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Abstract: Traffic-sign detection has an essential role in the field of computer vision, having 
many real-world applications more and more object recognition and classification task is 
being solved by using Convolutional Neural Networks (CNNs or ConvNets), especially in the 
field of intelligent transportation. In the present article, we offer an implementation chosen 
from several CNN-based traffic-sign recognition and classification algorithm architectures, 
using a ConvNet classifying 43 different types of road traffic signs in the TensorFlow 
framework, as part of the German Traffic Sign Recognition Benchmark (GTSRB) 
competition. A Deep ConvNet was trained end-to-end, aiming to improve the prediction 
performance of a DCNN-based autonomous driving system equipped with a front-facing 
digital camera, with as input a sequence of images, as output directly the prediction results. 
The results obtained on held-out data demonstrated the high accuracy of the model, matching 
the state-of-the-art multi-class recognition and classification accuracies, as well as related 
human-level recognition performances. 

Keywords: convolutional neural networks; end-to-end classification model; German traffic-
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1 Introduction 

As a result of, their fast execution and high recognition rate, Deep Convolutional 
Neural Networks (DCNN-s) have been pointed out in recent years to offer state-of-
the-art traffic sign classification performance, beyond what could be accomplished 
by former state-of-the-art methods. 

The emergence of modern discoveries and developments in deep learning gave rise 
to positive state-of-the-art results for traffic sign classification and recognition, with 
most of the research focusing on designing and developing cognitive techniques, 
such as DCNN-s for enhanced recognition accuracy. In the realm of mobility, 
cognitive methods can aid in making immediate decision. At the moment, nearly all 
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of the state-of-art network architectures for traffic-sign classification are based on 
Convolutional Neural Networks (or ConvNets) [14], [18], [19]. 

In the present article, the authors introduce a revised end-to-end traffic sign 
detection and recognition system, while thoroughly describing the design and 
development processes of the ConvNet through which the real-time processing of 
images, as well as classification of localized objects are implemented [20]. 

The presented end-to-end cognitive approach revealed a substantial efficiency 
decrease during testing and development for the recognition and classification of 
road signs in real conditions, a simple template matching classification algorithm 
was not able to achieve high-quality recognition results due to limited set of 
predefined templates, angle of rotation, contrast in images of localized traffic signs 
or too intense variations in the illumination. To improve the system's recognition 
performance, a possible solution might be that these widely applied convolutional 
neural networks could be combined with the localization algorithm that has shown 
good results [14], [18], [19]. 

The experiments conducted demonstrate that the perception module shows 
promising performance results, and the classifier is capable of detecting and sorting 
the various signs properly enough regardless of quality, orientation or size.  
The work shows promising results that push the complexity boundaries regarding 
navigating self-driving cars with a cognitive toolbox through towns [18], [19]. 

The final model was more than capable of a smooth detection and classification of 
a significant number of traffic signs on the German Traffic Sign Recognition 
Benchmark (GTSRB) dataset, with an accuracy as high as 97.98%, even 
approaching the related human-level recognition performance of 98.81%. It is 
interesting to note that the best 13 networks submitted for the GTSRB competition 
all use CNNs with a classification performance of at least 98.10%. Human-level 
accuracy is outperformed by 5 of these, indicating once again why it is the most 
commonly used state-of-the-art traffic-sign classification method [25]. 

In the following parts of the study beginning with Section 2, a detailed description 
will be given regarding the classification task and dataset pre-processing, in   
Section 3 the layer architecture definition, building and training of the model 
provided in Section 4, and last but not least Section 5 concluding with result 
validation and discussion. 

2 Traffic Sign Classification Task, Dataset Pre-
Processing and Loading 

CNN-s are frequently used for different purposes in image processing, such as 
segmentation, classification, or detection [25]. The traffic-sign classification 
problem has been addressed with various well-known methods, including neural 
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networks (NNs), Support-vector machine model architecture (SVM), or Naive 
Bayes classification. Many approaches used for traffic-sign recognition are based 
on sliding window methods, which resolve the classification and recognition 
problems simultaneously, but require unfeasible computational resources. 
However, several recent literature state-of-the-art systems separate recognition 
from classification. Firstly, we would deal with the recognition with custom-built 
computationally inexpensive methods, e.g. color thresholding. After that, the 
classification will be conducted on the detected samples with algorithms having 
higher accuracy. 

Traffic-sign recognition is a rather constrained problem, it has many direct real-
world applications, road signs being unique with little variability in appearance, 
fixed, and intended to be displayed for the drivers. Even though the current task is 
exclusively classification, when designing a classifier the ultimate objective of 
detection is to optimize both efficiency and accuracy. With color thresholding and 
various heuristics, for instance, we first detect sign shapes, followed by multi-layer 
NN classification for each type of traffic sign outer shape. The method has the 
advantage of fast training, reduced chance of overfitting, needs fewer samples, and 
it is great for local information capturing and reducing the complexity of a given 
model [6]. 

The German traffic sign detection dataset consists of 39 209 image samples 
corresponding to 43 different classes (ranging from 0 to 42), each one of the signs 
having its folder of different image sizes and resolutions. The training dataset is 
made up of 34 799 images, the validation dataset of 4 410 images, and respectively 
the test set of 12 630 images. Because samples are divided unevenly between the 
related classes, our model could predict some of the classes with higher accuracy 
than others. The samples are composed of video sequence frames of 1 [s], and as 
the camera approaches a given sign each real-world sample produces 30 samples 
increasing in resolution [23], [24], [25]. The total number of samples present in our 
dataset exceeds 50 000 images. 

Thus, we will categorize 40 × 40 RGB pixel space input images into 43 possible 
traffic sign categories: ℎ: ℝ4800 ↦ {0, 1, …, 42}. Note that due to the three-color 
channels, we have a 40 × 40 × 3 = 4800 - dimensional input. In this task, 
convolutional neural networks (CNN-s) usually perform at around 90-95% 
accuracy [8], [24], [25]. We will try to train a network that performs better than 
humans — 98.9% on the original German Traffic Sign Recognition Benchmark 
(GTSRB). 

Many images from the sample set given by the GTSRB competition present several 
difficult challenges, some of these are very hard to distinguish and classify even for 
a human (low-contrast, viewpoint variations, motion-blur, physical damage, 
occlusions, colors fading or input resolution as low as 15 × 15). However, we can 
assume that the ground truth that we have is exact. 
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Because the image samples present in the dataset dynamically varies between a 
wide range of dimensions from 15 × 15 × 3 to 250 × 250 × 3, it is not possible to 
pass them directly to the CNN model, hence this cannot be trained on different 
image dimensions, but we also need to avoid stretching the images too much when 
compressing them to a single dimension. All things considered, we will use an 
already pre-processed version of the images re-sized to 40 × 40 × 3. 

Furthermore, because the present project's objective is to build a robust recognizer 
excluding temporal evidence accumulation, road signs in the training dataset will 
be available as video sequences, and temporal information will not be in the test 
dataset [6], [23], [24], [25]. Moreover, we will populate and diversify the original 
set of data as well with various image modifying techniques such as rotations, color 
distortions and blurring techniques. Therefore, at this stage we are performing data 
augmentation (see Figure 1). 

    
Figure 1 

Data augmentation creating modified input sample versions [5] 

        
Figure 2 

Labeled input dataset before and after augmentation, pre-processing and normalization [5] 

With this solution basically we are adding more sample to our dataset, but without 
collecting any new one. The samples following data augmentation, pre-processing 



Acta Polytechnica Hungarica Vol. 21, No. 7, 2024 

‒ 207 ‒ 

and normalization will look like as presented in Figure 2. All of the dataset image 
samples were normalized, in order to help the model converge faster, the data 
having a mean of zero and equal variance. 

After finding out the model's actual accuracy by training on the original dataset, in 
the next step by adding even more data and evening out the classes we will check 
the accuracy again [6]. The purpose of the test set would be to detect, during 
training, that the model has overfitted and to implement, e.g. early stopping, dropout 
or some other method to compensate. Once the model is completely trained, the 
validation set needs to be simply run through the model and the results reported. In 
order to have diverse datasets and higher prediction performance on unseen data, 
we will extract randomly one sample per class for validation, instead of mixing all 
images randomly and separating into similar training and validation datasets [16]. 

3 Network Layer Architecture 

Generally speaking, similarly to regular NN, convolutional neural networks also 
consists of neurons having learnable biases and weights, organized in layers. 
Contrary to regular neural networks, however, CNNs make the most of the fact that 
they constrain the input architecture composed of images in a more sensible way, 
in particular having layers with neurons arranged in three dimensions [11], [16]. 

However, a ConvNet will take a two-dimensional image and progressively will 
process it with the convolutional layer. In the case of this classification task, the 
input volume samples of activations having the size of 40 × 40 × 3 (40 - width, 40 
- height, 3 color channels), in the first hidden layer a single fully connected neuron 
would have 40 × 40 × 3 = 4 800 weights. This volume still looks computable, 
however, this structure certainly will not scale to larger images, e.g. size of 250 × 
250 × 3, in the case of regular neural networks, because that would lead to neurons 
that have 187 500 weights, and because we generally want to have more than one 
of these neurons the parameters would add up quickly [11]. It is clear that full 
connectivity would not be particularly efficient, and these considerable amounts of 
parameters would swiftly give rise to overfitting. 

As Figure 3 illustrates, each of the ConvNet's layers will transform the three-
dimensional input volume to a three-dimensional output volume with neuron 
activations. In the case of the left example, the red input layer's height and width 
will be the image dimensions, while the depth will correspond to the red, green, and 
blue channels. The right figure illustrates an example input volume of a 32x32x3 
image and the volume of neurons in the first convolutional layer. In this case, there 
are 5 neurons along the depth, connected to or looking at the same region of the 
input volume. These 5 neurons do not represent the same weights, they are only 
associated with 5 different filters, sharing the same receptive field [25]. 
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Figure 3 

3-layer network vs CNN organizing neurons in three dimensions [25] 

When dealing with deep CNN, normal CNNs generally have two or three layers, 
but deep CNNs will have multiple hidden layers usually more than 5, which are 
used to extract more features and increase the accuracy of the recognition. 
Therefore, the depth of the network shall correlate with the amount of data, a deep 
network with insufficient data will produce an overfitted model, while a shallow 
network with a lot of data will not have a high accuracy [11]. Moving from layer to 
layer, the low-level input feature vector is put into the first layer and transformed 
into a high-level feature vector. The neuron number in the output layer is equal to 
the classifying class number, while the vector of probability output is showing the 
possibility of the input vector belonging to a corresponding class. The output of a 
weighted adder is described by (1): 

𝑎𝑎𝑗𝑗𝑖𝑖 = 𝜎𝜎�∑ 𝑎𝑎𝑘𝑘𝑖𝑖−1𝑤𝑤𝑖𝑖
𝑘𝑘 𝑗𝑗𝑘𝑘� (1) 

where 𝑎𝑎𝑗𝑗𝑖𝑖  - 𝑗𝑗𝑡𝑡ℎ neuron, 𝑖𝑖𝑡𝑡ℎ layer and 𝑤𝑤𝑘𝑘
𝑖𝑖𝑖𝑖  - weight of synapse, connecting 𝑗𝑗𝑡𝑡ℎ neuron 

in the layer 𝑖𝑖𝑡𝑡ℎ, with the 𝑘𝑘𝑡𝑡ℎ neuron in the 𝑖𝑖 − 1 layer. As activation function the 
logistic function will be applied, frequently used in regression problems [2], [25]. 

In classification problems during training process the goal is to minimize the cost 
function by gradient decent with minimization methods. In this case, cross entropy 
is the most widely used cost function, 𝐻𝐻(𝑝𝑝, 𝑞𝑞) being the cross-entropy of the 
distribution 𝑞𝑞 relative to a distribution 𝑝𝑝 over a given set, presented in (2): 

𝐻𝐻(𝑝𝑝, 𝑞𝑞) = −∑ 𝑌𝑌(𝑖𝑖)𝑖𝑖 log 𝑦𝑦(𝑖𝑖) (2) 

Because in computer vision CNN classification is the state-of-the-art method for 
pattern recognition, our implemented network layer structure, illustrated in Figure 
4, is also mostly based on convolutional layers, following the architecture Input — 
Convolutional Layer — ReLU — Pooling Layer — Fully Connected (FC) Layer. 
Image convolution is the simple sum of element-by-element matrix multiplication 
between weights and the input volume region they are connected to, followed by a 
summing of the elements together [25]. These layers operate in the form of sliding 
windows, and do not require a fixed image size, while the output of these will be 
the spatial arrangement of activations, or so-called feature maps of any size, which 
allow us to detect the same features in different locations [1], [2], [24]. 
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Figure 4 

Applied classification layer structure (Own work, 2021) 

In substance, the convolutional layer requires four hyperparameters (𝑆𝑆 - stride, 𝐾𝐾 - 
number of filters, 𝐹𝐹 - spatial extent, 𝑃𝑃 - the amount of zero padding) and accepts a 
𝑊𝑊1 × 𝐻𝐻1 × 𝐷𝐷1 volume size. A common setting of the hyperparameters is 𝐹𝐹 = 3, 𝑆𝑆 
= 1, and 𝑃𝑃 = 1. It produces a volume of size 𝑊𝑊2 × 𝐻𝐻2 × 𝐷𝐷2, where heights and 
widths are equally computed by symmetry, described by (3), (4), and (5): 

𝑊𝑊2 =  (𝑊𝑊1−𝐹𝐹+2∙𝑃𝑃)
𝑆𝑆

+ 1 (3) 

𝐻𝐻2 =  (𝐻𝐻1−𝐹𝐹+2∙𝑃𝑃)
𝑆𝑆

+ 1 (4) 

𝐷𝐷2 =  𝐾𝐾 (5) 

Using sharing of parameters, for (𝐹𝐹 × 𝐹𝐹 × 𝐷𝐷1) × 𝐾𝐾 weights and 𝐾𝐾 biases, 𝐹𝐹 × 𝐹𝐹 × 
𝐷𝐷1 weights per filter will be introduced. Regarding the output volume, a 𝑊𝑊2 × 𝐻𝐻2 
sized 𝑑𝑑𝑡𝑡ℎ depth slice will result after performing a convolution of the 𝑑𝑑𝑡𝑡ℎ filter with 
a stride of 𝑆𝑆 over the input volume, offset then by the 𝑑𝑑𝑡𝑡ℎ bias. 

As a next layer, we implement batch normalization to stabilize training and facilitate 
a smoother hyperparameter tuning process, while substantially increasing the 
classification performance [1], [25]. This normalization operation normalizes the 
elements of 𝑥𝑥𝑖𝑖 inputs by calculating the mean 𝜇𝜇𝐵𝐵 and variance 𝜎𝜎𝐵𝐵2 over the time, 
spatial and observation dimensions independently in the case of every channel, 
respectively also calculating the so-called normalized activations as in (6) [2]: 

𝑥𝑥𝚤𝚤� = 𝑥𝑥𝑖𝑖−𝜇𝜇𝐵𝐵

�𝜎𝜎𝐵𝐵
2+𝜖𝜖

 , (6) 

where ϵ — constant, improving numerical stability when variance is small. 

This operation additionally scales and shifts the activations, allowing those inputs 
with unit variance as well as zero mean to not be optimal for operations following 
batch normalization, using the transformation presented in (7) [1]: 

𝑦𝑦𝑖𝑖 = 𝛾𝛾𝑥𝑥𝚤𝚤� + 𝛽𝛽, (7) 

where 𝑥𝑥𝚤𝚤�  - the resulting normalized activation having zero mean and unit variance, 
𝛽𝛽 — offset and 𝛾𝛾 — scale factor. These parameters are learnable and updated during 
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the training of the network. In order to make predictions after training, batch 
normalization assumes a fixed mean and variance, calculated from training data 
after or during training, to normalize data [2]. 

Between consecutive convolutional layers we can insert periodically an 
intermediate pooling layer, with the intention of operating independently on the 
input's each depth slice and successively reducing the spatial size, number of 
parameters, and network computation, leading also to controlling the overfitting. 
The most frequently used form of this is a 2 × 2 filter size pooling layer 
downsampling every input depth slice with a stride of 2 across both height and 
width, discarding two-thirds of the activations, but leaving unchanged the depth 
dimension, described by (8), (9) and (10). This pooling layer requires two 
hyperparameters, the 𝑆𝑆 - stride and 𝐹𝐹 - spatial extent, while accepting a 𝑊𝑊1 × 𝐻𝐻1 × 
𝐷𝐷1 sized volume, and producing a 𝑊𝑊2 × 𝐻𝐻2 × 𝐷𝐷2 sized volume, where: 

𝑊𝑊2 =  (𝑊𝑊1−𝐹𝐹)
𝑆𝑆

+ 1 (8) 

𝐻𝐻2 =  (𝐻𝐻1−𝐹𝐹)
𝑆𝑆

+ 1 (9) 

𝐷𝐷2 =  𝐷𝐷1 (10) 
It should be also emphasized that only two predominantly used max pooling layer 
variation is found in practice, the more common one with 𝑆𝑆 = 2 and 𝐹𝐹 = 2, but also 
a configuration of 𝑆𝑆 = 2 and 𝐹𝐹 = 3, or the so-called overlapping pooling. Pooling 
sizes with bigger receptive fields could be too detrimental [1], [2]. Figure 5 
illustrates the most widely used max-pooling downsampling operation with a stride 
of 2. The 224 × 224 × 64 sized input volume is pooled with stride 2 and filter size 
2 into a 112 × 112 × 64 sized output volume, while the volume depth is preserved 
[9], [10]. 

 
Figure 5 

Illustration of pooling layer downsampling the input volume [25] 

In the final four layers, we will perform a flatten operation on the last convolutional 
layer's output, a final batch normalization, as well as a dropout operation while 
entering into the last output dense layer — this will be the same as the number of 
classes that we have. The purpose of using dropout is to avoid overfitting and to 
generalize while also improving reliability. Neurons with probability 𝑝𝑝 of the 
current layer will disconnect randomly from the next layer's neurons, going through 
the depth of the network, learning more filters as the network deepens. 
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Training deep networks using several layers with a sigmoid activation function will 
be complicated because of the vanishing gradient issue [9], [10], [13]. To resolve 
this difficulty, we will specifically use the activation Rectified Linear Unit (ReLU), 
which applies 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝑥𝑥) elementwise non-linearity activation function 
thresholding at zero, 𝑥𝑥 being the input to a neuron, presented in (11): 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥+ = 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝑥𝑥) (11) 

Using ReLU, compared with other similar activation functions such as the sigmoid 
function, enables a more efficient, but also faster training process of complex and 
large datasets attributed to deep neural architectures, leaving the volume size 
unchanged [12]. A SoftMax classifier is also added to the network to normalize the 
output of the previous layer, so the output of this will contain the probability values 
of belonging to a recognizable class (the layer's output basically will be the 
prediction values). The standard (unit) SoftMax function σ:  ℝ𝐾𝐾  →  [0,1]𝐾𝐾  for 𝑖𝑖 =
 1, . . . ,𝐾𝐾 respectively  𝑧𝑧 = (𝑧𝑧1, . . . , 𝑧𝑧𝑘𝑘) ∈ ℝ𝐾𝐾 is defined by (12): 

𝜎𝜎(𝑧𝑧)𝑖𝑖  =  𝑒𝑒𝑧𝑧𝑖𝑖

∑ 𝑒𝑒𝑧𝑧𝑗𝑗𝐾𝐾
𝑗𝑗=1

 (12) 

where 𝜎𝜎 - softmax, 𝑧𝑧 input vector, 𝑒𝑒𝑧𝑧𝑖𝑖  - standard exponential function for input 
vector, 𝐾𝐾 - number of classes in the multi-class classifier, 𝑒𝑒𝑧𝑧𝑗𝑗 - standard exponential 
function for output vector. Essentially what this does is that it takes a vector 𝑧𝑧 as 
input with 𝐾𝐾 real numbers and normalizes it. The probability distribution containing 
𝐾𝐾 probabilities will be proportional to the input numbers' exponentials. 

At the end of the network, we add a fully connected layer as well, thus realizing 
class score computing, leading to volumes of a 1 × 1 × 43 size, where numbers will 
be matched to one of the 43 class category scores of the GTSRB dataset.  
The network will learn filters that activate when some type of visual feature can be 
seen on the first layer (e.g. edge of some orientation) and ultimately entire patterns 
on the network's higher layers [29]. 

4 Building and Training the Model 

An illustration of the classifying process is presented in Figure 6. At this point, the 
built network processed from the training dataset a 50-image batch over one 
iteration. The so-called intermediate accuracy was calculated every 100 iterations, 
with a batch of 50 images from the test set to report progress. After successful 
training, the accuracy is calculated again, using all samples from the test set. 

The input image of 40 × 40 × 3 is a multi-dimensional matrix, holding raw pixel 
values, having, just like a traditional matrix, a width of 40 (number of columns), a 
height of 40 (number of rows), as well as a depth of 3 for a standard RGB image, 



Cs. Ferencz et al. Neural Network-based Multi-Class Traffic-Sign Classification  
 with the German Traffic Sign Recognition Benchmark 

‒ 212 ‒ 

representing the image channel number. Plotting the histogram for the sample 
images in our dataset for different road traffic signs will result in Figure 7. 

 
Figure 6 

Simplified functional diagram of the classifying process (Own work, 2021) 

 

Figure 7 
Histogram distribution of the augmented training image categories (Own work, 2021) 

The sample numbers for each road sign are unevenly distributed between classes, 
not having the same number of samples for every class (also shown in the histogram 
distribution), leading to a biased model that recognizes and classifies some of the 
traffic signs more accurately than others. Thus, sample images had to be augmented 
for some of the classes to reach a minimum of 250 images in each class, while 
avoiding replicates in the input dataset [3], [26]. 

All coding of data arguments along with the training model is created in the Jupyter 
Notebook environment. The detailed CNN layer architecture and specification used, 
built with [21] and [22], is summed up in Table 1, respectively shown in Figure 8 
and Figure 9 [8]. Among the types of layers used are two-dimensional convolution 
layers (Conv2D), batch normalization, two-dimensional max pooling, flatten, 
dropout, and dense - with detailed descriptions in the previous section [4]. 

 
Figure 8 

Implemented deep convolutional neural network layer architecture (Own work, 2021) 
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Figure 9 

Deep convolutional neural network architecture specifications layer-by-layer (Own work, 2021) 

The entire procedure for model training requires about two hours over a single GPU, 
the total number of parameters is 2 688 619 (from which 2 687 083 are trainable 
and 1 536 non-trainable), the training process is carried out with an Intel Core i7-
4790K - 32 GB RAM, 4.00 GHz processor and Ubuntu-64 bit operating system [1], 
[2]. We will be using Python 3.x with TensorFlow, the scripts only reference 
standard libraries available over the ‘pip’ package manager, such as os, time, numpy, 
zipfile, or matplotlib backend. 

To maximize likelihood (MLE) we have to minimize the sum/mean/root-mean-
squared error (SSE/MSE/RMSE) [3], [4], [6]. Consequently, for result evaluation 
we adopt this MSE, the default loss for regression problems used to predict 
continuous target values, calculated as the average of the squared differences 
between the predicted (𝑦𝑦𝚤𝚤�) and actual (𝑦𝑦𝑖𝑖) values, shown in (13): 

𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑚𝑚
∑ (𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖)2𝑚𝑚
𝑖𝑖=1  (13) 

A supervised training gradient-based method is updating each one of the filters in 
each layer, in each filter bank in such a way that it minimizes the loss function, 
while the last stage's output is fed to a classifier. In the case of classification 
problems, we approximate 𝑝𝑝(𝑌𝑌|𝑋𝑋) k-class discrete conditional distribution with 
𝑞𝑞�𝑌𝑌�|𝑋𝑋� modeling distribution ℝ𝑛𝑛  →  [0,1]𝑘𝑘  [8], [15]. 

Table 1 
Network layer architecture, parameters and sizes 

Layer type Filter 
nr. 

Kernel 
size 

Activ. 
fc. Output shape Param. 

nr. 
Conv1 64 3x3 RELU (None, 38, 38, 64) 1 792 
BatchNorm - - - (None, 38, 38, 64) 256 
Conv2 64 3x3 RELU (None, 36, 36, 64) 36 928 
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Layer type Filter 
nr. 

Kernel 
size 

Activ. 
fc. Output shape Param. 

nr. 
BatchNorm1 - - - (None, 36, 36, 64) 256 
MaxPool - 2x2 - (None, 18, 18, 64) 0 
Conv3 128 3x3 RELU (None, 16, 16, 128) 73 856 
BatchNorm2 - - - (None, 16, 16, 128) 512 
Conv4 128 3x3 RELU (None, 14, 14, 128) 147 584 
BatchNorm3 - - - (None, 14, 14, 128) 512 
MaxPool1 - 2x2 - (None, 7, 7, 128) 0 
Flatten - - - (None, 62 72) 0 
Dense 384 - RELU (None, 384) 2 408 832 
BatchNorm4 - - - (None, 384) 1 536 
Dropout - - - (None, 384) 0 
Dense - - Softmax (None, 43) 16 555 

To maximize likelihood, we have to minimize cross-entropy 𝐻𝐻(𝑝𝑝, 𝑞𝑞) or Kullback-
Leibler (KL) divergence 𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝||𝑞𝑞). The entropy formula is given in (14), while the 
cross-entropy formula is given in (15), 𝐻𝐻(𝑝𝑝, 𝑞𝑞)  ≥  𝐻𝐻(𝑝𝑝), asymmetric [15], [25], 
[28]. KL Divergence is also known as relative entropy or information gain, given 
in (16), 𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝||𝑞𝑞)  ≥  0, asymmetric. 

𝐻𝐻(𝑝𝑝)  =  −∑ 𝑝𝑝𝑘𝑘 𝑙𝑙𝑙𝑙 𝑝𝑝𝑘𝑘𝑘𝑘  (14) 

𝐻𝐻(𝑝𝑝, 𝑞𝑞)  =  −∑ 𝑝𝑝𝑘𝑘 𝑙𝑙𝑙𝑙 𝑞𝑞𝑘𝑘𝑘𝑘  (15) 

𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝||𝑞𝑞)  =  𝐻𝐻(𝑝𝑝, 𝑞𝑞) − 𝐻𝐻(𝑝𝑝) (16) 

Cross-entropy loss function is given in (17) and (18), where we minimize the 
amount of surprise suffered between our expectation (𝑞𝑞) and reality (𝑝𝑝) [15]: 

𝐿𝐿𝑥𝑥𝑥𝑥  =  − 1
𝑚𝑚
∑ ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘 𝑙𝑙𝑙𝑙 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 , (17) 

𝑝𝑝𝑖𝑖𝑖𝑖  =  𝑝𝑝(𝑌𝑌𝑖𝑖 = 𝑘𝑘|𝑋𝑋𝑖𝑖) (18) 

Our first hyperparameter (see Table 2), the number of epochs, indicates how many 
times should the network go through a full training process. In this case, the network 
will go over all the 50 000 images, as well as validate itself with 12 000 test images 
exactly 20 times. The number of batches in epoch is the training set size over the 
batch size. In case of setting this batch size to a larger value, the quality of our model 
could deteriorate, eventually leading to a point where the model is unable to 
generalize well on previously unseen data [4]. 

The hyperparameters controlling the output volume's size are the stride, zero-
padding and depth. Stride is wherewith we slide the filter, if it is equal to 1, we are 
moving one pixel at a time for every filter. The zero-padding has a role in 
controlling spatial sizes of output volumes, and the output volume depth will 
correspond to the number of filters we are planning to use [25]. Another aspect 
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worth noting is the impracticality of connecting neurons to all previous volume 
neurons, rather connecting each neuron to only a local region, leading to the spatial 
extent called the receptive field — or otherwise called the filter size, summarized 
for each specific layer in Table 1. 

The learning rate, defined between 0 and 1, in this case 0.001, describes our weights' 
update rate. Because cycling through all of the 50 000 samples at the same time 
would not be computationally feasible, the batch size will express the number of 
image samples our neural network will cycle through at once. Our optimizer will be 
created as the Adam optimizer for the stochastic gradient solver, while the weight 
decaying parameter is also set to 0.001 — this reduces overfitting [25], [26]. 

Table 2 
Training the network - hyperparameters 

Parameter Value [-] 
Learning rate 0.001 
Decay 0.001 
Batch size (Training) 256 
Batch size (Validation) 256 
Epochs 2 
Verbose 1 

Regarding batch sizes, each batch size is composed of 256 frame inputs for the 
training, as well as in the case of the validation phase. Each batch trains the network 
in successive order, taking into account the updated weights coming from the 
appliance of the previous batch, each sample passed through to the network at one 
time. In the case of the hyperparameter batch size, we have to test and adjust it as 
per how our specific model performs during training. This hyperparameter also 
must be tested concerning how our machine is operating in respect of resource 
utilization [5]. Setting the verbose to 1 will mean that the progress of the model 
being trained will be shown during development time. 

5 Validation Results and Optimization 

The result validation phase during development gives us the improvement 
directions on how the precision accuracy could be increased. Figure 10 presents 
some results during optimization with erroneous sample predictions, as well as the 
accuracy/loss variation of the model. 

In the case of running the network without image augmentation, there are 
indications that the model's validation accuracy was rather high compared to the 
training accuracy, as Figure 11 illustrates. At this point, we additionally defined 
two levels of dropout, one for convolutional layers with a rate of 0.75 and one for 
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fully connected layers with 0.5. The initial convolutional depth of 32 was also 
modified due to obtain better results with 64 [25]. Additionally, the right image in 
Figure 11 presents the convolutional working process over some sample traffic 
signs, visually revealing the network's recognition principle. 

 

 

 

 
Figure 10 

Samples with erroneous predictions and development accuracy/loss of the model (Own work, 2021) 

The values of both loss function and precision accuracy variation for our model for 
10 epochs are illustrated graphically in Figure 12. We can observe that the adopted 
CNN reduces smoothly the values of these performance metrics over the epochs, 
there is an apparent efficiency in the learning process, and these values tend to be 
flat and convergent, ultimately approaching the human-level recognition 
performance goal of 98.81% set in the first place, with a final recognition 
performance of 97.98%. 
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Figure 11 

Accuracy and loss before optimization, and convolution visualization (Own work, 2021) 

 

Figure 12 
Final training and validation accuracy of the model (Own work, 2021) 

Conclusions 

In this paper the authors presented a ConvNet system and its architecture with state-
of-the-art results on the GTSRB dataset, investigated a real-world traffic-sign 
recognition and classification problem, built a highly configurable network, as well 
as developed a flexible method to assess multiple architectures. The research 
provides evidence of practicality of the presented applications, highlighting the 
enhanced efficiency brought by the cognitive methods [18], [19], [27]. 

The validation of the network showed promising and smooth results that hold up 
against existing literature findings and outcomes in the field of ML-based 
classification problems. The network is working effectively with the preprocessed 
images and produces good results. The remaining errors are due to either too low-
resolution inputs or physically degraded road signs for which classification is not 
possible with just a single image instance. 
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Concerning possible future development directions, one could be the problem of 
perception input, the traditional ConvNet architecture could be modified by feeding 
features to the classifier of 1st stage besides features of 2nd stage, as well as by 
using greyscale driving images having strong correlation features among 
continuous frames instead of color and by increasing the network capacity [17]. 
Regarding the color image samples, by visualizing the erroneous predictions we can 
assume that normalized color channels could be more informative than raw color. 

Future studies should examine the effect of input resolution to enhance processing 
speed and classification accuracy, in addition to processing with multiple networks, 
which might further improve accuracy [16]. Finally, the influence and effect of 
unsupervised pre-training of feature-extracting stages should be investigated as 
well, which could be more easily learned than with a strictly supervised method, 
explicitly with an increased number of features at each stage. 
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