
Acta Polytechnica Hungarica Vol. 21, No. 7, 2024

‒ 203 ‒

Neural Network-based Multi-Class Traffic-Sign
Classification with the German Traffic Sign
Recognition Benchmark

Csanád Ferencz, Máté Zöldy
Department of Automotive Technologies, Faculty of Transportation and Vehicle
Engineering, Budapest University of Technology and Economics, Stoczek 6, 1111
Budapest, Hungary; E-mail: csanadferencz@edu.bme.hu, zoldy.mate@kjk.bme.hu

Abstract: Traffic-sign detection has an essential role in the field of computer vision, having
many real-world applications more and more object recognition and classification task is
being solved by using Convolutional Neural Networks (CNNs or ConvNets), especially in the
field of intelligent transportation. In the present article, we offer an implementation chosen
from several CNN-based traffic-sign recognition and classification algorithm architectures,
using a ConvNet classifying 43 different types of road traffic signs in the TensorFlow
framework, as part of the German Traffic Sign Recognition Benchmark (GTSRB)
competition. A Deep ConvNet was trained end-to-end, aiming to improve the prediction
performance of a DCNN-based autonomous driving system equipped with a front-facing
digital camera, with as input a sequence of images, as output directly the prediction results.
The results obtained on held-out data demonstrated the high accuracy of the model, matching
the state-of-the-art multi-class recognition and classification accuracies, as well as related
human-level recognition performances.

Keywords: convolutional neural networks; end-to-end classification model; German traffic-
sign recognition benchmark (GTSRB); traffic-sign recognition; cognitive mobility

1 Introduction

As a result of, their fast execution and high recognition rate, Deep Convolutional
Neural Networks (DCNN-s) have been pointed out in recent years to offer state-of-
the-art traffic sign classification performance, beyond what could be accomplished
by former state-of-the-art methods.

The emergence of modern discoveries and developments in deep learning gave rise
to positive state-of-the-art results for traffic sign classification and recognition, with
most of the research focusing on designing and developing cognitive techniques,
such as DCNN-s for enhanced recognition accuracy. In the realm of mobility,
cognitive methods can aid in making immediate decision. At the moment, nearly all

about:blank
about:blank

Cs. Ferencz et al. Neural Network-based Multi-Class Traffic-Sign Classification
 with the German Traffic Sign Recognition Benchmark

‒ 204 ‒

of the state-of-art network architectures for traffic-sign classification are based on
Convolutional Neural Networks (or ConvNets) [14], [18], [19].

In the present article, the authors introduce a revised end-to-end traffic sign
detection and recognition system, while thoroughly describing the design and
development processes of the ConvNet through which the real-time processing of
images, as well as classification of localized objects are implemented [20].

The presented end-to-end cognitive approach revealed a substantial efficiency
decrease during testing and development for the recognition and classification of
road signs in real conditions, a simple template matching classification algorithm
was not able to achieve high-quality recognition results due to limited set of
predefined templates, angle of rotation, contrast in images of localized traffic signs
or too intense variations in the illumination. To improve the system's recognition
performance, a possible solution might be that these widely applied convolutional
neural networks could be combined with the localization algorithm that has shown
good results [14], [18], [19].

The experiments conducted demonstrate that the perception module shows
promising performance results, and the classifier is capable of detecting and sorting
the various signs properly enough regardless of quality, orientation or size.
The work shows promising results that push the complexity boundaries regarding
navigating self-driving cars with a cognitive toolbox through towns [18], [19].

The final model was more than capable of a smooth detection and classification of
a significant number of traffic signs on the German Traffic Sign Recognition
Benchmark (GTSRB) dataset, with an accuracy as high as 97.98%, even
approaching the related human-level recognition performance of 98.81%. It is
interesting to note that the best 13 networks submitted for the GTSRB competition
all use CNNs with a classification performance of at least 98.10%. Human-level
accuracy is outperformed by 5 of these, indicating once again why it is the most
commonly used state-of-the-art traffic-sign classification method [25].

In the following parts of the study beginning with Section 2, a detailed description
will be given regarding the classification task and dataset pre-processing, in
Section 3 the layer architecture definition, building and training of the model
provided in Section 4, and last but not least Section 5 concluding with result
validation and discussion.

2 Traffic Sign Classification Task, Dataset Pre-
Processing and Loading

CNN-s are frequently used for different purposes in image processing, such as
segmentation, classification, or detection [25]. The traffic-sign classification
problem has been addressed with various well-known methods, including neural

Acta Polytechnica Hungarica Vol. 21, No. 7, 2024

‒ 205 ‒

networks (NNs), Support-vector machine model architecture (SVM), or Naive
Bayes classification. Many approaches used for traffic-sign recognition are based
on sliding window methods, which resolve the classification and recognition
problems simultaneously, but require unfeasible computational resources.
However, several recent literature state-of-the-art systems separate recognition
from classification. Firstly, we would deal with the recognition with custom-built
computationally inexpensive methods, e.g. color thresholding. After that, the
classification will be conducted on the detected samples with algorithms having
higher accuracy.

Traffic-sign recognition is a rather constrained problem, it has many direct real-
world applications, road signs being unique with little variability in appearance,
fixed, and intended to be displayed for the drivers. Even though the current task is
exclusively classification, when designing a classifier the ultimate objective of
detection is to optimize both efficiency and accuracy. With color thresholding and
various heuristics, for instance, we first detect sign shapes, followed by multi-layer
NN classification for each type of traffic sign outer shape. The method has the
advantage of fast training, reduced chance of overfitting, needs fewer samples, and
it is great for local information capturing and reducing the complexity of a given
model [6].

The German traffic sign detection dataset consists of 39 209 image samples
corresponding to 43 different classes (ranging from 0 to 42), each one of the signs
having its folder of different image sizes and resolutions. The training dataset is
made up of 34 799 images, the validation dataset of 4 410 images, and respectively
the test set of 12 630 images. Because samples are divided unevenly between the
related classes, our model could predict some of the classes with higher accuracy
than others. The samples are composed of video sequence frames of 1 [s], and as
the camera approaches a given sign each real-world sample produces 30 samples
increasing in resolution [23], [24], [25]. The total number of samples present in our
dataset exceeds 50 000 images.

Thus, we will categorize 40 × 40 RGB pixel space input images into 43 possible
traffic sign categories: ℎ: ℝ4800 ↦ {0, 1, …, 42}. Note that due to the three-color
channels, we have a 40 × 40 × 3 = 4800 - dimensional input. In this task,
convolutional neural networks (CNN-s) usually perform at around 90-95%
accuracy [8], [24], [25]. We will try to train a network that performs better than
humans — 98.9% on the original German Traffic Sign Recognition Benchmark
(GTSRB).

Many images from the sample set given by the GTSRB competition present several
difficult challenges, some of these are very hard to distinguish and classify even for
a human (low-contrast, viewpoint variations, motion-blur, physical damage,
occlusions, colors fading or input resolution as low as 15 × 15). However, we can
assume that the ground truth that we have is exact.

Cs. Ferencz et al. Neural Network-based Multi-Class Traffic-Sign Classification
 with the German Traffic Sign Recognition Benchmark

‒ 206 ‒

Because the image samples present in the dataset dynamically varies between a
wide range of dimensions from 15 × 15 × 3 to 250 × 250 × 3, it is not possible to
pass them directly to the CNN model, hence this cannot be trained on different
image dimensions, but we also need to avoid stretching the images too much when
compressing them to a single dimension. All things considered, we will use an
already pre-processed version of the images re-sized to 40 × 40 × 3.

Furthermore, because the present project's objective is to build a robust recognizer
excluding temporal evidence accumulation, road signs in the training dataset will
be available as video sequences, and temporal information will not be in the test
dataset [6], [23], [24], [25]. Moreover, we will populate and diversify the original
set of data as well with various image modifying techniques such as rotations, color
distortions and blurring techniques. Therefore, at this stage we are performing data
augmentation (see Figure 1).

Figure 1

Data augmentation creating modified input sample versions [5]

Figure 2

Labeled input dataset before and after augmentation, pre-processing and normalization [5]

With this solution basically we are adding more sample to our dataset, but without
collecting any new one. The samples following data augmentation, pre-processing

Acta Polytechnica Hungarica Vol. 21, No. 7, 2024

‒ 207 ‒

and normalization will look like as presented in Figure 2. All of the dataset image
samples were normalized, in order to help the model converge faster, the data
having a mean of zero and equal variance.

After finding out the model's actual accuracy by training on the original dataset, in
the next step by adding even more data and evening out the classes we will check
the accuracy again [6]. The purpose of the test set would be to detect, during
training, that the model has overfitted and to implement, e.g. early stopping, dropout
or some other method to compensate. Once the model is completely trained, the
validation set needs to be simply run through the model and the results reported. In
order to have diverse datasets and higher prediction performance on unseen data,
we will extract randomly one sample per class for validation, instead of mixing all
images randomly and separating into similar training and validation datasets [16].

3 Network Layer Architecture

Generally speaking, similarly to regular NN, convolutional neural networks also
consists of neurons having learnable biases and weights, organized in layers.
Contrary to regular neural networks, however, CNNs make the most of the fact that
they constrain the input architecture composed of images in a more sensible way,
in particular having layers with neurons arranged in three dimensions [11], [16].

However, a ConvNet will take a two-dimensional image and progressively will
process it with the convolutional layer. In the case of this classification task, the
input volume samples of activations having the size of 40 × 40 × 3 (40 - width, 40
- height, 3 color channels), in the first hidden layer a single fully connected neuron
would have 40 × 40 × 3 = 4 800 weights. This volume still looks computable,
however, this structure certainly will not scale to larger images, e.g. size of 250 ×
250 × 3, in the case of regular neural networks, because that would lead to neurons
that have 187 500 weights, and because we generally want to have more than one
of these neurons the parameters would add up quickly [11]. It is clear that full
connectivity would not be particularly efficient, and these considerable amounts of
parameters would swiftly give rise to overfitting.

As Figure 3 illustrates, each of the ConvNet's layers will transform the three-
dimensional input volume to a three-dimensional output volume with neuron
activations. In the case of the left example, the red input layer's height and width
will be the image dimensions, while the depth will correspond to the red, green, and
blue channels. The right figure illustrates an example input volume of a 32x32x3
image and the volume of neurons in the first convolutional layer. In this case, there
are 5 neurons along the depth, connected to or looking at the same region of the
input volume. These 5 neurons do not represent the same weights, they are only
associated with 5 different filters, sharing the same receptive field [25].

Cs. Ferencz et al. Neural Network-based Multi-Class Traffic-Sign Classification
 with the German Traffic Sign Recognition Benchmark

‒ 208 ‒

Figure 3

3-layer network vs CNN organizing neurons in three dimensions [25]

When dealing with deep CNN, normal CNNs generally have two or three layers,
but deep CNNs will have multiple hidden layers usually more than 5, which are
used to extract more features and increase the accuracy of the recognition.
Therefore, the depth of the network shall correlate with the amount of data, a deep
network with insufficient data will produce an overfitted model, while a shallow
network with a lot of data will not have a high accuracy [11]. Moving from layer to
layer, the low-level input feature vector is put into the first layer and transformed
into a high-level feature vector. The neuron number in the output layer is equal to
the classifying class number, while the vector of probability output is showing the
possibility of the input vector belonging to a corresponding class. The output of a
weighted adder is described by (1):

𝑎𝑎𝑗𝑗𝑖𝑖 = 𝜎𝜎�∑ 𝑎𝑎𝑘𝑘𝑖𝑖−1𝑤𝑤𝑖𝑖
𝑘𝑘 𝑗𝑗𝑘𝑘� (1)

where 𝑎𝑎𝑗𝑗𝑖𝑖 - 𝑗𝑗𝑡𝑡ℎ neuron, 𝑖𝑖𝑡𝑡ℎ layer and 𝑤𝑤𝑘𝑘
𝑖𝑖𝑖𝑖 - weight of synapse, connecting 𝑗𝑗𝑡𝑡ℎ neuron

in the layer 𝑖𝑖𝑡𝑡ℎ, with the 𝑘𝑘𝑡𝑡ℎ neuron in the 𝑖𝑖 − 1 layer. As activation function the
logistic function will be applied, frequently used in regression problems [2], [25].

In classification problems during training process the goal is to minimize the cost
function by gradient decent with minimization methods. In this case, cross entropy
is the most widely used cost function, 𝐻𝐻(𝑝𝑝, 𝑞𝑞) being the cross-entropy of the
distribution 𝑞𝑞 relative to a distribution 𝑝𝑝 over a given set, presented in (2):

𝐻𝐻(𝑝𝑝, 𝑞𝑞) = −∑ 𝑌𝑌(𝑖𝑖)𝑖𝑖 log 𝑦𝑦(𝑖𝑖) (2)

Because in computer vision CNN classification is the state-of-the-art method for
pattern recognition, our implemented network layer structure, illustrated in Figure
4, is also mostly based on convolutional layers, following the architecture Input —
Convolutional Layer — ReLU — Pooling Layer — Fully Connected (FC) Layer.
Image convolution is the simple sum of element-by-element matrix multiplication
between weights and the input volume region they are connected to, followed by a
summing of the elements together [25]. These layers operate in the form of sliding
windows, and do not require a fixed image size, while the output of these will be
the spatial arrangement of activations, or so-called feature maps of any size, which
allow us to detect the same features in different locations [1], [2], [24].

Acta Polytechnica Hungarica Vol. 21, No. 7, 2024

‒ 209 ‒

Figure 4

Applied classification layer structure (Own work, 2021)

In substance, the convolutional layer requires four hyperparameters (𝑆𝑆 - stride, 𝐾𝐾 -
number of filters, 𝐹𝐹 - spatial extent, 𝑃𝑃 - the amount of zero padding) and accepts a
𝑊𝑊1 × 𝐻𝐻1 × 𝐷𝐷1 volume size. A common setting of the hyperparameters is 𝐹𝐹 = 3, 𝑆𝑆
= 1, and 𝑃𝑃 = 1. It produces a volume of size 𝑊𝑊2 × 𝐻𝐻2 × 𝐷𝐷2, where heights and
widths are equally computed by symmetry, described by (3), (4), and (5):

𝑊𝑊2 = (𝑊𝑊1−𝐹𝐹+2∙𝑃𝑃)
𝑆𝑆

+ 1 (3)

𝐻𝐻2 = (𝐻𝐻1−𝐹𝐹+2∙𝑃𝑃)
𝑆𝑆

+ 1 (4)

𝐷𝐷2 = 𝐾𝐾 (5)

Using sharing of parameters, for (𝐹𝐹 × 𝐹𝐹 × 𝐷𝐷1) × 𝐾𝐾 weights and 𝐾𝐾 biases, 𝐹𝐹 × 𝐹𝐹 ×
𝐷𝐷1 weights per filter will be introduced. Regarding the output volume, a 𝑊𝑊2 × 𝐻𝐻2
sized 𝑑𝑑𝑡𝑡ℎ depth slice will result after performing a convolution of the 𝑑𝑑𝑡𝑡ℎ filter with
a stride of 𝑆𝑆 over the input volume, offset then by the 𝑑𝑑𝑡𝑡ℎ bias.

As a next layer, we implement batch normalization to stabilize training and facilitate
a smoother hyperparameter tuning process, while substantially increasing the
classification performance [1], [25]. This normalization operation normalizes the
elements of 𝑥𝑥𝑖𝑖 inputs by calculating the mean 𝜇𝜇𝐵𝐵 and variance 𝜎𝜎𝐵𝐵2 over the time,
spatial and observation dimensions independently in the case of every channel,
respectively also calculating the so-called normalized activations as in (6) [2]:

𝑥𝑥𝚤𝚤� = 𝑥𝑥𝑖𝑖−𝜇𝜇𝐵𝐵

�𝜎𝜎𝐵𝐵
2+𝜖𝜖

 , (6)

where ϵ — constant, improving numerical stability when variance is small.

This operation additionally scales and shifts the activations, allowing those inputs
with unit variance as well as zero mean to not be optimal for operations following
batch normalization, using the transformation presented in (7) [1]:

𝑦𝑦𝑖𝑖 = 𝛾𝛾𝑥𝑥𝚤𝚤� + 𝛽𝛽, (7)

where 𝑥𝑥𝚤𝚤� - the resulting normalized activation having zero mean and unit variance,
𝛽𝛽 — offset and 𝛾𝛾 — scale factor. These parameters are learnable and updated during

Cs. Ferencz et al. Neural Network-based Multi-Class Traffic-Sign Classification
 with the German Traffic Sign Recognition Benchmark

‒ 210 ‒

the training of the network. In order to make predictions after training, batch
normalization assumes a fixed mean and variance, calculated from training data
after or during training, to normalize data [2].

Between consecutive convolutional layers we can insert periodically an
intermediate pooling layer, with the intention of operating independently on the
input's each depth slice and successively reducing the spatial size, number of
parameters, and network computation, leading also to controlling the overfitting.
The most frequently used form of this is a 2 × 2 filter size pooling layer
downsampling every input depth slice with a stride of 2 across both height and
width, discarding two-thirds of the activations, but leaving unchanged the depth
dimension, described by (8), (9) and (10). This pooling layer requires two
hyperparameters, the 𝑆𝑆 - stride and 𝐹𝐹 - spatial extent, while accepting a 𝑊𝑊1 × 𝐻𝐻1 ×
𝐷𝐷1 sized volume, and producing a 𝑊𝑊2 × 𝐻𝐻2 × 𝐷𝐷2 sized volume, where:

𝑊𝑊2 = (𝑊𝑊1−𝐹𝐹)
𝑆𝑆

+ 1 (8)

𝐻𝐻2 = (𝐻𝐻1−𝐹𝐹)
𝑆𝑆

+ 1 (9)

𝐷𝐷2 = 𝐷𝐷1 (10)
It should be also emphasized that only two predominantly used max pooling layer
variation is found in practice, the more common one with 𝑆𝑆 = 2 and 𝐹𝐹 = 2, but also
a configuration of 𝑆𝑆 = 2 and 𝐹𝐹 = 3, or the so-called overlapping pooling. Pooling
sizes with bigger receptive fields could be too detrimental [1], [2]. Figure 5
illustrates the most widely used max-pooling downsampling operation with a stride
of 2. The 224 × 224 × 64 sized input volume is pooled with stride 2 and filter size
2 into a 112 × 112 × 64 sized output volume, while the volume depth is preserved
[9], [10].

Figure 5

Illustration of pooling layer downsampling the input volume [25]

In the final four layers, we will perform a flatten operation on the last convolutional
layer's output, a final batch normalization, as well as a dropout operation while
entering into the last output dense layer — this will be the same as the number of
classes that we have. The purpose of using dropout is to avoid overfitting and to
generalize while also improving reliability. Neurons with probability 𝑝𝑝 of the
current layer will disconnect randomly from the next layer's neurons, going through
the depth of the network, learning more filters as the network deepens.

Acta Polytechnica Hungarica Vol. 21, No. 7, 2024

‒ 211 ‒

Training deep networks using several layers with a sigmoid activation function will
be complicated because of the vanishing gradient issue [9], [10], [13]. To resolve
this difficulty, we will specifically use the activation Rectified Linear Unit (ReLU),
which applies 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝑥𝑥) elementwise non-linearity activation function
thresholding at zero, 𝑥𝑥 being the input to a neuron, presented in (11):

𝑓𝑓(𝑥𝑥) = 𝑥𝑥+ = 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝑥𝑥) (11)

Using ReLU, compared with other similar activation functions such as the sigmoid
function, enables a more efficient, but also faster training process of complex and
large datasets attributed to deep neural architectures, leaving the volume size
unchanged [12]. A SoftMax classifier is also added to the network to normalize the
output of the previous layer, so the output of this will contain the probability values
of belonging to a recognizable class (the layer's output basically will be the
prediction values). The standard (unit) SoftMax function σ: ℝ𝐾𝐾 → [0,1]𝐾𝐾 for 𝑖𝑖 =
 1, . . . ,𝐾𝐾 respectively 𝑧𝑧 = (𝑧𝑧1, . . . , 𝑧𝑧𝑘𝑘) ∈ ℝ𝐾𝐾 is defined by (12):

𝜎𝜎(𝑧𝑧)𝑖𝑖 = 𝑒𝑒𝑧𝑧𝑖𝑖

∑ 𝑒𝑒𝑧𝑧𝑗𝑗𝐾𝐾
𝑗𝑗=1

 (12)

where 𝜎𝜎 - softmax, 𝑧𝑧 input vector, 𝑒𝑒𝑧𝑧𝑖𝑖 - standard exponential function for input
vector, 𝐾𝐾 - number of classes in the multi-class classifier, 𝑒𝑒𝑧𝑧𝑗𝑗 - standard exponential
function for output vector. Essentially what this does is that it takes a vector 𝑧𝑧 as
input with 𝐾𝐾 real numbers and normalizes it. The probability distribution containing
𝐾𝐾 probabilities will be proportional to the input numbers' exponentials.

At the end of the network, we add a fully connected layer as well, thus realizing
class score computing, leading to volumes of a 1 × 1 × 43 size, where numbers will
be matched to one of the 43 class category scores of the GTSRB dataset.
The network will learn filters that activate when some type of visual feature can be
seen on the first layer (e.g. edge of some orientation) and ultimately entire patterns
on the network's higher layers [29].

4 Building and Training the Model

An illustration of the classifying process is presented in Figure 6. At this point, the
built network processed from the training dataset a 50-image batch over one
iteration. The so-called intermediate accuracy was calculated every 100 iterations,
with a batch of 50 images from the test set to report progress. After successful
training, the accuracy is calculated again, using all samples from the test set.

The input image of 40 × 40 × 3 is a multi-dimensional matrix, holding raw pixel
values, having, just like a traditional matrix, a width of 40 (number of columns), a
height of 40 (number of rows), as well as a depth of 3 for a standard RGB image,

Cs. Ferencz et al. Neural Network-based Multi-Class Traffic-Sign Classification
 with the German Traffic Sign Recognition Benchmark

‒ 212 ‒

representing the image channel number. Plotting the histogram for the sample
images in our dataset for different road traffic signs will result in Figure 7.

Figure 6

Simplified functional diagram of the classifying process (Own work, 2021)

Figure 7
Histogram distribution of the augmented training image categories (Own work, 2021)

The sample numbers for each road sign are unevenly distributed between classes,
not having the same number of samples for every class (also shown in the histogram
distribution), leading to a biased model that recognizes and classifies some of the
traffic signs more accurately than others. Thus, sample images had to be augmented
for some of the classes to reach a minimum of 250 images in each class, while
avoiding replicates in the input dataset [3], [26].

All coding of data arguments along with the training model is created in the Jupyter
Notebook environment. The detailed CNN layer architecture and specification used,
built with [21] and [22], is summed up in Table 1, respectively shown in Figure 8
and Figure 9 [8]. Among the types of layers used are two-dimensional convolution
layers (Conv2D), batch normalization, two-dimensional max pooling, flatten,
dropout, and dense - with detailed descriptions in the previous section [4].

Figure 8

Implemented deep convolutional neural network layer architecture (Own work, 2021)

Acta Polytechnica Hungarica Vol. 21, No. 7, 2024

‒ 213 ‒

Figure 9

Deep convolutional neural network architecture specifications layer-by-layer (Own work, 2021)

The entire procedure for model training requires about two hours over a single GPU,
the total number of parameters is 2 688 619 (from which 2 687 083 are trainable
and 1 536 non-trainable), the training process is carried out with an Intel Core i7-
4790K - 32 GB RAM, 4.00 GHz processor and Ubuntu-64 bit operating system [1],
[2]. We will be using Python 3.x with TensorFlow, the scripts only reference
standard libraries available over the ‘pip’ package manager, such as os, time, numpy,
zipfile, or matplotlib backend.

To maximize likelihood (MLE) we have to minimize the sum/mean/root-mean-
squared error (SSE/MSE/RMSE) [3], [4], [6]. Consequently, for result evaluation
we adopt this MSE, the default loss for regression problems used to predict
continuous target values, calculated as the average of the squared differences
between the predicted (𝑦𝑦𝚤𝚤�) and actual (𝑦𝑦𝑖𝑖) values, shown in (13):

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑚𝑚
∑ (𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖)2𝑚𝑚
𝑖𝑖=1 (13)

A supervised training gradient-based method is updating each one of the filters in
each layer, in each filter bank in such a way that it minimizes the loss function,
while the last stage's output is fed to a classifier. In the case of classification
problems, we approximate 𝑝𝑝(𝑌𝑌|𝑋𝑋) k-class discrete conditional distribution with
𝑞𝑞�𝑌𝑌�|𝑋𝑋� modeling distribution ℝ𝑛𝑛 → [0,1]𝑘𝑘 [8], [15].

Table 1
Network layer architecture, parameters and sizes

Layer type Filter
nr.

Kernel
size

Activ.
fc. Output shape Param.

nr.
Conv1 64 3x3 RELU (None, 38, 38, 64) 1 792
BatchNorm - - - (None, 38, 38, 64) 256
Conv2 64 3x3 RELU (None, 36, 36, 64) 36 928

Cs. Ferencz et al. Neural Network-based Multi-Class Traffic-Sign Classification
 with the German Traffic Sign Recognition Benchmark

‒ 214 ‒

Layer type Filter
nr.

Kernel
size

Activ.
fc. Output shape Param.

nr.
BatchNorm1 - - - (None, 36, 36, 64) 256
MaxPool - 2x2 - (None, 18, 18, 64) 0
Conv3 128 3x3 RELU (None, 16, 16, 128) 73 856
BatchNorm2 - - - (None, 16, 16, 128) 512
Conv4 128 3x3 RELU (None, 14, 14, 128) 147 584
BatchNorm3 - - - (None, 14, 14, 128) 512
MaxPool1 - 2x2 - (None, 7, 7, 128) 0
Flatten - - - (None, 62 72) 0
Dense 384 - RELU (None, 384) 2 408 832
BatchNorm4 - - - (None, 384) 1 536
Dropout - - - (None, 384) 0
Dense - - Softmax (None, 43) 16 555

To maximize likelihood, we have to minimize cross-entropy 𝐻𝐻(𝑝𝑝, 𝑞𝑞) or Kullback-
Leibler (KL) divergence 𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝||𝑞𝑞). The entropy formula is given in (14), while the
cross-entropy formula is given in (15), 𝐻𝐻(𝑝𝑝, 𝑞𝑞) ≥ 𝐻𝐻(𝑝𝑝), asymmetric [15], [25],
[28]. KL Divergence is also known as relative entropy or information gain, given
in (16), 𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝||𝑞𝑞) ≥ 0, asymmetric.

𝐻𝐻(𝑝𝑝) = −∑ 𝑝𝑝𝑘𝑘 𝑙𝑙𝑙𝑙 𝑝𝑝𝑘𝑘𝑘𝑘 (14)

𝐻𝐻(𝑝𝑝, 𝑞𝑞) = −∑ 𝑝𝑝𝑘𝑘 𝑙𝑙𝑙𝑙 𝑞𝑞𝑘𝑘𝑘𝑘 (15)

𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝||𝑞𝑞) = 𝐻𝐻(𝑝𝑝, 𝑞𝑞) − 𝐻𝐻(𝑝𝑝) (16)

Cross-entropy loss function is given in (17) and (18), where we minimize the
amount of surprise suffered between our expectation (𝑞𝑞) and reality (𝑝𝑝) [15]:

𝐿𝐿𝑥𝑥𝑥𝑥 = − 1
𝑚𝑚
∑ ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘 𝑙𝑙𝑙𝑙 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 , (17)

𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑝𝑝(𝑌𝑌𝑖𝑖 = 𝑘𝑘|𝑋𝑋𝑖𝑖) (18)

Our first hyperparameter (see Table 2), the number of epochs, indicates how many
times should the network go through a full training process. In this case, the network
will go over all the 50 000 images, as well as validate itself with 12 000 test images
exactly 20 times. The number of batches in epoch is the training set size over the
batch size. In case of setting this batch size to a larger value, the quality of our model
could deteriorate, eventually leading to a point where the model is unable to
generalize well on previously unseen data [4].

The hyperparameters controlling the output volume's size are the stride, zero-
padding and depth. Stride is wherewith we slide the filter, if it is equal to 1, we are
moving one pixel at a time for every filter. The zero-padding has a role in
controlling spatial sizes of output volumes, and the output volume depth will
correspond to the number of filters we are planning to use [25]. Another aspect

Acta Polytechnica Hungarica Vol. 21, No. 7, 2024

‒ 215 ‒

worth noting is the impracticality of connecting neurons to all previous volume
neurons, rather connecting each neuron to only a local region, leading to the spatial
extent called the receptive field — or otherwise called the filter size, summarized
for each specific layer in Table 1.

The learning rate, defined between 0 and 1, in this case 0.001, describes our weights'
update rate. Because cycling through all of the 50 000 samples at the same time
would not be computationally feasible, the batch size will express the number of
image samples our neural network will cycle through at once. Our optimizer will be
created as the Adam optimizer for the stochastic gradient solver, while the weight
decaying parameter is also set to 0.001 — this reduces overfitting [25], [26].

Table 2
Training the network - hyperparameters

Parameter Value [-]
Learning rate 0.001
Decay 0.001
Batch size (Training) 256
Batch size (Validation) 256
Epochs 2
Verbose 1

Regarding batch sizes, each batch size is composed of 256 frame inputs for the
training, as well as in the case of the validation phase. Each batch trains the network
in successive order, taking into account the updated weights coming from the
appliance of the previous batch, each sample passed through to the network at one
time. In the case of the hyperparameter batch size, we have to test and adjust it as
per how our specific model performs during training. This hyperparameter also
must be tested concerning how our machine is operating in respect of resource
utilization [5]. Setting the verbose to 1 will mean that the progress of the model
being trained will be shown during development time.

5 Validation Results and Optimization

The result validation phase during development gives us the improvement
directions on how the precision accuracy could be increased. Figure 10 presents
some results during optimization with erroneous sample predictions, as well as the
accuracy/loss variation of the model.

In the case of running the network without image augmentation, there are
indications that the model's validation accuracy was rather high compared to the
training accuracy, as Figure 11 illustrates. At this point, we additionally defined
two levels of dropout, one for convolutional layers with a rate of 0.75 and one for

Cs. Ferencz et al. Neural Network-based Multi-Class Traffic-Sign Classification
 with the German Traffic Sign Recognition Benchmark

‒ 216 ‒

fully connected layers with 0.5. The initial convolutional depth of 32 was also
modified due to obtain better results with 64 [25]. Additionally, the right image in
Figure 11 presents the convolutional working process over some sample traffic
signs, visually revealing the network's recognition principle.

Figure 10

Samples with erroneous predictions and development accuracy/loss of the model (Own work, 2021)

The values of both loss function and precision accuracy variation for our model for
10 epochs are illustrated graphically in Figure 12. We can observe that the adopted
CNN reduces smoothly the values of these performance metrics over the epochs,
there is an apparent efficiency in the learning process, and these values tend to be
flat and convergent, ultimately approaching the human-level recognition
performance goal of 98.81% set in the first place, with a final recognition
performance of 97.98%.

Acta Polytechnica Hungarica Vol. 21, No. 7, 2024

‒ 217 ‒

Figure 11

Accuracy and loss before optimization, and convolution visualization (Own work, 2021)

Figure 12
Final training and validation accuracy of the model (Own work, 2021)

Conclusions

In this paper the authors presented a ConvNet system and its architecture with state-
of-the-art results on the GTSRB dataset, investigated a real-world traffic-sign
recognition and classification problem, built a highly configurable network, as well
as developed a flexible method to assess multiple architectures. The research
provides evidence of practicality of the presented applications, highlighting the
enhanced efficiency brought by the cognitive methods [18], [19], [27].

The validation of the network showed promising and smooth results that hold up
against existing literature findings and outcomes in the field of ML-based
classification problems. The network is working effectively with the preprocessed
images and produces good results. The remaining errors are due to either too low-
resolution inputs or physically degraded road signs for which classification is not
possible with just a single image instance.

Cs. Ferencz et al. Neural Network-based Multi-Class Traffic-Sign Classification
 with the German Traffic Sign Recognition Benchmark

‒ 218 ‒

Concerning possible future development directions, one could be the problem of
perception input, the traditional ConvNet architecture could be modified by feeding
features to the classifier of 1st stage besides features of 2nd stage, as well as by
using greyscale driving images having strong correlation features among
continuous frames instead of color and by increasing the network capacity [17].
Regarding the color image samples, by visualizing the erroneous predictions we can
assume that normalized color channels could be more informative than raw color.

Future studies should examine the effect of input resolution to enhance processing
speed and classification accuracy, in addition to processing with multiple networks,
which might further improve accuracy [16]. Finally, the influence and effect of
unsupervised pre-training of feature-extracting stages should be investigated as
well, which could be more easily learned than with a strictly supervised method,
explicitly with an increased number of features at each stage.

Acknowledgement

Within the framework of the New Széchenyi Plan, the project “Development of
talent management and researcher supply in the field of autonomous vehicle control
technologies (EFOP-3.6.3-VEKOP-16-2017-00001)” provided funding for the
study. The research was supported by the European Union and co-financed by the
European Social Fund.

References

[1] A. Rosebrock, “Convolutions with OpenCV and Python,” 2016 (Online)
Available at: https://www.pyimagesearch.com/2016/07/25/convolutions-
with-opencv-and-python/

[2] A. Rosebrock, “Keras Conv2D and Convolutional Layers,” 2018 (Online)
Available at: https://www.pyimagesearch.com/2018/12/31/keras-conv2d-
and-convolutional-layers/

[3] A. Shustanov and P. Yakimov, “CNN Design for Real-Time Traffic Sign
Recognition,” Procedia Engineering, Vol. 201, pp. 718-725, 2017, ISSN
1877-7058, DOI: https://doi.org/10.1016/j.proeng.2017.09.594

[4] A. Wong, M. J. Shafiee and M. St. Jules, “MicronNet: A Highly Compact
Deep Convolutional Neural Network Architecture for Real-Time Embedded
Traffic Sign Classification,” IEEE Access, Vol. 6, pp. 59803-59810, 2018,
DOI: https://doi.org/10.1109/ACCESS.2018.2873948

[5] Benchmark - Institut für Neuroinformatik (INI), “Dataset - German Traffic
Sign Recognition Benchmark,” 2021 (Online) Available at:
https://benchmark.ini.rub.de/gtsrb_dataset.html

[6] L. Kovacs, L. Lindenmaier, H. Nemeth, V. Tihanyi and A. Zarandy,
“Performance Evaluation of a Track to Track Sensor Fusion Algorithm,”
CNNA 2018: The 16th International Workshop on Cellular Nanoscale
Networks and their Applications, Budapest, Hungary, 2018, pp. 1-2

Acta Polytechnica Hungarica Vol. 21, No. 7, 2024

‒ 219 ‒

[7] C. Ferencz and M. Zöldy, “End-to-end autonomous vehicle lateral control
with deep learning,” 12th International Conference on Cognitive
Infocommunications (CogInfoCom), IEEE Xplore, September 23-25, 2021,
Budapest, ISBN 978-1-6654-2495-0

[8] J. Credi, “Traffic sign classification with deep convolutional neural
networks,” Master’s thesis in Complex Adaptive Systems, Department of
Applied Mechanics, Chalmers University of Technology, 2016, Gothenburg,
Sweden. Available at:
https://publications.lib.chalmers.se/records/fulltext/238914/238914.pdf

[9] D. Sanket, “Convolutional Neural Network: Learn And Apply,” 2019
(Online) Available at: https://medium.com/@sdoshi579/convolutional-
neural-network-learn-and-apply-3dac9acfe2b6

[10] D. Sanket, “Traffic Sign Detection using Convolutional Neural Network,”
2019 (Online) Available at: https://towardsdatascience.com/traffic-sign-
detection-using-convolutional-neural-network-660fb32fe90e

[11] E. Forson, “Recognising Traffic Signs With 98% Accuracy Using Deep
Learning,” 2017 (Online) Available at:
https://towardsdatascience.com/recognizing-traffic-signs-with-over-98-
accuracy-using-deep-learning-86737aedc2ab

[12] F. Nushaine, “Building a Road Sign Classifier in Keras,” 2020 (Online)
Available at: https://towardsdatascience.com/building-a-road-sign-
classifier-in-keras-764df99fdd6a

[13] Google Colaboratory, “Welcome to Colaboratory,” 2021 (Online) Available
at: https://research.google.com/colaboratory/ (Accessed 10 08 2021)

[14] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, Vol. 313, No. 5786, pp. 504-507, 2006.

[15] I. Sergey, and C. Szegedy “Batch Normalization: Accelerating eep Network
Training by Reducing Internal Covariate Shift,” Preprint, 2015,
https://arxiv.org/abs/1502.03167

[16] J. Stallkamp, M. Schlipsing, J. Salmen, C. Igel, “Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition,”
Neural Networks, Vol. 32, pp. 323-332, 2012, ISSN 0893-6080, DOI:
https://doi.org/10.1016/j.neunet.2012.02.016

[17] Keras - Simple. Flexible. Powerful, “API docs,” 2021 (Online) Available at:
https://keras.io/ (Accessed: 01 08 2021)

[18] M. Zöldy and P. Baranyi, “Cognitive Mobility – CogMob,” 12th IEEE
International Conference on Cognitive Infocommunications (CogInfoCom)
pp. 915-919, 2021

[19] M. Zöldy and P. Baranyi, “The Cognitive Mobility Concept,”
Infocommunications Journal, Vol. 2023/01, pp. 35-40, 2022

Cs. Ferencz et al. Neural Network-based Multi-Class Traffic-Sign Classification
 with the German Traffic Sign Recognition Benchmark

‒ 220 ‒

[20] Netron App, “Lutz Roeder's Netron,” 2021 (Online) Available at:
https://netron.app (Accessed: 05 08 2021)

[21] NN-SVG, “Publication-ready NN-architecture schematics,” 2021 (Online)
Available at: https://alexlenail.me/NN-SVG/LeNet.html (Accessed: 05 08
2021)

[22] P. Baranyi and Y. Yam, “Singular value-based approximation with Takagi-
Sugeno type fuzzy rule base,” Proceedings of 6th International Fuzzy
Systems Conference, Vol. 1, pp. 265-270, 1997, DOI:
https://doi.org/10.1109/FUZZY.1997.616379

[23] P. Sermanet and Y. LeCun, “Traffic sign recognition with multi-scale
Convolutional Networks,” The 2011 International Joint Conference on
Neural Networks (IJCNN), 2011, pp. 2809-2813, DOI:
https://doi.org/10.1109/IJCNN.2011.6033589

[24] R. Uppala, “Traffic Signs Classification with a Convolutional Neural
Network,” 2017 (Online) Available at:
https://medium.com/@techreigns/traffic-signs-classification-with-a-
convolutional-neural-network-75911a1904

[25] Stanford University CS231n, “Convolutional Neural Networks for Visual
Recognition,” 2021 (Online) Available at:
https://cs231n.github.io/convolutional-networks/

[26] S. Saha, S. Amit Kamran and A. Shihab Sabbir, “Total Recall:
Understanding Traffic Signs Using Deep Convolutional Neural Network,”
2018 21st International Conference of Computer and Information
Technology (ICCIT), 2018, pp. 1-6, DOI:
https://doi.org/10.1109/ICCITECHN.2018.8631925

[27] T. Péter, A. Hary, F. Szauter, K. Szabó, T. Vadvári, I. Lakatos, “Analysis of
Network Traversal and Qualification of the Testing Values of Trajectories,”
Acta Polytechnica Hungarica, Vol. 18, pp. 151-171, 2021,
https://doi.org/10.12700/APH.18.10.2021.10.8

[28] Wikipedia - The Free Encyclopedia, “Kullback–Leibler divergence,” 2021
(Online) Available at: https://en.wikipedia.org/wiki/Kullback-
Leibler_divergence = shaded area

[29] Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, S. Hu, “Traffic-Sign Detection
and Classification in the Wild,” Proceedings of CVPR, 2016, рp. 2110-2118

	1 Introduction
	2 Traffic Sign Classification Task, Dataset Pre-Processing and Loading
	3 Network Layer Architecture
	4 Building and Training the Model
	5 Validation Results and Optimization

