources or sinks, etc. To partly reduce these complexities, in the standard
ISO 9950 [1] a cylindrical sample of well defined shape, size, and material com-
position is applied with internal points in which the temperature can be measured
by thermocouples. The task can be formulated as the determination of the “Heat
Transfer Coefficient” (HTC) on the surface of the sample as the function of the
time, in the possession of the measured cooling curves, the heat conduction model,
and the main thermodynamic data of the component that are available for some key
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engineering alloys [2]. If this task is tackled by assuming explicit HTC-time func-
tions over the surface of the sample, finite element mathematical approximation and
numerical integration of the equations becomes possible to determine the cooling
curves. The so computed curves can be compared with the measured ones, and by
modification of the original assumption on the HTC, efforts can be done to reduce
these differences (e.g. [3]).

Even if the cylindrical symmetry of the probe defined in [1] is taken into account,
the solution of this “Inverse Heat Transfer Problem” needs great computational
power. For instance in [4] gradient-based and genetic algorithm was applied with
complementary utilization of the graphical card’s computational capacities of the
computers.

As an alternative of using high computational power in technical applications the
systematic utilization of certain quantitative numerical values and some available
qualitative modeling knowledge can be mentioned that at first obtained rigorous
mathematical framework in the theory of fuzzy sets [5]. By the combination of the
qualitative and quantitative information simple functions with appropriate “shape
parameters” can be defined, and these parameters can be fitted to the measured data
for obtaining good numerical approximations. In Dombi’s “Pliant Systems” intro-
duced in [6] the so-called “distending function” is used due to which the various
operators are closely related to each other by setting certain form parameters. Simi-
larly, “computationally cheap approximation” of important probability distribution
functions (the normal, epsilon, omega), and the kappa regression function by typical
functions of certain form parameters can be found (e.g. [7]). Similar situation can
be observed in modeling dynamical phenomena having long memory properties:
they can be described only by very high order differential equations containing nu-
merous parameters. However, by using fractional order models (the brief history of
the topic is given in [8]) instead of the integer order ones, only a few free parameters
can be well fitted to the practical problems.

In the present paper a similar approach is outlined by observing the qualitative for-
mal properties of the cooling curves and the calculated HTC vs. time functions
given in [9].

For the approximation of these structures it is assumed that at the surface of the
sample the function HTC vs. time can be expressed as HTC ≡ h(T (r, t)) (variable t [s]

means the time, vector r denotes the location of the point on the surface of the probe,
and T [C] is the temperature). For the single variable h(T ) functions various formal
suggestions are given. Assuming that the length of the probe is long enough for
making the problem symmetric to its centreplane at the half length, the heat transfer
in the longitudinal direction must be zero. Furthermore, by utilizing the cylindrical
symmetry of the probe, the simplified distribution function T (r, t) was considered, in
which r [m] denotes the radial distance from the centreline. The appropriate “format
functions”, the finite element model and the Euler-integration applied, as well as the
methods used for tuning the parameters are discussed in Section 2.
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2 Formulation of the Problem for “FEM” Approach
For obtaining curves similar to that given in 2 simple qualitative physical consider-
ations were done. Quenching of metal products is a complex process that is difficult
to precisely describe by physical models. The HTC at the surface of the component
is a parameter that may depend on the nature of the bulk flow (laminar or turbulent),
the temperature, density, viscosity, the latent heat of evaporation/condensation, and
other thermal properties of the cooling liquid, the surface quality, shape, and ther-
mal data of the component under quenching. It is mainly determined by physical
processes as follows: i) Even if the “bulk” of the cooling liquid has turbulent flow
that allows very efficient heat transfer due to “stirring” the fluid layers, at the bound-
ary layer of the quenched sample laminar flow is formed since the fluid sticks on
the surface of the probe. The thickness of this layer is determined by the quality of
the surface of the probe, the density and viscosity of the liquid. In this layer the heat
transfer process mainly is realized by heat conduction, so it is not very efficient. ii)
The viscosity of a liquid normally decreases with increasing temperature, therefore
at higher temperatures thinner films with better heat transfer abilities are expected.
iii) When the temperature achieves the boiling point of the liquid at the pressure
of the operation, at the surface of the probe gas bubbles appear that act as “heat
insulators”, so at higher temperatures some decrease in the HTC value is expected.
This effect clearly can be observed optically in the case of refrigerators where it is a
practical experimental possibility to manufacture the pipes of transparent glass (e.g.
[10]). Though the temperature ranges are considerably different, the main physical
processes essentially are the same. It can be commonly observed that boiling liquid
drops can have relatively long persistence on hot metallic surfaces. iv) When the
hot probe is immersed into the cooling liquid, this liquid comes into boiling nearby
its surface. Though the latent heat of boiling used to be considerable, the heat in-
sulation made by the gas bubbles normally has more significant effect on the HTC,
consequently, in the beginning low HTC values can be expected.

The above argumentation well explains the shape of the curves given in [9]. On this
reason simple form functions that potentially are able to model the “asymmetries” in
h(T ) were investigated as given in (1) in which the parameters hmax, w, Tmax, wle f t , and
wright individually must be set to produce values of order of magnitude represented
in [9]. In (1a) the formal asymmetry was taken from Planck’s radiation law using the
frequency as independent variable. (Certain modification was introduced to elim-
inate the numerically inconvenient behaviour of the original formula at T = 0 that
may disturb the numerical calculations.) In the other formulae the location of the
“centre of asymmetry” is determined by the parameter Tmax, and its extent depends
on the “width parameters” wle f t for the lower, and wright for the higher temperatures.
The parameters given in Table 1 were set by the method of “generate and test”.

Due to the cylindrical symmetry of the problem the use of polar coordinates was
expedient that yields the heat conduction equation for the alloy Inconel 600 as given
in (2) in which t [s] denotes the time, r [m] denotes the radius from the centerline
as the “independent variables” of the problem, T [C] is the temperature, and it is
“formally” taken into consideration, that according to the numerical data published
on the thermal properties of this metal in [2], within the temperature range T ∈
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[27,796.45] [◦C] no observable “source” or “sink” terms appear.

h(T ) =
hmaxT 3

exp(T/w)−1
modified as h(T ) =

hmaxT 3

exp(D+ |T/w|)−1
(1a)

h(T ) = hmax

 exp
(
−([T −Tmax]/wle f t )

2
)

if T ≤ Tmax

exp
(
−([T −Tmax]/wright )

2
)

if T > Tmax
(1b)

h(T ) = hmax


D

D+([T−Tmax]/wle f t )
2 if T ≤ Tmax

D
D+([T−Tmax]/wright )

2 if T > Tmax
(1c)

h(T ) = hmax


wle f t

wle f t+[T−Tmax]2
if T ≤ Tmax

wright
wright+[T−Tmax]2

if T > Tmax
(1d)

Table 1
The variable parameters in (1) and their “target” values; in (1a) and (1c) D = 7.5×10−2 was fixed

Formula hmax
[

J
s·m2·K

]
Tmax [K] wle f t [K] wright [K]

(1a) 0.0035 – w = 89.5 –

(1b) 5700.0 680.0 260.0 80.0

(1c) 6000.0 680.0 350.0 100.0

(1d) 10000.0 680.0 3500.0 1000.0

∂

∂ r

(
k(T (r, t))

∂T (r, t)
∂ r

)
+

k(T (r, t))
r

∂T (r, t)
∂ r

= ρCp(T (r, t))
∂T (r, t)

∂ t
(2)

Under the normal environmental pressure and the given temperature range the den-
sity of the alloy is constant ρ = 8420

[
kg ·m−3

]
, while the heat conductivity-temperature

function k(T )
[
J · s−1 ·m−1 ·K−1

]
can be well described by a third order polynomial

fitted to the tabulated data found in [2]. The same holds for the specific heat-
temperature function Cp(T )

[
J · kg−1 ·K−1

]
. The approximations applied are given in

(3).

k(T ) =
3
∑
`=0

a` · (T/100)` , ρCp(T ) =
3
∑
`=0

b` · (T/100)` (3)

with a0 = 14.398632059, a1 = 1.479338274, a2 = 0.0206104081, a3 = −0.0006946666, b0 =

3660692.67678371, b1 = 466878.975781679, b2 =−120161.302924857, and b3 = 11898.306953622.

Since the location of the temperature sensors in the standard ISO 9950 corresponds
to r = 0 where (2) is singular, for developing “Finite Elements Method (FEM)” for
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computing the HTC and the cooling curves in the calculations the following approx-
imations were done. For the probe of radius R = 6.25 [mm], instead of the exact range
[0,R] the practically computable range [∆r,R] was so considered that the [0,R] interval
was divided into N ∈ N equally long subintervals as ∆r = R

N , and in the role of the
centre line r = ∆r was placed. For the grid points {ri|i = 2, . . . ,N−1} the central estima-
tion of the gradient was used as in (4a). In this manner it was possible to calculate
the 2nd term at the LHS of (2). Again, by the application of the central differences,
the calculation of the 1st term at the LHS of (2) was possible only for the points
{ri|i = 3, . . . ,N−2} in (4b). The temperature in the centreline was estimated according
to (4c). This scheme allowed the estimation of ∂T/∂ t for the same grid-points, and
on this basis, the application of a simple Euler-integration according to the time as
T (ri, t +δ t)≈ T (ri, t)+δ t ∂T (ri,t)

∂ t .

∇T (ri, t)≡
∂T (ri, t)

∂ ri
≈

T (ri+1, t)−T (ri−1, t)
ri+1− ri−1

,

i ∈ {2, . . . ,N− 1} (4a)

∂

∂ r

(
k

∂T
∂ r

)
≈

k(ri+1, t)∇T (ri+1, t)− k(ri+1, t)∇T (ri−1, t)
ri+1− ri−1

,

i ∈ {3, . . . ,N− 2} (4b)

T (r1, t)≡ T (r2, t)≡ T (r3, t) (4c)

The boundary conditions were set by (5)

−k(T (R, t))
∂T (R, t)

∂ r
= h(t)(T (R, t)−Tq) (5)

in which Tq [C] is the temperature of the bulk quenching liquid in turbulent flow,
and h(t)

[
J · s−1 ·m−1 ·K−1

]
is the heat transfer coefficient of the boundary layer of

the liquid at the surface of the probe. Besides the boundary condition equation (2)
must be completed with the initial conditions that have to be compatible with the
boundary conditions, too. This compatibility was guaranteed as follows: to solve
the boundary conditions in (5) a refreshed value T in grid point rN−1 was estimated
by using the 1st backward spatial derivative of the already refreshed points as in (6)

T (rN−1, t)≈ T (rN−2, t)+

(rN−1− rN−2)(T (rN−2, t)−T (rN−3, t))
(rN−2− rN−3)

(6)

and T (rN , t) was estimated by the use of the heat transfer coefficient as in (7)

T (rN , t)≈
h(T (rN−1, t))Tq + k(T (rN−1, t))/∆r
h(T (rN−1, t))+ k(T (rN−1, t))/∆r

(7)
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To make the above construction practically useful the number of the grid-points N

and the step-length of the Euler-integration according to the time, δ t, must be deter-
mined. This question is critical due to the singularity in (2) at r = 0. For this purpose
the “trial and error” method was chosen: the cooling curves were calculated for
Planck’s model in (1a) for the pairs {N = 20, δ t = 10−2 [s]}, and {N = 100, δ t = 10−3 [s]},
and the graphs were plotted in the same charts in Fig. 1. It reveals that for the
calculations it is sufficient to use the coarser one that considerably reduces the com-
putational burden and time.
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Figure 1
The cooling curves (a) and the HTC values for Planck’s model in (1a) for the pairs {N = 20, δ t =
10−2 [s]}, and {N = 100, δ t = 10−3 [s]} (b)

3 The basic optimization algorithm
In the suggested approach, to represent the “target cooling curve”, one of the “for-
mat functions” in (1) can be selected with the parameter values given in Table 1.
Then, by applying the FEM method described in Section 2, for the points of the dis-
crete time-grid applied, the cooling curve Tc ∈RL, L∈N as an array can be computed.
Following that the error of the difference of the arrays defined as E

de f
= ‖Tc−Ttarget‖ν

can be computed. Finally, the scalar function E(x)≡ E(hmax,Tmax,wle f t ,wright ) : R4 7→ R
can be minimized by varying its 4 independent arguments. Normally, in the prac-
tice using quadratic cost functions (i.e. ν = 2 in the Frobenius norm) happens be-
cause of rather “technical” than “mathematical” reasons. In the present simulation
it was found that the choice of ν = 0.25 produces a “convenient” cost function. If
the local optimum must be approached under constraints, Lagrange’s “Reduced
Gradient Method” can be applied for a given initial argument x0. If there are no
constraints, the Gradient Descent method generates a sequence of approximations
as xi+1 = xi +αi∇Ei , i ∈ {0,1,2, . . .} in which αi is a small negative number if the aim
is to minimize E(x). If no a priori information is available on ‖∇E(x)‖, very small
αi must be chosen. If some assumption is available for the minimum, a big step
can be done in the direction of the gradient that could approach this minimum in
a single step, then the same consideration can be repeated until reaching this mini-
mum “Newton-Raphson Algorithm”. Since this method converges well only if the
available minimum can be precisely estimated in advance, we have the freedom to
choose various αi values.
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The idea of accelerating the Newton-Raphson Algorithm consists of the combina-
tion of various solutions borrowed from already known methods as follows: i) From
the Simplex Algorithm the idea of shrinking the simplex in the vicinity of the local
optimum is borrowed. The speed of the motion of the simplex roughly is propor-
tional to its size. It can quickly approach the local minimum but its drift stops in its
vicinity. After shrinking, the smaller simplex drifts with reduced speed but finds the
optimum with better precision. For this purpose a “Shrinking Parameter” υ ∈ (0,1) is
introduced as α⇐ υ ·α. ii) From the Particle Swarm Optimization the idea of storing
the values of the already found best solution is borrowed. iii) Similar problem may
happen when the shrinking operation occurs too frequently. This means the appear-
ance of very small factors containing υk → 0 as N 3 k→ ∞, therefore the algorithm
may become very slow. In the calculations υ = 0.6 was chosen.

The Newton-Raphson algorithm has alternatives as e.g. the “Fixed Point Iteration”-
based methods that may work well, too. Their essence is Banach’s Fixed Point
Theorem [11] according to which the solution of certain numerical problems can be
reformulated as finding the fixed point of a contractive map defined over a complete
linear normed metric space. This fixed point subsequently can be approached by a
simple iteration as follows. Consider the (generally nonlinear) real function f : Rn 7→
Rn, n∈N with the mathematical problem qDes = f (q?) in which qDes is a known output
(the “response”) for which we have to find the appropriate input q?. Dineva in [12]
suggested the iteration for finding the appropriate input defined as a sequence of
deformed inputs as:

qDe f (i+1) = [F (Ac ‖h(i)‖+ x∗)− x∗]e(i)+qDe f (i) (8)

with the “response error” defined as h(i)
de f
= f

(
qDe f (i)

)
− qDes(i+ 1), and the vector

of unit Frobenius norm e(i)
de f
=

h(i)
‖h(i)‖ . Here Ac ∈ R is the adaptive control parameter,

and F : R 7→R is a real differentiable function with an attractive fixed point F(x?) = x?.
Evidently, if h(i) = 0 then qDe f (i+1) = qDe f (i), that is the solution of the control task is
the fixed point of this problem. By considering the 1st order Taylor series approxi-
mation of F(x) around x? and f (qDe f ) around q? Dineva proved that an appropriate AC
can be chosen for obtaining a convergent sequence if the real part of each eigenvalue
of ∂ f

∂qDe f

∣∣∣∣
q̈?
∈ Rn×n is either positive or negative. In (8) various F(x) functions can be

chosen. Instead of choosing some analytical formula in [13] a special function was
applied that can be realized and well configured in a program block. It transforms
the vector b ∈ Rn into the vector a ∈ Rn (‖a‖ 6= ‖b‖) via so augmenting them with a
physically not interpreted (n+ 1)th dimension that the augmented vectors have the
same Frobenius norm. Then an orthogonal matrix is analytically computed that ro-
tates the augmented variant of b into that of a while leaves their orthogonal subspace
invariant. With an interpolation parameter λ ∈ (0,1) the angle of the full rotation can
be multiplied, and this “moderated rotation” can be applied. The projection of the
rotated augmented vector in the original space suffers simultaneous rotation and
shrinking/dilatation as it approaches vector a. This idea evidently can be applied for
∇E(x) that can be driven to zero by fixed point iteration if in the place of the desired
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value qDes ≡ 0, in the role of qDe f the variable x, and in the role of the realized value
f (qDe f ) the quantity ∇E(x) are written: xn+1 = Φ(∇En,xn,0). Roughly speaking, in the
vicinity of the local minimum, by driving ∇E(x) to zero by a simple fixed point itera-
tion can be applied. In the lack of information whether the actual point is in the basin
of attraction of a local minimum or a local maximum (we wish to evade the calcu-
lation of J := ∂ 2E

∂xi∂x j
), this algorithm may proceed toward a local maximum while its

counterpart based on the Gradient Descent approach always moves towards the lo-
cal minimum. The speed of its migration also depends on the Jacobian J. However,
the behaviour of the fixed point iteration can be better and can be worse than that
of its gradient descent counterpart. To tackle this problem the following procedure
was applied: the Fixed Point Iteration was modified as follows: to evade too big
jumps, in the goal for the step (i+1) instead of 0 the reduced variant of the previous
value κEi has been written with κ ∈ (0,1). In this manner a finite value slowly and
cautiously can be driven toward 0. To speed up the convergence, the next point in
the space of the independent variables was selected as

xn+1 = Φ(∇En,xn +µn(xn− xn−1),κ∇En) ,

µn =
ω4 tanh(1/(ω3 + ‖̃J‖))

tanh(1/ω3)

(9)

in which ‖̃J‖ is a roughly estimated, filtered “Jacobian”. Regarding the filter, by
introducing a “smoothing and forgetting factor” η ∈ (0,1), and utilizing that ∑

∞
`=0 η` =

1/(1−η), any discrete time-dependent quantity f (ti) can be replaced with its filtered
value f̃ (ti) = (1−η)∑

∞
`=0 η` f (ti−`). This corresponds to the weighted average of the

recent values of f in which the very old contributions are gradually forgotten due to
their small weighting coefficients. In the calculations η = 0.9 was applied. Evidently,
if ‖̃J‖ � ω3, then µn ≈ ω4, that means that for very slow process the “accelerator”
factor has some limit. For ‖̃J‖→∞ µn→ 0, i.e. if the process is fast enough, practically
no process acceleration happens. The simple approximation in (10) was applied.

‖̃J‖n =
˜‖∇En−∇En−1‖

˜‖xn− xn−1‖+ω2
(10)

in which ω2 > 0 has the role of evading division by zero. The computation of (10)
evidently means far less burden than the numerical estimation of the real Jacobian.
However, it does not contain information on the direction of the drift of x, so it can be
quite unreliable, and may not result in monotonic decrease of E. However, it sooner
may produce better values than the Newton-Raphson algorithm, and this better value
can be stored and used even if the estimation based on (10) later diverges. In the
computations κ = 0.25, ω4 = 1.0, ω3 = 3.0, ω2 = 10−6, R̃ = 102, and λ = 0.1 were used. For
5 steps the Newton-Raphson method run to create the “antecedents” for the fixed
point iteration, then the computations turned to it. In Section 4 typical numerical
results are provided.
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4 Numerical computations

The time need of the computations depends on the hardware and software applied.
The computations were made on a Dell inspiron 15R laptop operated by the central
processor Intel® Core™ i5-3337U CPU @ 1.80GHz × 4 under Ubuntu ver. 13.04
operating system without using graphical acceleration. The sequential program was
written in Julia Version 1.0.3 (2018-12-18). This program language is developed at
the MIT, it is a free software, it is very similar to the MATLAB, but it runs almost
as fast as a C code [14]. It provides its users with a standard macro that measures
the time of computing the value of a function. It was experimentally found that for
the calculation of E and ∇E approximately 0.9−1.2/s was used, the abstract rotations
were calculated during 45−90/µs. During the research 8 different scenarios were in-
vestigated. In each of them a Newton-Raphson algorithm and a FPI-based solution
were compared according to the already given parameter settings. In the first group
the cases with possible exactly 0 approximation error (each “target” was created by
the same format function using different starting parameters) were considered. It
was found that the occurrence of the exponential function in the definitions (1a) and
(1b) needed quite slow and cautious approximation procedure, therefore their use
was less successful. However, the present settings was successful for the approxi-
mation of the functions in (1c) and (1d) that do not contain the exponential function.
In Fig. 2 the target in (1d) was approximated with the initial element (1d). In this
case the FPI-based approach very early provided the best solution.
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Figure 2
The cost function (Error) (a), the tuned variables x = [Tmax,wle f t ,wright ,hmax] (b), the cooling curve (c),
the heat transfer coefficient HTC (d)
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In the following runs variants in (1c) and (1d) as initial HTC distributions were used
to approximate targets created by some different distribution. When the target (1c)
was approximated by the form function (1d) the Newton-Raphson method provided
the better approximation. The reversed problem, i.e. when the target (1d) was
approximated by the form function (1c) the FPI-based solution was better but the
Newton-Raphson-based approach resulted in quite good approximation, too. Figure
3 corresponds to the approximation of (1a) by the function (1c). In this case the
FPI-based approach yielded a surprisingly good result.
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Figure 3
The cost function (Error) (a), the tuned variables x = [Tmax,wle f t ,wright ,hmax] (b), the cooling curve (c),
the heat transfer coefficient HTC (d)

5 Conclusion
In this paper a simple computational method was suggested for numerically tackling
the inverse heat conduction problem that has great significance in metallurgy. By
utilizing the geometric and thermodynamic simplifications offered by the standard
ISO 9950 a single dimensional space r and the time t variables were considered by
using the thermal data of the alloy Inconel 600. The finite elements approach, deal-
ing with the singularity in the centre of the polar coordinates, the boundary condi-
tions and the initial conditions that must be compatible with the boundary conditions
were discussed in details. For setting the appropriate grid-points in space and time
the method of “trial and error” was applied. A novel solution was outlined that
works with an “entity” that evolves according to the Newton-Raphson Algorithm
with step-by-step reduction of its step length, and also computes the propagation of
an associated “partner entity” that evolves according to a fixed point iteration. While
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it can be taken for granted that the original “entity” converges to a local optima but
its speed of convergence becomes very slow, the “partner entity” may have very fast
convergence but it may diverge, too. Numerical simulations were elaborated for the
combination of four typical “format functions” that can capture the essential asym-
metry in the HTC(T ) function, and numerically can approach the measured data taken
from the literature. Regarding the computational burden, the requirements of both
approaches are comparable. The computations were realized by a freely available
program language (Julia) that almost as efficiently utilizes the available hardware as
a C code. No any special FEM software was applied. While the computation of the
gradient of the cost function needed the time between 0.9 [s] and 1.2 [s], the time need
of the calculation of the abstract rotation applied by the FPI-based solution was be-
tween 45 [µs] and 85[µs], i.e. it was negligible in comparison with the computational
needs of the error gradient.

The preliminary results indicate that there are more or less plausible possibilities
for further speeding up the recommended approach as follows: a) instead of the
complete array taken from the time grid under consideration more sparse samples
can be used for the calculation of the error function that has to be minimized; b)
instead applying more dense points in the vicinity of the important “segments” of
the target cooling curve, enhanced weighting of the contribution of these points in
the error function may be practical, too; c) due to the special shape of a particular
cooling curve the success of approximation strongly depends on the starting param-
eters of the approximation; it seems to be practical to simultaneously run several
“associated couples” pairs , and finally select the best result. Since the considered
approximations needed very limited running time on a “common” hardware, it can
be concluded that it will be expedient to conduct further modelling investigations.
The present approximation is so simple that it seems to be useful in the education,
too.
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aux équations intégrales (About the Operations in the Abstract Sets and Their
Application to Integral Equations),” Fund. Math., vol. 3, pp. 133–181, 1922.

[12] A. Dineva, J. Tar, and A. Várkonyi-Kóczy, “Novel generation of Fixed Point
Transformation for the adaptive control of a nonlinear neuron model,” In proc.
of the IEEE International Conference on Systems, Man, and Cybernetics, Oc-
tober 10-13, 2015, Hong Kong (SMC 2015), pp. 987–992, 2015.
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