Acta Polytechnica Hungarica Vol. 22, No. 10, 2025

Mixed-effects Model Fitting Based on in vitro
Data

Borbaila Gergics'>*, Levente Kovacs!, Andras Fiiredi', and
Déniel Andras Drexler!

IPhysiological Controls Research Center, University Research and Innovation
Center, Obuda University, Bécsi it 96/b, 1034 Budapest, Hungary,
{gergics.borbala, kovacs, furedi.andras, drexler.daniel } @uni-obuda.hu

2 Applied Informatics and Applied Mathematics Doctoral School, Obuda
University, Bécsi ut 96/b, 1034 Budapest, Hungary

3Drug Resistance Research Group, Hungarian Research Network, Magyar tudésok
krt 2, 1117 Budapest, Hungary, furedi.andras @ttk.hu

“Corresponding: gergics.borbala@uni-obuda.hu

Abstract:  Personalized therapy optimization in cancer treatment is crucial to improve
outcomes and minimize side effects. This study focuses on applying a nonlinear mixed-effects
(NLME) model to in vitro tumor spheroid data to better understand tumor growth dynamics
and responses to chemotherapy. Tumor spheroids were created using a mammary tumor cell
line isolated from Brcal-/-, p53-/- mouse mammary tumors and cytotoxicity measurements
were performed with doxorubicin at different concentrations. The NLME model was fitted to
longitudinal data sets, capturing both population-level effects and individual variability in
tumor growth and drug response. The results suggest that NLME models are highly effective
in optimizing therapeutic strategies, taking into account individual tumor characteristics. The
study highlights the potential of combining mixed-effects modeling and 3D tumor spheroids to
enhance personalized cancer treatment design, ultimately improving treatment efficacy while
reducing toxicity.
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1 Introduction

Personalized therapies and therapy optimization in chemotherapy are critical for
improving patient outcomes and minimizing the side effects and the chance
of the development of resistance often associated with cancer treatment. This
approach reduces the likelihood of resistance and relapse, as it addresses the unique
characteristics of each patient’s cancer. Additionally, therapy optimization, which
involves adjusting dosage and timing based on patient-specific factors, ensures that
treatments are as effective as possible with the fewest side effects [1-4].

The development of mathematical modeling and informatics brings with it the
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development of medicine and the engineering support of therapies [5, 6]. Our
research focuses on basic research to increase the effectiveness of chemotherapy
with the help of mathematical modeling and informatics [7-9]. During basic
research in vitro or in vivo biological models are essential for advancing our
understanding of tumor function as well as the validation of the built mathematical
models and designed therapies [10]. Compared to in vivo animal experiments
in vitro biological measurements enable researchers to study biological systems
outside of living organisms, providing precise control over experimental conditions
and reducing the variability inherent in in vivo studies [11]. Using in vitro methods,
scientists can isolate specific variables, conduct high-throughput screening, and
perform detailed mechanistic studies, leading to more accurate and reproducible
results. Moreover, in vitro measurements play a crucial role in drug development,
toxicology, and personalized medicine, allowing for the early identification of
potential therapeutic targets and minimizing the ethical concerns associated with
animal testing [12—14].

During our work, we create and examine tumor spheroids which are
three-dimen-sional cell culture models that closely mimic the architecture and
microenvironment of tumors in the human body [15, 16]. Unlike traditional
two-dimensional cell cultures, tumor spheroids replicate the complex cell-to-cell
and cell-to-matrix interactions found in actual tumors, making them more
physiologically relevant for studying cancer biology. These models are particularly
valuable for investigating tumor growth, drug resistance, and the efficacy of
anti-cancer therapies, as they better reflect the diffusion gradients of oxygen,
nutrients, and drugs observed in real tumors. Tumor spheroids also allow
researchers to explore the behavior of cancer cells in a more natural state, including
their response to treatment, cell migration, and invasion, which are critical for
understanding metastasis. As such, tumor spheroids are indispensable tools in
cancer research and drug development, offering a more accurate and predictive
model for preclinical testing [17-19].

Mathematical modeling of tumors, including tumor cell cultures and tumor
spheroids, plays a vital role in understanding tumor growth dynamics, predicting
responses to treatments, and optimizing therapeutic interventions. These models
offer a quantitative framework to simulate complex biological processes, such
as cell proliferation, nutrient diffusion, and drug response, in controlled in vitro
environments. In the literature, various tumor growth models range from basic ones
using linear dynamics to more complex models that include nonlinear terms in their
differential equations. Linear models are easy to work with, but they often fail
to capture important biological phenomena. On the other hand, nonlinear models
can describe many critical physiological processes, though this increased accuracy
often comes at the cost of making the models less practical or more difficult to
use [20]. Some of the most commonly used models include the Gompertz and
Hahnfeldt models. The Gompertz model [21, 22] is typically applied to describe
cancer cell proliferation. On the other hand, the Hahnfeldt model [23] employs
non-linear equations to represent the interactions between tumor growth and tumor
vascularization.
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In longitudinal data, such as cytotoxicity measurements of different
chemotherapeutic agents, the variability of observations may grow over time,
and repeated measurements from the same individual are correlated. This lack of
independence in the data obstructs a key assumption of many statistical methods,
which has been largely overlooked in traditional nonlinear models, typically
treated as fixed effect models [24]. Non-linear mixed effect models (NLME
models) are powerful statistical tools used to analyze complex and variable data
by incorporating both fixed effects, which are consistent across all observations,
and random effects, which account for variability between different subjects or
experimental units [25]. In the context of in vitro data, NLME models are beneficial
for capturing the complex and non-linear relationships that often arise in biological
systems, such as enzyme kinetics, cell growth dynamics, and drug-response
interactions. These models can incorporate the inherent variability between
different cell lines, experimental conditions, and replicates, providing a more
accurate representation of the biological processes involved [26, 27].

In therapy optimization, NLME models can be used to analyze dose-response
relationships, taking into account both the average effect of a drug and the
variability in response among different tumor cell populations. This is crucial
for identifying optimal dosing regimens that maximize therapeutic efficacy while
minimizing toxicity. Furthermore, NLME models can help in predicting how
changes in drug concentration or timing may influence tumor growth and treatment
outcomes, helping the design of personalized therapy strategies that are tailored
to the specific characteristics of a patient’s tumor [28, 29]. By integrating data
from in vitro experiments with NLME models, researchers can better understand the
dynamics of tumor response to therapy, leading to more effective and individualized
cancer treatments. In this paper, we present the application of an NLME tumor
growth model on data based on in vitro experiments. We created tumor spheroids
with the initial cell numbers of 5000 and 10000 cells using a specific mammary
tumor cell line. Cytotoxicity measurements were implemented with doxorubicin
chemotherapeutic agent, and the model fitting was done on these longitudinal
datasets. The model parameters gained from the NLME fitting are the average of
the individual estimated parameter values of each spheroid. Thus, the variability
of tumor growth and the response to the drug between different individuals can be
taken into account.

2 Preliminaries
2.1 Minimal Tumor Model

The applied mathematical model consists of a system of differential equations with
four state variables, incorporating both linear components and certain nonlinear
terms. This minimal tumor model represents tumor growth, pharmacokinetics,
pharmacodynamics, and drug elimination. This system of differential equations
can be formulated as follows [30, 31]:
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Table 1
The name and dimension of the model parameters.

Parameter | Name Dimension
a Proliferation rate day‘1
b Drug efficiency rate day !
n Necrotic rate day ™!
w Washout rate coefficient of dead tumor cells day ™!
EDs Median effective dose of the drug mg-kg~!
c Clearance of the drug day ™!
Flow rate coefficient of the drug 1
k1 . day
from the central to peripheral compartment
Flow rate coefficient of the drug 1
k2 . day
from the peripheral to central compartment
. X1X3
X1 = (@a—n)x—b——"7— 1
1 ( ) X1 EDsy 53’ (1)
. X1X3
X2 = mxy+b——"——wx 2
2 7 e 2, 2
X3 = —(c+ki)xs+koxg+u, 3)
X4 = kixz—koxg. 4)

The state variables in (1)-(4) describe time-dependent functions. The variable
x; [mm?3] corresponds to the time function of the living tumor volume, while x;
[mm?] represents the dead tumor volume. The drug concentration in the central
compartment (the time-dependent drug level in the blood) is given by x3 [mg-kg '],
The system input, denoted as u, is the injection rate [mg-kg~'-day '], and
this is administered into the central compartment. The time function of the drug
concentration in the tissues is described by x4 [mg-kg~!]. The model parameters
are listed in Table 1.

The drug injections administered on specific days are the model inputs. These doses
cause a sudden change in the drug concentration at each injection time. Let f;,
where k = 0,1,2,..., represent the injection times, and uy, with k =0,1,2,..., be
the injected drug doses in mg-kg~'. As a result, x3 experiences a discontinuity at
time #;,, which is modeled as:

x3(t,j) =x3(t ) +ug. 5)

The model parameters were determined from experiments on mice using a
mixed-effects model [30, 31], with the assumption that the parameters remain
constant. The objective of this study was to identify and validate these model
parameters based on in vitro tumor culture data. Although several side effects are
not accounted for in the in vitro experiments, the impact of chemotherapeutic agents
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can be measured more precisely compared to in vivo studies, making it easier to
incorporate into therapy optimization.

In our previous works, the minimal tumor model was tailored for in vitro
experiments, and this modified model was fitted to the entire population of
two-dimensional cell cultures or three-dimensional spheroids at once. This fitting
did not take into account the individual characteristics of the subjects, so the
estimated parameters only provided information about the population average
[15, 16, 32].

3 Methods
3.1 Tumor Cell Culture and Spheroid Formation

The cell line used during our work was isolated from Brcal-/-, p53-/- mouse
mammary tumors and converted into a stable cell line by researchers from the Drug
Resistance Research Group of HUN-REN Research Centre for Natural Sciences.
The cell line has a mesenchymal origin and morphology but has a confirmed
epithelial background. It divides rapidly, is characteristic of tumor cells, has a
doubling time of 34 hours, and exhibits increased motility and genetic instability
[33]. The researchers from the HUN-REN Drug Resistance Research Group
transfected the genome of the cell line with the green (GFP) fluorescent protein
gene, making the cell cultures expressing GFP protein traceable and easier to study
with fluorescent microscopy.

To generate spheroids, cells were initially plated in a Poly-HEMA coated 96-well
U-bottom plate, with either 5000 or 10000 cells per well. Poly-HEMA, a polymer
known for reducing surface adhesion in cell cultures, promotes cell-to-cell adhesion,
leading to spheroid formation.

3.2 Cytotoxicty Measurements

Cytotoxicity measurements were taken with the help of JuLI™Stage. The JuLI™
Stage Real-Time CHR (Cell History Recorder) is a fluorescence microscope that
can be placed in an incubator and is capable of recording real-time and timelapse
recordings of cell cultures, thus enabling their kinetic monitoring [34]. Since it
has an automated focus, it is possible to record treatments lasting several days,
according to which it records the cell cultures at specific intervals. JuLI™Stage
also has an image analysis software capable of recognizing and counting cells based
on recordings, so time series measurements of cytotoxicity treatment can also be
performed.

After 48 hours of incubation of the cells, the spheroid formation was done and
doxorubicin treatment was applied. Doxorubicin is a cytotoxic anthracycline
glycoside compound used as a chemotherapy agent, widely used to treat breast
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Table 2
Doxorubicin treatment concentration of spheroids belonging to each ID. The ID-s refer the mean values
of B, C, and D rows of each column from 2 to 11 in a 96-well plate.

Label ID | Drug conc. (UM)

BCD2 10
BCD3 3.33
BCD4 1.11
BCD5 0.370
BCD6 0.123

BCD7 0.0412
BCD8 0.0137
BCD9 0.00457
BCD10 | 0.00152
BCD11 |0

carcinoma, Kaposi’s sarcoma, lymphoma, acute lymphoblastic leukemia, and
bladder cancer [35]. The drug was administered using the same serial dilution (10;
3.33; 1.11; 0.370; 0.123; 0.0412; 0.0137; 0.00457; 0.00152; 0 uM) for both 5000
and 10000 initial cell numbers cultures. Data collection was performed over five
days using an automated microscope.

The cytotoxicity measurement was conducted in 96- well plates with rows from A
to H and columns from 1 to 12. The BCD labels refers to the average values of
spheroids treated with the same concentration of doxorubicin in the wells of the
B, C and D rows. Drug concentrations were the same in the same column of each
row, in descending order from column 2 to 11. The concentrations for each label
are summarized in Table 2 The experimental setup was the same for both spheroids
with 5000 and 10000 starting cells/well, so the labels of the samples are the same.

3.3 Mixed-effect Model Fitting

The images taken during the cytotoxicity measurement were evaluated using JuLI™
Stage software, called JuULI™STAT. The obtained data was the change of the
confluence value of the fluorescence intensity of the area of the image taken from
the given well as a function of time. The NLME tumor model was fitted on these
experimental data.

The goodness of fit was determined by calculating the individual residual error
(IRES), the error between the individual predicted values (IPRED) and the measured
data (DV)

IRES = DV —IPRED. ©6)

Initial parameter values need to be defined for the parameter estimation. We used
the parameters estimated based on the previous fits [15, 16, 32] on the occasion of
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Table 3
Initial parameter values of the model fit on the data of spheroids with 5000 and 10000 initial cells.

Parameter | 5000 in. cells | 10000 in. cells
a In(0.05) In(0.45)

n In(0.095) In(0.48)

b In(0.04) In(0.01)
EDs In(4.48) In(4.48)

X0 In(1.5) In(2.5)

the first run of the NLME fitting. Then, we searched for the best initial values by
iteration based on the minimization of the IRES values. The best fit is found at the
smallest IRES value, we estimated the model parameters based on this fit.

Table 3 summarizes the initial parameter values in both cases of the fit on 5000 and
10000 initial cell/spheroid datasets.

The fitting results were analyzed in Matlab, while the nonlinear mixed-effects
model fitting was carried out in RStudio using the nlmixr2 package. This package
is widely used for fitting nonlinear mixed-effects (NLME) models, particularly
for pharmacokinetic (PK) and pharmacodynamic (PD) modeling, but is also
applicable to other mixed-effects models [36]. SAEM (Stochastic Approximation
Expectation-Maximization) estimation algorithm was applied which is a popular
method for fitting nonlinear mixed-effects models, especially in pharmacometrics.
The SAEM algorithm relies on an iterative process involving the estimation of
distributions and data evaluation.

3.4 Tumor Model Tailored to Spheroid Cultures

The minimal mathematical model of tumor growth detailed in Subsection 2.1 was
tailored for fitting on in vitro datasets. During the cytotoxicity measurements
only the fluorescent intensity of the living cells is measured, we have not got any
information about the dead tumor cells, thus (2) is not definable. Furthermore, the
drug was added to the system at the beginning of the cytotoxicity measurement, no
other drug was added and it was not depleted from the wells during the experiment.
Therefore the concentration of the drug (x3) was not changing and (3) and (4)
become invalid during describing the in vitro measurements. Hence the minimal
mathematical model of in vitro tumors consists of only the differential equation
describing the velocity of tumor proliferation and x3 was fixed for the measurements
of one individual spheroid. As the dead cells were not measured, the necrotic rate
(n) of the living cells is not identifiable. For this reason, a new parameter (¢) was
employed which is the difference between the the growth rate a and necrotic rate n,
i.e., ¢ = a - n. First, we carried out the parameter estimation of the model

X1X3

X = X —b—-—7-—.
! 9x1 EDsy+x3

(7
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Table 4
The parameters of the modified model

Parameter | Description Unit
a Growth rate 1/h
n Necrotic rate 1/h
0] a—n 1/h
b Inhibition rate 1/h
K Hill coefficient -
EDs Median effective dose ~ uM

The results of this fit are detailed in Section 4. During the fitting, it was revealed
that at concentrations below 10uM, doxorubicin does not exert a toxic effect on
the spheroids. The decrease in fluorescence is primarily the result of drug-free
cell necrosis, potential phototoxicity, or the weakening of the fluorophore. This is
supported by the parameter values obtained during the fitting summarized in Table

The design of the cytotoxicity protocol and concentration dilution series of the drug
is based on the two-dimensional in vitro cell experiments, where concentrations
lower than 10uM were also effective. Since during our research, it is also
important to see how the three-dimensional spheroids react to the chemotherapy
agent compared to the two-dimensional cultures, we used this same dilution
series. In order to obtain more detailed information about the effect of the drug
at these concentrations, we also estimated the Hill coefficient value during the
parameter estimation. Since drug effects are assumed to vary non-linearly with
concentration, the Hill function can be used to more accurately describe nonlinear
dose-response curves in the study of anticancer drugs. Thus, the phenomenon
that the effect increases slowly at lower concentrations, rapidly at intermediate
concentrations, and then reaches a plateau phase (saturation) at high concentrations
can be mathematically modeled. Thus, our final equation tailored to the in vitro
spheroids is described as follows:

: gx1 —b X3 (8)
X = X1 — bX _— ).
! PP EDE af

The Hill coefficient (k) is a key parameter in dose-response curves that controls
the slope or dose sensitivity of the curve. This parameter basically describes how
sensitive a biological system (e.g. cells, receptors) is to changes in the concentration
of the active substance. In this work we are investigating which initial Hill
coefficient results better fit, thus which estimated Hill coefficient parameter value
better describes the reality.
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4 Results

During parameter estimation, NLME fitting can help account for the characteristics
of the population’s fixed effects and the random effects among individuals
simultaneously. The fitting was first carried out using the growth model (7), and the
results of the parameter estimation based on this can be found in Table 5. Parameters
¢ (difference between a growth rate and n necrotic rate, the Hill coefficient k,
the drug efficiency rate b, the median effective dose EDsqy and the initial value
of fluorescent intensity xjp were estimated. It can be seen from the parameters
estimated from fitting to (7) that the parameters of the individuals treated with the
highest concentration completely distort the parameter averages. This is due to the
fact that lower doxorubicin concentrations did not achieve a suitable toxic effect
on the spheroids. The decrease in fluorescence of the spheroids indicates drug-free
necrosis, phototoxicity, and a decrease in the emission of the fluorophore.

The given concentration series is based on the ICsy value of two-dimensional
tumor cell cultures, however, we would like to model the effect of the drug on
three-dimensional tumor spheroids and estimate the model parameters. Thus, we
changed the Hill coefficient, which was initially considered to be 1 in (7), and
estimated its value during fitting. This concession from the parameters better
described the response of the spheroids to the cytotoxicity measurement, the
enormous variability not visible in the estimated toxicity rate (Tables 6-9). The
estimated Hill coefficients take on strikingly high values in the case of fitting
on measurement data of the initial cell number of 5000 spheroids (Table 6).
As Kk increases, the response curve of the spheroids to the drug concentration
becomes progressively steeper. At such high values, it describes a step function
characteristic of a switch. This supports the fact that up to a certain concentration
(10uM), doxorubicin does not exert any toxic effect on the spheroids, but from
that concentration onward, it almost completely destroys them. Fitting on the
cytotoxicity measurement values of spheroids with an initial cell number of 10000
has not caused that high estimated x values as it is visible from Table 8. This might
be due to the higher size of the spheroid and slower drug penetration.

In order to accurately determine the median effective dose (£ Ds() of doxorubicin for
spheroids of this size (with an initial cell number of 5000 and 10000), fine-tuning the
concentrations between 10 and 3.333uM is necessary. The median effective dose
is located somewhere between these two concentrations. However, based on these
results, it can also be established that three-dimensional tumor spheroids respond
differently compared to two-dimensional cell cultures and that the half-maximal
inhibitory concentration (/Csg), which is often confused with EDsq, and primarily
determined for two-dimensional cells, cannot be appropriately used for spheroids
and more complex systems.

In Figures 1-2, the model fitting results are shown. Blue curves represent the
measured fluorescence intensity values and red curves mean the predicted values
of the NLME fit. Figure 1 shows the fitting results for the cytotoxicity measurement
values on spheroids with an initial cell number of 5000, while Figure 2 shows the
fitting on the cytotoxicity measurement values on spheroids with an initial cell count
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Table 5
Estimated individual parameter values. A minimal tumor model tailored for spheroids was fitted on
cytotoxicity measurement values with an initial cell number of 10000, and initial Hill coefficient value
K=1.

ID ¢ K b EDs X10
BCD2 -0.022242  1.615442  0.005493  4.268093  2.376880
BCD3 -0.003622  2.332291  0.003432  4.033649  2.164374
BCD4 -0.003120  1.785417  0.001726  4.457707  2.510355
BCD5 -0.004793  1.152972  0.002486 3.945547 2.163662
BCD6 -0.005805  1.595366 0.007443  4.181208  2.107547
BCD7 -0.004874  1.849497  0.006191  4.267777  2.820805
BCDS8 -0.004073  1.633602 0.001022  3.953480  2.196299
BCD9 -0.006126  1.855212  0.002431 4.180171  2.468672
BCDI10 | -0.005403 0.934836 0.001847 4.225823  2.104968
BCDI1 | -0.008070 0.426864 0.005387 4.191411 2.966651

Table 6
Estimated individual parameter values. A minimal tumor model tailored for spheroids was fitted on
cytotoxicity measurement values with an initial cell number of 5000, and initial Hill coefficient value
K> 1.

ID ¢ K b EDs X10

BCD2 -0.004754  14.858237 0.081815 6.145350 2.055063
BCD3 -0.003575 19.386723  0.070870  6.183408  1.609457
BCD4 -0.002633  13.651719 0.071108  6.188163  1.738363
BCD5 -0.004654 10.899192  0.069790 6.186015 1.572802
BCD6 -0.007163  2.479012  0.068318 6.172896  2.063725
BCD7 -0.006831  9.709235  0.070182  6.140002  1.870437
BCD8 -0.003260 11.176856  0.069749  6.157441 1.688781
BCD9 -0.003635 11.598749 0.071722  6.158471  1.495652
BCD10 | -0.004313 10.309986 0.070628  6.146058  1.523355
BCDI11 | -0.004447 11.455961 0.070667 6.166018 1.660183

of 10000. Both Figures 1 and 2 are divided into ten subplots. Each subplot shows
the results of individual tumor spheroids, treated with different concentrations of
doxorubicin from 10 uM (left upper subplot) to 0 uM (right bottom subplot).
According to Figures 1 and 2,the individual predicted values gained from the fitting
of the NLME model closely approximated the real measured values.

The goodness of fit was examined using the individual residual errors (IRES), which
is the difference between the predicted and measured values at each measurement
point. Table 10 contains the mean and median values of the IRES in all cases. The
IRES values were plotted as a function of time, which can be seen in Figures 3-4.
The IRES between the predicted and measured value is smaller if the blue dot is
closer to the horizontal line of zero, thus the fitting was better.
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Table 7
The mean, median, and standard deviation (STD) of the estimated parameters. A minimal tumor model
tailored for spheroids was fitted on cytotoxicity measurement values with an initial cell number of 5000,

with Hill coefficient k¥ > 1.

Parameter ‘ Mean Median STD

¢ 0.0045 0.0044  0.0014

K 11.5526 11.5526 4.0711

b 0.0715 0.0706  0.0036

EDs 6.1644 6.1622  0.0169

X10 1.7278 1.6745  0.1957
Table 8

Estimated individual parameter values. A minimal tumor model tailored for spheroids was fitted on
cytotoxicity measurement values with an initial cell number of 10000. Hill coefficient k¥ > 1

ID q) K b EDs X10

BCD2 -0.022242  1.615442  0.005493  4.268093  2.376880
BCD3 -0.003622  2.332291 0.003432  4.033649 2.164374
BCD4 -0.003120  1.785417 0.001726  4.457707  2.510355
BCD5 -0.004793  1.152972  0.002486  3.945547 2.163662
BCD6 -0.005805 1.595366 0.007443  4.181208  2.107547
BCD7 -0.004874  1.849497 0.006191  4.267777  2.820805
BCD8 -0.004073  1.633602  0.001022  3.953480  2.196299
BCD9 -0.006126  1.855212 0.002431 4.180171  2.468672
BCDI10 | -0.005403 0.934836 0.001847 4.225823  2.104968
BCD11 | -0.008070 0.426864 0.005387 4.191411 2.966651

Table 9

The mean, median, and standard deviation (STD) of the estimated parameters. A minimal tumor model
tailored for spheroids was fitted on cytotoxicity measurement values with an initial cell number of

10000. Hill coefficient x > 1

Parameter ‘ Mean  Median STD

(] 0.0068  0.0051 0.0053

K 1.5181 1.5181 0.5167

b 0.0037  0.0030 0.0021

EDs 4.1705 4.1863  0.1494

X10 2.3880 22866  0.2908
Table 10

Mean and median of individual residual errors between the predicted and real measurement values.

Fitting Mean IRES Median IRES
5000 in. cells (k=1) -0.0048 -0.0069
5000 in. cells (x >1) -0.0213 -0.0067
10000 in. cells (k=1) | —4.3302-10~%  4.4330-10~%
10000 in. cells (x >1) -0.0054 2.2790-1075
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Fitting results for the cytotoxicity measurement values on spheroids with an initial cell number of 5000.
A tumor growth model with a higher Hill coefficient (x > 1) was fitted on the dataset.
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Figure 2

Fitting results for the cytotoxicity measurement values on spheroids with an initial cell number of
10000. A tumor growth model with a higher Hill coefficient (k > 1) was fitted on the dataset.
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Figure 3

Individual residual errors of the fitted predicted values and the cytotoxicity measurement values on
spheroids with an initial cell number of 5000. A tumor growth model with a higher Hill coefficient
(x > 1) was fitted on the dataset.
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Individual residual errors of the fitted predicted values and the cytotoxicity measurement values on
spheroids with an initial cell number of 10000. A tumor growth model with a higher Hill coefficient
(x > 1) was fitted on the dataset.
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Conclusion

The aim of this study was to present and apply a nonlinear mixed-effects (NLME)
model based on in vitro data, allowing for more accurate predictions of tumor
growth dynamics and responses to drug treatments. The cytotoxicity measurements
performed on tumor spheroid models demonstrated that the mixed-effects model
successfully fit the real measured values while accounting for the variability
between individual cell lines. Throughout the study, the growth dynamics of
spheroids treated with different concentrations of doxorubicin were analyzed.
Although, in order to accurately determine the median effective dose (EDsq) of
doxorubicin for spheroids, it is important to fine-tune the concentrations within
the range of 10 to 3.333 uM. These findings also highlight that three-dimensional
tumor spheroids behave differently from two-dimensional cell cultures and the
half-maximal inhibitory concentration (ICsp), which is primarily measured for
two-dimensional cells, is unsuitable for spheroids or more complex in vivo systems.
The results indicated that the model could accurately predict the response of
tumor cells to chemotherapy treatments. This confirms that the application of
NLME models can be valuable in optimizing therapeutic strategies, allowing for
consideration of individual tumor characteristics. Overall, the use of mixed-effects
modeling and 3D tumor spheroids represents a promising approach for designing
personalized cancer treatments. This method can help maximize treatment efficacy
while minimizing toxicity and side effects, ultimately improving patient survival
rates and quality of life in the long term.
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