
Acta Polytechnica Hungarica Vol. 2, No. 10, 2024

Chemotherapy optimization and patient model
parameter estimation based on noisy
measurements
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Abstract:

The application of the achievements of mathematics and informatics greatly helped the devel-
opment of medicine. Designing personalized therapies using different algorithms is crucial,
especially during chemotherapy, to minimize the toxic effects on the patient and avoid resis-
tance, thus ensuring a higher quality of life. In this work, we present an LSTM neural network
that can quickly and accurately estimate the parameters of the tumor dynamics model based
on noisy virtual patient data. In addition, we present a genetic algorithm designed for ther-
apy optimization, which is able to predict the most appropriate personalized therapy based
on the estimated parameters. In this work, we focus on finding the optimal hyperparameters
of this genetic algorithm. Optimizing the hyperparameters is of fundamental importance in
designing the best possible personalized therapy.

Keywords: LSTM recurrent neural network; genetic algorithm; therapy optimization; noise
model; parameter estimation

1 Introduction
Cancer is a highly complex disease with different symptoms based on the location
of the tumor and its progression. Besides the malignant tumor cells, the tumor con-
sists of several other cell types and biological factors such as immune cells, cancer-
associated fibroblasts, endothelial cells, pericytes, and various additional tissue-
resident cell types. This heterogeneous system, together with the characteristics
of the patients, leads to difficulties in cancer treatment [1–3].

With the development of science, several strategies were invented to cure cancer, for
instance, radiotherapy, chemotherapy, surgical excision, immunotherapy, or the Ro-
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tational Field Quantum Magnetic Resonance (RFQMR) method. The main problem
with these methods is that they are designed for the average patient and several are
not available because of economic reasons. Inventing new curing methods could be
money- and time-consuming as well, thus developing these well-known therapies is
crucial to achieve more effective optimal treatments [4].

Informatics and mathematics in the last decades have been widely used in cancer
treatment optimization. The dosing regimens and the optimal therapy can be ex-
amined with cytotoxicity models that describe the effect of chemotherapeutics on
proliferation, cell signaling models pinpointing transition rates for drug targeting,
and tissue scale models predicting tumor responses based on patient-specific imag-
ing data [5]. Mainly, numerous researchers create mathematical models to describe
the processes of pharmacokinetics and pharmacodynamics [6]. Subsequently, these
researchers employ computational techniques to solve these models and determine
the optimal chemotherapy. This plan typically outlines the specific combination,
frequency, and dosage of drug administration [7]. Various algorithms are designed
to determine the parameters of these models based on the characteristics of the pa-
tients. With the appropriate parameters, the clinical outcome can be predicted and
the optimal therapy is definable.

Parameter identification problems can be established with neural networks faster
than with the traditionally used differential equation solvers [8–10]. Here we carry
out parameter estimation using Long Short-Term Memory (LSTM) neural networks.
LSTM is designed to overcome the vanishing gradient problem of traditional recur-
rent neural networks (RNNs) which makes its architecture preferable for parameter
estimation [11]. However, the usage of LSTM for parameter estimation related to
tumor dynamics is rarely found in the literature. In Section 4 we propose a novel
framework of parameter estimation of the tumor dynamics model detailed in Sec-
tion 3.1. For network training purposes, we generated noisy measurement values.
Due to the small amount of available mouse experiment data and the inaccuracy of
measuring tumor volume, modeling the noise is necessary while simulating virtual
patients. Subsection 3.2 discusses the method of noise modeling.

By selecting the correct parameters, it becomes possible to solve the optimization
problem of personalized therapy. In this work, we focus on genetic algorithms uti-
lized for therapy optimization. The genetic algorithm proposed in this work (Section
5) is based on metronomic chemotherapy principles [12]. Here, we implement the
determination of the optimal hyperparameter of the genetic algorithm to achieve the
most appropriate chemotherapy.

2 Related Works
Long Short-Term Memory (LSTM) networks are often preferred over simple feed-
forward neural networks for parameter estimation of dynamical systems due to their
ability to capture and model temporal dependencies, which are crucial in dynamic
systems. In these systems, the current state often depends on past states. Also,
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LSTM networks tend to be more robust on noisy and incomplete data. They can
learn to filter out irrelevant information and focus on the most relevant aspects of
the input sequences. Moreover, they can handle different lengths of time series
inputs, due to the flexible architecture, while the traditional feed-forward networks
typically require fixed-size input vectors [13, 14]. LSTM is broadly used in cancer
research, Wu et al. implemented LSTM models to predict cancer risk when trained
using a large but incomplete real-world dataset of tumor marker values. [15]. In the
work of Wang et al., LSTM was used to predict respiration motion during real-time
tracking of thoracic-abdominal tumors [16].

LSTM networks have been employed to address the inverse problem posed by differ-
ential equations and have found application in parameter estimation across various
fields [17]. Zou et al. proposed an LSTM neural network to estimate the parameters
of the pharmacokinetics of microvasculature and perfusion in normal and diseased
tissues [18]. However, only a limited number of studies have utilized the LSTM
approach for parameter identification in the context of tumor growth models [19].
In the work of Guo et al. LSTM was designed to overcome the inverse parameter
estimation problem of partial differential equations generating simulated growth of
low-grade gliomas with different clinical parameters [20].

Our preliminary works consist of parameter estimation of real measurement data
based on mouse experiments employing neural networks trained on in silico vir-
tual patient measurements. This preliminary study results suggest that the estab-
lished model is applicable as an unconstrained optimization method for parameter
fitting [21]. In other preliminaries, we introduced a method to identify potential
parameter ranges and initial parameter values by generating an artificial time series
of tumor volumes in a simulated environment. Then, Self-Organizing Maps were
applied to categorize these time series into distinct clusters. The corresponding asso-
ciated parameters were determined by identifying clusters exhibiting similar tumor
dynamics [22].

In this work, we aim to create an LSTM network to estimate the parameters of the
mathematical model describing tumor dynamics [23]. We trained the neural network
with previously generated noisy measurement values. During preclinical experi-
ments, tumor volume measurements are usually carried out with a digital caliper,
which causes inaccuracy in volume values. Modeling this measurement noise is
significant while generating in silico dataset [24], and also during more precise pa-
rameter estimation [21, 25–29] and therapy optimization [30–34].

Once we estimate the model parameters based on the noisy measurement data of the
patients, the optimal personalized chemotherapy can be designed. This search or op-
timization problem has a fairly large search space and many independent variables.
To solve such a problem, there is a wide variety of algorithms we can use [35].
Here, we achieve this with the help of genetic algorithms. The genetic algorithm
is a global optimization technique frequently used in engineering problems due to
its robustness and flexibility. The genetic algorithm aims to mimic the Darwinian
theory of evolution happening in nature.

The application of genetic algorithms to therapy optimization is extensive [36]. Yu
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et al. achieved successful optimization in the design of stereotactic radiosurgery
and radiotherapy. A self-contained system was introduced that integrates decision-
theoretic guidance with a genetic algorithm to achieve optimization [37]. As early
detection of cancer improves the outcome of therapy, applying genetic algorithm-
partial least square-discriminant analysis system to analyze Raman spectroscopy to
differentiate between a normal and dysplastic cervix offers valuable results con-
ducted by Duraipandian et al. [38]. Predicting the prognosis of cancer offers infor-
mative factors affecting the appropriate therapy. Bozcuk et al. proposed a genetic
algorithm-based method for comparison of different data mining methods to predict
the outcome of cancer patients after hospitalization [39]. In our previous work, we
have shown that the algorithm is capable of optimizing therapy for individual pa-
tients, as well as a whole group of patients with similar parameters [33, 40]. The
genetic algorithm proposed in this work aims to create chemotherapies using the
smallest dose possible to avoid the maximum tolerated doses (MTD) method.

3 Modeling tumor growth and generating noisy mea-
surements for training data

3.1 Mathematical model of tumor growth

In order to generate training data for the LSTM network, we need to simulate tumor
growth [28]. Tumor volume measurements make up the largest part of the training
data. Since there are few tumor measurements from real experiments available for
training the network, we have to multiply the number of training samples based on
real measurements. For the simulation, we use a model described by a system of
differential equations with four state variables, which models the dynamics of the
tumor and the drug [41]:

ẋ1 = (a−n)x1 −b
x1x3

ED50 + x3
, (1)

ẋ2 = nx1 +b
x1x3

ED50 + x3
−wx2, (2)

ẋ3 = −(c+ k1)x3 + k2x4 +u, (3)
ẋ4 = k1x3 − k2x4, (4)

where the state variables represent different time functions. The time function of
the live tumor volume is denoted by x1 [mm3], and the time function of the dead
tumor volume by x2 [mm3]. The flow of the drug between blood and tissues can
be described with a two-compartment model, so x3 [mg·kg−1] is the time function
of the drug level in the central compartment (blood), and x4 [mg·kg−1] is the time
function of the drug level in the peripheral compartment (tissues).

The input of the system is the u [mg·kg−1] injection rate. The input is impulsive
since the change in the drug level due to the injection takes place in a very short
time compared to the time constants of the system. Therefore, we can consider it as
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Parameter name Unit Min Max

a tumor growth rate coefficient day−1 0.24 0.68
b drug efficiency rate coefficient day−1 4.88 30.00
n necrosis rate coefficient day−1 9.89 ·10−3 6.4 ·10−2

w
washout rate coefficient of dead tu-
mor cells day−1 6.99 ·10−2 0.10

ED50 median effective dose of the drug mg ·kg−1 1.84 2.34
c clearance of the drug day−1 1.82 1.82

k1

flow rate coefficient of the drug
from the central to the peripheral
compartment

day−1 14.01 14.01

k2

flow rate coefficient of the drug
from the peripheral to the central
compartment

day−1 136.28 136.28

Table 1
Name of the parameters of the model with units, minimum, and maximum value.

if there is a discontinuity in x3 at time tk, the size of which is dk [23]:

x3(t+k ) = x3(t−k )+dk. (5)

The output of the system is denoted by y, which is the volume of the total tumor,
i.e., the sum of the living and dead tumor volume:

y = x1 + x2. (6)

In reality, the tumor volume of the experimental mice is estimated using an approx-
imate formula [42, 43]:

V =
π

2
(width · length)3/2 . (7)

Since the measurements are performed with a digital caliper, we estimate the volume
from the width and length of the tumor based on (7). The approximate formula
assumes an ellipsoid shape for the tumor, which is not completely true in reality. The
shape of the tumor is amorphous and, therefore, difficult to measure. Measurement
noise is unavoidable when measurements are taken with a digital caliper and the
approximation formula also contains measurement noise. The tumor can appear in
hard-to-reach places on the body of animals, and the skin of animals often thickens
during treatments [44].

Since real measurements are noisy, the LSTM is also trained on noisy measure-
ments. In order to generate the most realistic training data, we use equations (1)-(4)
to simulate the behavior of the tumor and generate noise for the resulting total tumor
volumes (6) with the help of a noise model we prepared (detailed in Subsection 3.2).

The parameters of the model are summarized in Table 1. These parameters are
unique for each patient. In our case, the estimation of these parameters determines
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how effective the individual therapy will be. We provide an initial estimate of the
values of the parameters with the LSTM network. When generating the training
data, we create the parameters using the minimum and maximum values determined
by model fitting.

The pharmacokinetic parameters were acquired in a separate experiment specifically
performed to investigate the drug pharmacokinetics. The same parameters c, k1, and
k2 are used for all the patients, which were the results of the parametric identification
carried out on the experimental data.

3.2 Generating noisy measurements for LSTM training
To generate the training data, we simulated the tumor volumes using (1)-(4), so we
needed patient parameters for this simulation. These parameters were generated
based on Table 1 using a normal distribution between the minimum and maximum
values. Based on the current experimental protocol, experimental mice receive in-
jections twice a week. Accordingly, one virtual mouse received an injection twice
during the simulation. The doses were randomly generated between 0 mg/kg and 8
mg/kg according to the experimental protocol, also using a normal distribution.

During our experiments, the tumor is measured with a digital caliper, and the vol-
ume of the tumor is approximated based on the formula (7). However, we know that
our measurements are noisy. If we know the measurement noise, it significantly
helps the estimation of the parameters and makes neural networks more precise.
Therefore, the modeling of measurement noise is essential in our research, since a
more punctual knowledge of the parameters improves the optimization of the ther-
apy [44].

The most accurate measurement tool is currently the pet MRI, but these measure-
ments on small animals are complicated, as the animals must be anesthetized to use
this tool. This is expensive and causes stress to the body of the animals, which also
affects the experimental results, so in practice, the most common tool for measur-
ing tumors is the digital caliper, which we use during our experiments. We have
created a noise model that can model measurement noise in preclinical measure-
ments, based on our current knowledge and data. The model was created based
on MRI measurements from past cooperation and the corresponding digital caliper
measurements [42]. The modeling process can be generalized even when MRI mea-
surements are unavailable.

This noise model can be described based on Weibull distribution [44, 45] with a
random variable x:

C(x,A,B,y, f ,g) =


B
A

( x
A

)(B−1) exp
(
− x

A

)B · 1
f√y+g , if x ≥ 0

0, if x = 0
(8)

We denoted this model with C. The parameters A and B are the scale and shape
parameters of the Weibull distribution. The parameter y still represents the total
tumor volume. The f and g are the parameters of a transformation that we used for
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noise whitening. The used noise whitening transformation is

Φ3(y) = f
√

y+g, (9)

where f = 1.0032 and g = 107.0034. These values were obtained by parameter tun-
ing. We needed the noise whitening because we fitted different probability distribu-
tions to the measurement noise. We fitted a total of 18 different probability distri-
butions in our previous work [44] and tested the goodness of fit with the Anderson-
Darling statistical test [46, 47]. However, the distributions did not take into account
the fact that the measurement noise depended significantly on the size of the tu-
mor being measured. We have already confirmed this finding in our previous work.
Using the inverse of transformation (9) and the Weibull Distribution, the noise can
be generated for the in silico measurements, which can be used to generate noisy
measurements for neural network training.

The task of the neural network is to estimate the unique parameters of the patients
based on noisy tumor volume measurements and the injected doses. A total of
100000 virtual mice tumor measurements and corresponding dose values were con-
nected to the input of the network. The 100000 training samples were generated
based on the real experimental protocol. Equations (1)-(4) and the parameters in
Table 1 were used to simulate the total tumor volume. The parameters were ran-
domized and generated with a normal distribution [48]. After that, the noise was
generated for the total tumor volumes based on model (8). The doses were gener-
ated based on the normal distribution also. The composition of 10000 virtual mice
consists of 100 different treatments (doses) of 1000 parameter sets (thus, we treated
1000 different mice in 100 ways).

Figure 1 illustrates a training sample. In the figure, blue circles indicate a simulated
tumor volume and black circles indicate possible noisy points. When we trained
the network, one measurement point had one noisy counterpart. The network was
trained only from noisy measurement points and the doses. The figure illustrates
what kind of noise can be generated for a simulated measurement using the noise
model. The gray area shows the noise interval.

Figure 1 clearly shows that the generated noise is larger in the case of a small tumor
volume and it is in a smaller interval in the case of a larger tumor volume. We have
already proven this in our preliminary work [44].

4 Parameter estimation of the model with LSTM
Determining the parameters in the model (1)-(4) is crucial for designing optimal
therapies. The parameters are usually found using search algorithms, and these
processes often converge to local optima. One of our objectives is to broaden the
search space by training a neural network capable of predicting initial parameter
values closer to the actual ones. Additionally, this network can serve for standalone
parameter identification purposes.
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Figure 1
An example of a training sample (virtual patient), is where the simulated tumor volume measurements
are indicated by the blue curve, the specified measurement points are shown by the blue circles and the

noise generated for the measurement points is shown by the black circles. (The figure is illustrative,
when the network was trained, one measuring point was accompanied by one noisy point.)

To train the neural network, in silico treatments are simulated using the tumor
model. The generation of time series was done by solving numerically the differ-
ential equations as described in Subsection 3.2. The model inputs are the generated
100000 time series of the measurements of tumor volumes and the registered doses.
The output of the model is the corresponding parameters.

Our aim is to predict the parameter values. One problem is that the available mea-
surements are sparse, the tumor measurements can not be measured each day, so the
network has to learn this sparsity. To simulate the sparsity, we removed the mea-
surements on every even day and removed the injected drug values from every odd
day. To overcome the sparsity problems, we used the Masking feature of the LSTM
network. We used for training the first 5 days of the time series.

From the generated dataset, 100 data was eliminated, for final evaluation purposes.
Then the remaining dataset is used for training the LSTM model. It was split into
training and testing datasets with a 80 : 20 ratio. These are the X ∈ RN×T×F inputs
of the LSTM model, where N is the number of available time series. The T is the
sequence length which is chosen to be 5, and F is the number of features, which
is 2, because we used both the tumor volumes and the administered drug doses as
inputs. The output of the model is P∈RN×L, where L is 5, the number of identifiable
parameters.

The LSTM recurrent neural network fundamental unit is the LSTM cell [49]. As the
long short-term memory name implies, it can also use previously processed things
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for prediction. It consists of combinations of input-gate, memory-gate, and forget-
gate. The forget gate, a key component, decides what information to discard from
the cell state, allowing the model to selectively retain relevant information. The
input gate updates the cell state with new information by determining what values
to add. In our case, the objective was to enhance the retention of previously seen
parameter values.

In the presented model, the sequences xt with a length of T are processed consec-
utively, it is an LSTM unit input. An LSTM input consists of an input gate (it ), a
forget gate ( ft ), and an output gate (ot ). One unit of an LSTM can be described as:

it = σ(Wixt +Uiht−1 +bi), (10)
ft = σ(Wf xt +U f ht−1 +b f ), (11)
gt = tanh(Wgxt +Ught−1 +bg), (12)
ot = σ(Woxt +Uoht−1 +bo), (13)
ct = ft ⊙ ct−1 + it ⊙gt , (14)
ht = ot ⊙ tanh(ct), (15)

(16)

where ct is the cell state vector, while ht is the output vector. W and U are weight
matrices, while b is the bias vector. The network aims to adjust these matrices that
way to learn to predict the output during training. The ⊙ means Hadamard product
(element-wise product) between matrices. The σ denotes the sigmoid function,
while tanh is a hyperbolic tangent function [50].

The Keras Tensorflow API was employed to construct the network [51]. The net-
work architecture comprises an input layer, a masking layer, and three LSTM layers
utilizing the Relu activation function, each with 50 neurons. The output is a linear
layer. Nadam optimizer was used during training when the learning rate was set to
0.01 and the batch size was adjusted to 64. The metric for evaluation was a mean
squared error. During training, EarlyStopping method was used. EarlyStopping
stops the training when the loss has not improved for a given number of iterations.

5 Therapy generation with genetic algorithm
If we have parameters used as virtual patient parameters (Section 3.2) and a math-
ematical model capable of describing tumor dynamics based on the injected doses
(Section 3.1), we can generate an optimal therapy for the virtual patients.

As mentioned in Section 2, a previously created genetic algorithm can be used to
generate optimal therapy for the virtual patient. This genetic algorithm treats the po-
tential solutions to the given problem as the individuals in a virtual population and,
through many generations, it ”breeds” an optimal solution using different genetic
operators. In the case of chemotherapy optimization, the solutions to the problem
are the treatments that can cure the patient, with as little injected doses as possible,
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to minimize harmful side effects and reduce the risk of developing drug resistance.

The fitness function determines the objective of the optimization, so it has to include
the injected doses and the tumor volume. The used fitness function can be written
as:

F = R1

N

∑
i=1

(
ϕi

Ymax

)2

+R2

N

∑
i=1

(
Ui

Umax

)2

+W1

N

∑
i=1

Ui +W2Yend , (17)

where ϕi is given by:

ϕi =

 Yi −Yre f , if Yi ≥ Yre f ,

0, otherwise.
(18)

R1, R2, W1 and W2 represent weights, N is the number of genes each individual has
and is equals to the length of the treatment. Ui is the injected dose on day i, and
Yi represents the tumor volume on day i. Yre f is the reference tumor volume (the
algorithm will attempt to shrink the tumor volume of the patients under this limit),
and Yend is the tumor volume at the end of the treatment. Lastly, Umax and Ymax are
added to normalize the doses and the tumor values, respectively. The objective of
the function is to minimize the injected doses and the tumor volumes at the same
time. This value describes how effective the treatment is for the given patient [40].

The used selection operator is the tournament selection, which is proven to work
well on this problem [33]. The selection operator is responsible for selecting the
better solutions, discarding the rest, and creating the set of parents. This selection
randomly selects individuals into smaller groups, and from each group, the fittest
individual gets to inherit their genes:

P = argmax
Ei

F(Ei), (19)

where P is the selected individual, Ei denotes the individuals where Ei ∈ E, where
E is the set of the groups. The next step is the crossover function, which combines
two randomly selected parents into a new individual. For this, we use the Laplace
crossover [33, 40, 52]:

Ci =

 p1 +λ |p1 − p2|, if r < 0.5,

p2 +λ |p1 − p2|, if r ≥ 0.5,
(20)

where Ci is the newly created individual, p1 and p2 are parents, the r parameter
is a random number generated from uniform distribution and λ is a scaling factor
generated randomly from Laplace distribution [52].

The last step is the mutation operator, which prevents the search from converging
to local optima, by making random changes to the individuals. The used function is
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the Power mutation [40, 53]:

Mi =

 xi − s(xi −αi), if t < r,

xi + s(βi − xi), if t ≥ r,
(21)

where Mi is the mutated individual, xi is the ith gene of the individual, α and β are
the lower and upper bounds of the genes respectively, t is the scaled distance of xi
from the ith component of the lower bound (αi) of the doses and s is given by [53]:

s =Cg−η

i , (22)

where C is a constant scalar, η determines the slope and gi is the current generation.
This expression follows an exponential decay, initially having higher values, and as
the generations progress, this value decreases exponentially [40].

Using these functions, we can generate a treatment, however, for the best results,
we have to find the optimal hyperparameters of the genetic algorithm. Choosing
the wrong parameters can increase the runtime of the algorithm significantly, or
provide suboptimal solutions. The mutation rate is one of the most important hy-
perparameters, which determines a trade-off between local search and randomized
global search.

6 Results
6.1 Accuracy of the parameter estimator network

To evaluate the LSTM prediction performance, we tested the model on 100, pre-
viously eliminated data from the training dataset. First, we calculated the relative
estimation error compared to the true parameter values. In Figure 2, the relative
estimation error of the five different parameters can be seen. The central rectangle,
or box, represents the interquartile range (IQR), containing the middle 50% of the
data. The lower bound (lower quartile or Q1) is the median of the lower half of the
data set containing the errors, while the upper bound (upper quartile or Q3) is the
median of the upper half. The green line marks the median of the given errors (Q2).
These boxplots do not show the outliers, that are below and above the whiskers.

Since the first error metric did not provide representative information about model
performance, another metric was calculated during the evaluation. In the new error,
we divided the difference of parameters with the whole interval, that we used to
create the training data. The interval limits are the maximum and the minimum
value of the parameter in Table 1. In this case, the medians of the absolute values
of the percentage errors are 7.68, 5.71, 12.97, 10.57, and 12.01, respectively. The
model performance was the best in the case of b parameters. The real values are
shown with the predicted values in Figure 3. The model is most accurate when the
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The relative estimation error of the parameters (a, b, n, w, ED50) during evaluation. Each boxplot

contains discrepancies in the case of 100 test parameters.

two values are the same, so the parameters are located on the 45-degree line.
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The scatter plot of 100 test cases in case of b parameter. The true values are visualized as a function of

predicted parameters. The 45-degree line shows the punctual prediction.
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6.2 Results of hyperparameter optimization and therapy gen-
eration

To determine the optimal hyperparameters, we used a method called grid search,
which is simply an exhaustive search through a manually specified subset of the
hyperparameter space [54]. We used the hyperparameters from our previous work
as starting points and examined ranges of values around these points [33, 40]. Cur-
rently, the only stopping criteria for the algorithm is reaching the maximum number
of generations. On all the results, an elite rate of 4% is used, and this value is not
optimized.
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Figure 4
The change of runtime with different numbers of generations (left) and the change in fitness values with

different numbers of generations (right). We can see a linear increase in runtime as the generations
increase. The fitness value decreases as we increase the number of generations exponentially. In the

figures, the mutation rate is 0.1 and the population size is 150.

In Figure 4, we can see the effects of the number of generations on the runtime and
the fitness values. As we can see, the runtime has linear characteristics, increasing
as the number of generations increases. The fitness value, however, decreases expo-
nentially as the number of generations increases. After 80–100 generations, we only
get a minimal decrease in fitness value at the price of a steady increase in runtime,
so going higher is unnecessary.

In Figure 5 we can see the effects of the mutation rate. On the left, the runtime settles
at a fairly constant value (around 250), with moderate fluctuations. On the right, we
can see an exponential increase in fitness value with more noise, as we increase the
mutation rate. This was expected, since with higher mutation, more random changes
are applied to the population. The small fitness value at zero mutation rate suggests
that the problem space does not have many local optima, since the algorithm could
find a good solution without mutation. A mutation rate below 0.1 generally provided
the best solutions.

In Figure 6 the runtime and fitness value at different population sizes is shown. The
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Figure 5
The change of runtime with different mutation rates (left) and the change in fitness values with different
mutation rates (right). The runtime stays fairly constant with the change in mutation rate, however, the

fitness value increases with the increase in the mutation rate. In the figures, the generation number is 80
and the population size is 150.

0 100 200 300 400
Population size

0

100

200

300

400

500

600

R
un

tim
e 

[s
ec

]

Runtime

0 100 200 300 400
Population size

2.25

2.3

2.35

2.4

2.45

F
itn

es
s 

[-
]

#104 Fitness

Figure 6
The change of runtime with population sizes (left) and the change in fitness values with different

population sizes (right). Similarly to Figure 4, the runtime follows a linear increase, with the increase of
the population size. The fitness value on the right follows an exponential decay, having a minimum

value at around 300 population size. In the figures, the generation number is 80 and the mutation rate is
0.1.

runtime on the left increases linearly, just like in the previous case. The fitness value
follows an exponential decay, reaching a fairly low value after 270-300 population
size. In the literature, most researcher suggests that the population size should be
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dependent on the number of genes each individual has. In fact, a frequently used
value for population size is 1.5-2 times the number of genes [55, 56]. This value
is very close to our results but slightly lower. Of course, these values depend on
the problem and the search space itself, so examining the optimal hyperparameter
values is essential each time we apply a genetic algorithm to a new type of problem.

To test the parameters, we generated a therapy for a virtual patient. The result can
be seen in Figure 7. The therapy was generated using 80 as the maximum number of
generations, 0.1 as the mutation rate, and 300 as the population size. As we can see,
the therapy successfully shrinks the tumor volume during the 105-day treatment.
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Figure 7
The result of a therapy optimization for a virtual patient. The top upper contains the living (blue), dead

(red), and total (yellow) tumor volumes in time, the middle figure shows the concentration of the drug in
the blood of the patient, and the bottom figure shows the injected doses on the given days.

7 Conclusion
In order to generate the in silico measurements for the neural network training, the
real experimental setup must be modeled, where measurements were performed
with a digital caliper (we can only measure the width and length of the tumor) and
the tumor volume was estimated using the formula (7). However, the mathematical
model (1)-(4) we use generates tumor volume values, so the deviations resulting
from the measurement set-up are described with a noise model (8). The created
noise model enables the generation of realistic in silico measurements. In silico
measurements are essential for testing therapy and designing experiments and can
be used to train neural networks.

The parameters were estimated using a neural network. The estimation of param-
eters is crucial in designing a unique personalized therapy. The more precisely the
network estimates the parameters of the patient, the more effective therapy can be
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generated for the patient. In the case of parameter prediction, an LSTM recurrent
neural network has been trained to identify the parameters of the tumor model. The
trained model was the most punctual in the case of parameter b during evaluation.

Future plans include extending the input lengths and using the advantage of LSTM
networks, where not only sparse data but different lengths of inputs can be fed.
Moreover, another aim is to modify the architecture to use sequential inputs for
training. A punctual parameter predictor network can reduce the time of parameter
estimation. The trained LSTM neural network can quickly and accurately estimate
the parameters of the tumor dynamics model. The neural network was trained using
previously generated in silico measurement values with inherent noise.

In addition, we created a genetic algorithm specialized for therapy optimization.
In this research, the emphasis was also on fine-tuning the hyperparameters of the
genetic algorithm. Optimizing hyperparameters is key to developing the most ef-
fective personalized therapy. Based on the results, it can be concluded that genetic
algorithm optimization is a promising direction for setting up the optimal treatment
plan. Tuning the hyperparameters improves the effectiveness of the therapy. The
genetic algorithm administers much lower doses than a standard clinical therapy,
where patients receive maximally tolerated doses.

In summary, the noise model reproduces the measurement noise, which can be used
for parameter identification and the generation of realistic, noisy measurement data.
Neural networks are also able to learn from the simulated data of real noisy measure-
ments and provide an appropriate estimate of the parameter values. In the future,
networks are expected to be able to track changes in parameters and return parame-
ter values from different measurement intervals. This makes it possible to generate
a unique therapy. With the genetic algorithm, unique therapy can be generated us-
ing the estimated model parameters, and the development of resistance and toxicity
can be avoided by the small dosage of chemotherapeutic drug. The result of our
research could be a commercial medical device that can generate personalized ther-
apy for cancer patients by estimating the unique parameters of the patient based on
the measurements.
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[43] D. A. Drexler, J. Sápi, and L. Kovács. Modeling of tumor growth incorporating
the effects of necrosis and the effect of bevacizumab. Complexity, pages 1–11,
2017.

[44] M. Puskás, B. Gergics, B. Gombos, A. Füredi, G. Szakács, L. Kovács, and
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