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Abstract: In the last decade several computational methods have been applied successfully 
to optimize the heat treatment processes. Among others, Biomimetic methods have been 
developed for solving complex and robust optimization problems on the field of casting, 
metal forming and heat treatment operations. These numerical methods are based on the 
emulation of the models, systems, and elements of nature for the purpose of solving 
complex human problems. These models have been inspired by structures and behavior of 
living creatures. The development of computer modeling and simulation tools have led to 
great advances in understanding how materials behave during Heat Treatment operations. 
Unfortunately, high-fidelity computational simulations can take significant time to run and 
require large computational capacity. Process optimization requiring many simulations at 
different conditions can be expensive. To mitigate these obstacles to widespread use of 
sophisticated computer models, Artificial Intelligence methods based on neural networks 
could be support the Heat Treatment processes. 
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1 Introduction 

Nature has always been the source of inspirations for scientists and engineers to 
solve problems in various fields. Abundant instructive heat and mass transfer 
enhancement phenomena as well as surface related mechanisms are observed in 
nature, partially imitated and applied to enhance heat transfer and surface 
technology in engineering. Today’s manufacturing industry is witnessing a 
significant surge in the volume of available data. Substantial data is continuously 
gathered throughout the entire production process, hailing from an array of 
sources, including sensors, machinery, and other data collection mechanisms [1]. 
This data, particularly that related to product quality, holds the potential to 
enhance quality control and monitoring processes. In line with the European 
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Commission's vision of "factories of the future," manufacturers are compelled to 
confront heightened competition from global rivals. One of the strategic responses 
to this challenge involves the integration of innovative technologies, services, and 
applications. 

The pivotal elements in this transformation lie in the extraction, management, and 
analysis of data. Thus, it is not only the development of machine learning (ML) 
algorithms that assumes significance but also the efficient implementation of 
orchestration procedures, which encompass the entire spectrum from raw process 
data to the deployment of a model [2]. This orchestration is often referred to as an 
artificial intelligence (AI) pipeline. ML plays an essential role in addressing the 
contemporary manufacturing hurdles that are posed by extensive and intricate 
data, given that raw process data lacks inherent information[3]. A pragmatic 
approach to resolving these challenges is founded on the utilization of both 
qualitative and quantitative methodologies, enabled by suitable tools for data 
ingestion, storage, and processing, facilitating ML and the discovery of novel 
insights. As emphasized by Wuest et al. [4], data-driven solutions excel at 
identifying nonlinear relationships by transforming raw data into feature spaces, 
often referred to as models. These models can subsequently be applied to a variety 
of tasks encompassing forecasting, regression, prediction, detection, and 
classification. ML is an advanced way of processing data to get deeper insights. 
Various kinds of ML techniques can uncover non-linear and overly complex 
patterns in several types of data [4]. One general possibility of ML techniques is 
the ability of handling advanced problems that often occur in modern production 
environments[5]. These problems can be solved with troubleshooting, control and 
optimization where the ML models [6] play a huge role in finding solutions [18]. 
ML is applicable in several perspectives of manufacturing which all play a 
significant role in daily business operations. It can result in a competitive position 
on the market, reducing production costs and limiting environmental impacts [7], 
[8]. Companies can innovate in manufacturing efficiency by more advanced 
process control and forecasting maintenance. By enabling better data insights 
through ML, industries can reduce waste, energy usage and carbon emissions. 
Products can also be more reliable manufactured and sold with increased quality 
[7]. To increase ML's potential in manufacturing, the flow of data can be 
orchestrated in an AI pipeline, which accelerates the process of taking raw data to 
tuned ML models. 

2 Artificial Intelligence approach in Heat Treatment 

The techniques of AI applied successfully in Heat Treatment and Surface 
Engineering is presented in the following section. 
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2.1 Machine Learning 

Machine learning (ML) is a subset of computational AI methods that has been 
widely embraced [10] across various fields, including heat transfer simulations 
[11, 12]. In heat transfer research, ML techniques play a crucial role in managing 
extensive datasets from experiments, field observations, and simulations. By 
employing ML-driven data analysis, researchers can expedite and refine the 
interpretation of fluid dynamics [13] and predict flow characteristics based on 
empirical evidence. Consequently, ML approaches have become increasingly 
popular [14] in the heat transfer research community. Overall, ML methods show 
significant potential in enhancing the efficiency and accuracy of data analysis in 
heat transfer research [15]. Further exploration of these methodologies is poised to 
bring about substantial advancements in the field, indicating a promising 
trajectory for future research endeavors. 

2.2 AI in Steel Manufacturing 

The steelmaking process's complexity, coupled with the multitude of production 
chains generating process data, positions this industry as an ideal candidate for 
advancements in AI research and implementation [16]. The convergence of data 
with state-of-the-art information technologies lies at the core of future smart 
factories, driving extensive exploration in steel manufacturing and process 
improvements [3]. However, as highlighted by Wuest et al. [4], neither the 
steelmaking sector nor the broader manufacturing industry has fully embraced 
cloud computing architectures and applications, partly due to the challenges in 
transitioning them to a production-ready state. 

Pellegrini et al. [3] conducted research focused on implementing a pipeline 
concept for various AI-applicable processes, laying the groundwork for the next 
manufacturing era. Their work revolves around a machine learning-adaptable 
architecture supporting cloud modules for feature extraction from diverse raw data 
sources, standardizing storage, and enabling horizontal and vertical scalability. 
Additionally, the architecture facilitates data mining and visualization for 
predictive and monitoring purposes. 

Throughout their study, Pellegrini et al. illustrate three distinct use cases for this 
architecture within steel manufacturing. Firstly, it acts as a decision support tool 
for operators, making binary classification predictions regarding the probability of 
clogging during continuous casting. Secondly, it enables real-time monitoring of 
steel temperature during the degassing process. Lastly, it employs deep learning 
for image recognition to detect surface defects. The researchers highlight one of 
the main advantages of the cloud-based architecture ‒ its capability to handle 
resource-intensive tasks, like image processing, while reducing initial hardware 
costs. The findings suggest that this architecture holds potential across various 
application areas and can immediately enhance industry precision and operational 
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efficiency. Cemernek et al. [17] explored current machine learning techniques for 
the continuous casting process of steel through a comprehensive literature review. 
Their analysis indicates that predicting steel quality and defects necessitates a 
thorough understanding of the entire process, with decision trees and neural 
networks serving as foundational algorithms. Quality prediction research displays 
diversity in models and applications due to the involvement of various target 
variables, such as hardness and tensile strength. The researchers suggest that 
supervised and active learning, coupled with new techniques to handle imbalanced 
data, could significantly benefit the steel industry. 

Extensive research efforts have been directed towards enhancing the quality of 
steel manufacturing, with particular emphasis on surface defect detection, which 
stands out as a prevalent application of machine learning within the steel industry 
[3]. Numerous published studies delve into the integration of AI in heat treatment 
processes, often aiming to develop systems that emulate human behavior in real-
time or provide decision support for processes involving human inspection to 
identify defects [18]. Many of these studies leverage image processing algorithms 
[19], while others rely on mathematical correlations between input parameters and 
established output quality parameters stored in a knowledge base [18]. 

For instance, Mitra et al. [18] delve into factors like furnace temperature, material 
thickness, weight, and steel grade to forecast furnace temperature, crucial for 
achieving optimal final carbon content, hardness, ductility, formability, and tensile 
strength. Similarly, research by Tsutsui et al. [20], Panda et al. [21], and DeCost et 
al. [22] examines the physical attributes of steel and utilizes control parameters 
extracted from sensors, such as images or processing data related to temperature 
and time within the furnace. Previous studies meticulously consider the material's 
composition and its predicted mechanical properties to devise optimal recipes for 
the heat treatment process. These endeavors draw not only from collected process 
data but also from data outlining scientifically sound practices for managing the 
steel's characteristics [20]. 

2.3  Heat Treatment Analysis for Quality Improvement 

Research focused on heat treatment commonly aims to develop predictive models 
and methodologies for general steel products using deep neural networks or linear 
regression [23]. For example, Carneiro et al.'s study, akin to this thesis, delves into 
predicting quality outcomes to mitigate production line bottlenecks, such as 
quality tests. Carneiro et al. examine steel tubes using neural networks and tree 
ensemble methods within the context of water-quenched steel, employing an 
unsupervised approach. Their research stands out by exploring a process that 
incorporates data from a quenching tank while analyzing the impacts of water 
flow and pressure on product quality. The findings underscore the significance of 
exploring machine learning techniques alongside variable selection for each 
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specific use case. This is crucial as various quality parameters, including tensile 
strength, hardness, and yield strength, are influenced by different input variables 
and are ultimately predicted by different algorithms [24]. 

Another study, focusing on predicting quality metrics like yield strength and 
tensile strength, is conducted by Xie et al. [25]. They utilize deep learning 
techniques on raw steel parameters and process data from the reheat furnace 
process, rolling data, and water-cooling data at a steel plant. The cooling data 
comprises measurements such as average cooling rate, start and finish cooling 
temperature, covering temperatures ranging from 200 to 900 degrees Celsius. 
With 27 input parameters, the deep learning model achieves an accuracy of 0.907. 
The outcome of this research leads to the deployment of the model online at an 
industrial site, featuring a graphical user interface to assist operators in managing 
hot roll process parameters through predictive analysis [25]. 

Hanza et al. [26] utilize Artificial Neural Networks to predict the total hardness of 
steel post continuous cooling, exploring the substitution of chemical composition 
with the Jominy distance as input variables. The Jominy distance, closely linked to 
a material's composition and its hardening capacity, can be calculated based on a 
formula derived from steel hardness with a microstructure of 50% martensite. 
Two tests are conducted: one involving chemical compositions and the other the 
Jominy distance value. Results reveal that input data for heat treatment 
temperature, heating time, cooling time down to 500°C, and the Jominy distance 
can yield nearly as accurate predictions of total hardness as models incorporating 
chemical composition. Consequently, Hanza et al. [26] conclude that only four 
input variables are necessary for hardness prediction, simplifying the model's 
complexity. 

A fusion of Artificial Neural Networks and the Finite Element Method has been 
employed to forecast Heat Transfer Coefficient (HTC) in the water quenching 
process of large forged steel blocks [27]. This approach enables precise estimation 
of the wetting kinetics process during water quenching. For understanding 
hardness alterations in a component made from grade 18CrNi8, investigations 
have been conducted using both traditional physical models and data-driven 
machine learning models [27]. Similarly, predictive maintenance for Industrial 
Heat Treatment operations has been developed based on extensive processing of 
process data [29], [30]. Additionally, AI techniques have been applied to predict 
hardness on cylinder heads made of 100Cr6 based on process parameters [28]. 

2.4 Machine Learning for 3D Printing Process 

Machine learning (ML) has found extensive application in the implementation of 
Additive Manufacturing (AM) technologies. The effectiveness and applicability of 
AI approaches in AM processes depend on various factors such as the type of 
process, relevant design features including material condition, process operation, 
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part and process design, and the working environment. These factors are carefully 
considered during the analysis [31]. Gardan and Schneider [32] conducted an 
optimization study encompassing part orientation, construction, design, 
parameters, and materials. Standard AI techniques are commonly employed in 
rapid prototyping [33]. In the realm of AM processes, ML is primarily applied in 
two main domains: parameter optimization and process monitoring. Manual 
parameter optimization is often laborious and time-consuming, leading to high 
costs. ML tools, which constitute a significant portion of research in ML for AM, 
typically focus on optimizing key parameters for specific quality indicators [34]. 

Porosity stands out as a primary quality indicator in several studies. Liu et al. [36] 
developed a "physics-informed" model, which was identified as more easily 
generalizable to other machines, although not empirically tested. Surface 
roughness is a crucial area for optimization in material extrusion. Li et al. [38] 
constructed a predictive model for surface roughness based on various factors 
such as build plate and extruder temperature, vibration, and melt pool temperature. 
Recent research has also focused on predicting final part properties. Narayana et 
al. [39] utilized Artificial Neural Networks (ANN) to predict built part height and 
density from parameters like laser power, scan speed, powder feed rate, and layer 
thickness. Xia et al. [40] employed NN to model and predict surface roughness 
based on overlap ratio, welding speed, and wire feed speed, achieving a root mean 
square error of 6.94%. However, a small training set was identified as a significant 
limitation on the model's accuracy [40]. 

While parameter optimization can contribute to improving process predictability, 
it cannot entirely eliminate failures within Additive Manufacturing (AM) 
processes [41]. The occurrence of print failures significantly impacts the cost of 
AM parts [42], underscoring the critical need for effective process monitoring 
techniques capable of detecting build failures and defects. These techniques, often 
driven by machine learning (ML) implementations, typically fall into two 
categories based on their input data type: optical and acoustic. Among these, 
optical monitoring solutions, leveraging data from digital, high-speed, or infrared 
cameras, are the most prevalent [35]. Particularly in Powder Bed Fusion (PBF) 
processes, where much of the monitoring research is concentrated, computer 
vision tasks commonly target the melt pool as a key area of interest. 

In the realm of AM processes, quality control assumes paramount importance in 
ensuring automated production processes meet stringent standards. Consequently, 
several monitoring methods have been proposed to enhance quality control. One 
notable approach involves continuous camera observation coupled with image 
analysis. This method entails comparing the contour of each printed layer with the 
desired geometry using metrics derived from layer images. Any significant 
dissimilarity between the two images indicates a higher likelihood of process 
failure. The process to obtain layer-wise distance metrics involves several steps, 
including creating binary section cut images, generating binary layer photos, and 
subsequently comparing the images. 
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Moreover, ML algorithms have been trained using thermal data from the melt pool 
to discern between high, medium, and low-quality builds with an impressively low 
failure rate of under 1.1% [41]. Similarly, optical data from laser melting plumes 
has been effectively utilized for quality classification tasks, with studies indicating 
that optimal results are achieved when melt pool, plume, and spatter data are 
combined [43], [44]. Recent advancements have witnessed the adoption of Long-
Short Term Memory (LSTM) networks for prediction, demonstrating a root mean 
squared error of 13.9% [43]. These developments underscore the potential of ML-
driven process monitoring techniques to enhance the reliability and efficiency of 
AM processes, thereby mitigating costs associated with print failures and defects. 

3  The Biomimetic Concept in Heat Treatment 

The burgeoning interest in applying biomimetic approaches to real engineering 
challenges stems from the recognition that seemingly simple structures and 
organizations found in nature are adept at handling complex systems and tasks 
with remarkable efficiency. Nature presents an array of micro/nano-scale 
hierarchical structures that offer tailored functionalities with remarkable 
efficiency. Previous research has shown that bio-inspired hierarchical structures, 
such as the lotus leaf structure on implants, can enhance cell contact with the 
structures, providing conducive spaces for cell proliferation and differentiation 
[45], [46]. The design of metamaterials is also facilitated by bioinspired structures. 
Examples include the honeycomb and gyroid, discovered in butterfly wings 
scales, and the diamond metamaterial found in beetle exoskeletons [47], [48]. 
More recently, the hierarchical architecture of bird feathers has been utilized to 
model mechanical performance superior to that of honeycombs [49]. 

Beyond structural design, biomimetic methods have gained prominence in 
optimizing complex problems. Unlike classical optimization techniques that seek 
exact optimal solutions, bio-inspired (heuristic) search methods aim to locate near-
optimal solutions without relying on analytical models. The adaptable nature of 
such search mechanisms enables handling various knowledge representations 
within a single framework, offering pragmatic solutions more efficiently. 

A significant portion of nature-inspired algorithms draws inspiration from 
successful biological characteristics, categorizing them as biology-inspired or bio-
inspired algorithms. Among these, swarm intelligence-based algorithms hold a 
prominent position. Examples include ant colony optimization, particle swarm 
optimization (PSO), cuckoo search, bat algorithm, firefly algorithm, and grey wolf 
optimizer [50]-[56]. 

For instance, PSO has been applied to predict Heat Transfer Coefficient (HTC) as 
a function of surface temperature and local coordinate heat transfer process during 
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immersion quenching of a cylindrical specimen [57]. In a study, a stainless-steel 
rod equipped with 8 thermocouples was immersed in water, with cooling curves 
recorded to estimate the temporo-spatial heat HTC. Furthermore, characterizing 
heat extraction conditions and wetting kinetics can be achieved more efficiently 
using graphic accelerator cards and bio-inspired algorithms, reducing 
computational efforts [58]. 

Conclusions 

The Artificial Intelligence approaches and Biomimetic methods supporting heat 
Treatment processes have been shortly discussed in this review. These 
computational techniques greatly contribute to the future heat treatment 
technology being based on new materials, new solutions and optimized production 
processes. 
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