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Abstract: Blind Speaker Clustering is a task within speech technology, where we have a 
collection of speech recordings (utterances), and the goal is to identify which utterances 
belong to the same speakers. To aid the clustering process in this task, we performed pre-
processing steps such as feature selection and Principal Component Analysis (PCA); still, 
the choice of clustering method is not a trivial one. To find the best performing algorithm, 
we tested standard methods such as k-means (or hard c-means, HCM) and fuzzy c-means 
(FCM) as well as several improved versions of FCM. In the end, we were able to achieve 
the best performance using probabilistic-possibilistic mixture partitions. The obtained 
purity score of 83.9% is significantly higher than the baseline score of 46.9%. 

Keywords: clustering; fuzzy c-means algorithm; possibilistic c-means algorithm; speech 
technology 

1 Introduction 

Automatic Speech Recognition (ASR) seeks to create the correct transcription 
(written form) of an utterance (a recording containing speech). Traditionally, 
speech technology researchers focused primarily on ASR (e.g. [1-3]), but in the 
last few years another area has received growing attention. It is called 
computational paralinguistics, and it seeks to extract non-verbal information from 
the speech signal. This area includes tasks such as emotion detection [4, 5], 
speaker age estimation [6], conflict intensity estimation [7-9], detecting social 
signals like laughter and filler events [5], and estimating the amount of physical or 
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cognitive load during speaking [10-12]. Several of these tasks attempt to detect 
phenomena which vary from speaker to speaker. Therefore, in these tasks, if we 
could identify which utterances (recordings) belong to the same person, it would 
clearly assist the following classification or regression step. This task, called Blind 
Speaker Clustering (or just Speaker Clustering), is a viable tool in computational 
paralinguistics; for example, it was shown that speaker-wise data normalization 
can lead to a significantly improved classification performance compared to using 
global normalization techniques [10, 13]. 

Speaker clustering is an existing, current problem in speech recognition literature 
(e.g. [14-16]. In most cases, however, it has to be performed along with speaker 
segmentation ("Who spoke when?"), while now we have only one speaker in an 
utterance; hence we have to concentrate only on speaker clustering. Note that an 
important aspect of this task is that we have to work with the utterances of 
speakers that are unseen to us at training time, so it is clearly a clustering task. 

Clustering means that we form groups of those examples which are similar to each 
other and different from the others, but this definition does not tell us in which 
sense they are different. For example, speech utterances may be similar if they 
record the speech of the same speaker, or the speakers utter the same sentences, or 
they were recorded under similar conditions (microphone, background noise), etc. 
In the actual task, however, we would like to separate the different speakers. A 
straightforward choice to control the way of clustering is by applying feature 
selection. If we keep only those attributes which correlate well with the desired 
property of examples, we can control the type of clusters formed. Still, we have to 
keep in mind the fact that we also have to avoid choosing a redundant feature sub-
set, as it can also hinder the clustering process. 

Besides feature selection, an important choice is that of the clustering method. A 
straightforward choice is the k-means (or hard c-means, HCM, [17]) algorithm; 
however, it is a stochastic algorithm, which is vulnerable to random initialization. 
To this end, we also test fuzzy c-means (FCM [18]) in this task, as well as three of 
its improved variants ([9, 19, 20]). 

2 Blind Speaker Clustering by Feature Selection 

Blind Speaker Clustering can be simply viewed as a clustering problem, for which 
standard clustering methods such as the HCM and FCM algorithms can be readily 
applied. However, these methods have a weak point, namely that they work in a 
multi-dimensional space treating all dimensions as equally important (as they rely 
on the Euclidean distance of the points). This means that they are sensitive to 
differently-scaled, redundant and irrelevant features. 
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The first issue can be handled by normalization, i.e. all the features can be 
normalized (i.e. scaled to a fixed interval, e.g. [0, 1] or [-1, 1]) or standardized (i.e. 
transformed so as to have zero mean and unit standard deviation). The other two 
issues can be handled via feature selection; in fact, we can turn the feature 
selection to our advantage so that we just keep those features which help us create 
the right kind of clusters (in our case, different speakers). 

To be able to perform this, we will need several things. First, to measure which 
feature set allows us to form better clusters, we will need a set of recordings with 
their correct classes (now: speakers) annotated. Second, we will have to choose an 
evaluation metric by which we will rank the results of the different clustering 
outcomes. Third, we will need to choose (or construct) a feature selection method. 

2.1 Performing Feature Selection 

A wide range of feature selection algorithms exist (e.g. [21, 22]; most of them, 
however, have a high computational complexity. To this end, we applied some 
quite quick and simple pre-processing steps to perform feature selection. 

Feature selection has to deal with two phenomena, namely irrelevant and 
redundant features. In the first case, the problem is that some features do not assist 
the forming of the desired clusters, or even distract the clustering algorithms (e.g. 
describe relations that the actual speaker mentioned, and not who spoke in that 
given utterance). Yet, the redundant features describe the same phenomenon in a 
very similar way. As most clustering algorithms treat each feature as an equally 
important dimension, redundant features will have a larger importance overall, 
hence will distract the clustering method used. 

2.1.1 Handling Irrelevant Features 

We handled the issue of irrelevant features by applying a simple feature selection 
method. We took the feature vectors of two speakers, and calculated the 
correlation between each feature with the change of speakers. We repeated this for 
each speaker pair, and the absolute values of the resulting correlation values were 
averaged out. Then, the features were sorted according to their averaged 
correlation score in descending order, and we selected the most correlated 
features. This way, we also had control over the type of clusters formed. 

2.1.2 Handling Redundant Features 

The issue of redundancy was dealt with by using Principal Component Analysis 
(PCA, [23]). PCA is a statistical method which transforms our observation vectors 
into a space described by linearly uncorrelated directions (the principal 
components) via an orthogonal transformation. That is, the first direction returned 
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by the PCA will point to the direction where the variance of our data is the 
highest; the further directions will point to the directions which have the largest 
possible variance, provided that they are orthogonal to all previous directions. By 
transforming our examples into this coordinate system, and then performing 
normalization, we can get rid of most of the redundancy in our attributes. 

PCA also supplies information about the importance of each new dimension 
(feature) describing the examples. It is common practice to keep only the first 
directions which describe at least a given amount (e.g. 90%) of the information 
stored in the example set, thereby applying PCA as a feature extraction tool [24]. 
Of course, the amount of information to be retained is not a trivial one, hence we 
experimented with different thresholds for this value as well. 

3 The Employed Clustering Methods 

Given a set of feature vectors X = { x1, x2, …, xn } describing n objects, the fuzzy 
c-means (FCM) algorithm can produce a fuzzy partition into a predefined number 
of clusters c, based on the minimization of the quadratic objective function 
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According to the alternating optimization (AO) scheme of the FCM algorithm, 
eqs. (2) and (3) are alternately applied, until the cluster prototypes stabilize. This 
stopping criterion compares the sum of norms of the variations of the prototype 
vectors vi within the latest iteration, with a predefined small threshold value ε. The 
algorithm requires proper initialization of the cluster prototypes. In our case, we 
have assigned randomly chosen input vectors to cluster prototypes, and ensuring 
that ∀i,j	∈	ሼ1,…,c} and i ≠ j we have vi ≠ vj. 

Hard c-means [17] is a special case of FCM, when m → 1 and thus the 
memberships are obtained according to the winner-takes-all rule. Each cluster 
prototype is obtained as the mean of input vectors assigned to the given cluster. 
The first time when the partition does not change during an iteration, the 
convergence is achieved. 

3.1 FCM Variants Employed in this Study 

Several families and variants of c-means clustering models have been introduced 
recently, which reportedly produce better partitions than FCM in several 
applications. In the following, we enumerate those applied in our study. 

3.1.1 Adding Possibilistic Component to Fuzzy c-means Clustering 

The possibilistic c-means clustering (PCM) algorithm assigns typicality values 
to fuzzy membership functions [25]. Thus in PCM, the elements of the partition 
matrix, denoted by tik instead of uik (i = 1,…,c, k = 1,…,n), describe how 
compatible the input vectors are with the clusters represented by the computed 
cluster prototypes. Typicality values with respect to one cluster do not depend on 
any of the prototypes of other clusters. 

Since PCM often produces coincident clusters, Pal et al. introduced a mixture 
clustering model called possibilistic-fuzzy c-means (PFCM) clustering that 
comprises a probabilistic and a possibilistic term [19]. PFCM optimizes the 
objective function: 
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where the fuzzy membership functions uik (i = 1,…,c, k = 1,…,n) are constrained 
by the probabilistic conditions, while the typicality values tik ∈ [0,1] (i = 1,…,c, 
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possibilistic exponent p must be greater than 1, while a and b are tradeoff 
parameters to set the balance between the probabilistic and possibilistic term. The 
variables ηi (i = 1,…,c) are called possibilistic penalty terms and control the 
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variance of the clusters. The optimization formulas applied in each loop of the 
alternating optimization are: 
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The probabilistic part of the partition is computed exactly the same way as in 
FCM, according to Eq. (2). This algorithm was found to be robust in several tests. 

3.1.2 Fuzzy-Possibilistic Product Partition c-means 

The fuzzy-possibilistic product partition c-means (FPPPCM) algorithm was 
introduced with the goal to eliminate the outlier sensitivity of previous mixture 
clustering models [20]. This partition also employs a probabilistic and a 
possibilistic term, but it combines them via multiplication instead of via linear 
combination. The algorithm optimizes the objective function: 
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constrained by the conventional probabilistic and possibilistic conditions 
mentioned above. The only parameters of FPPPCM are the fuzzy exponent m > 1, 
the possibilistic exponent p > 1, and the conventional penalty terms of the 
possibilistic partition denoted by ηi, i = 1,…,c. The optimization formulas that 
stem from zero gradient conditions using Lagrange multipliers are: 
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This algorithm has its main advantage of having a reduced number of parameters. 
It was found to efficiently reject the effect of outliers while being accurate also in 
the absence of outliers. 

3.1.3 Suppressed FCM 

Suppressed FCM was introduced with the intent of combining the quick 
convergence of HCM with the fine partitions produced by FCM. It manipulates 
with fuzzy membership functions produced by the FCM algorithm using Eq. (2): 
for each vector xk it looks for the closest cluster prototype, say vw, applies 
suppression by multiplying all uik values by a suppression rate α ∈ [0,1], and 
increases uwk by 1 - α to maintain the probabilistic constraint [26]. These modified 
fuzzy membership values are then fed to Eq. (3) to update the cluster prototypes. 
The algorithms obtained for various values of α are reportedly quick and accurate 
in most clustering problems [27]. 

4 Experimental Setup 

Next we will describe the way our experiments were performed: the way 
clustering accuracy was measured, the database used, the feature set extracted 
from the examples, and the way the parameters of the clustering methods were set. 

4.1 Evaluation Metrics 

If the real groups of examples (in our case, the different speakers) are known, we 
can evaluate a clustering hypothesis generated via an automatic clustering method 
(external evaluation, [28]). However, this is more difficult to do than for 
classification, as we cannot be sure which resulting cluster corresponds to which 
group (if any). Perhaps this is why there are several evaluation metrics available 
for this purpose. 

One of the metrics that can be used for clustering evaluation is purity; this metric 
takes the most frequent class label in each cluster, and calculates the ratio of the 
elements in the cluster which belong to this class [28-30]. Then, these scores are 
averaged out for all clusters by weighting them with the number of their elements. 
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That is, for Ω = {ω1,…,ωc} (the set of resulting clusters), C = {ξ1,…,ξN} (the set of 
real groupings) and n elements (∑|ωj| = ∑|ξi| = n), we calculate 
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Bad clustering has a purity value close to zero, while a perfect clustering has a 
purity score of one. It has the drawback that it is easy to achieve high purity scores 
when the number of clusters (c) is large, but as in our case this is known in 
advance, we can set c = N (the number of speakers) and handle this problem. 

Another possibility is to use entropy [28, 30], which is defined as 
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for any j = 1,…,c, and the entropy of the C clustering will be the sum of the E(ωj) 
values weighted by the number of the elements. That is, 
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The better a clustering, the lower the entropy value it has; a perfect clustering has 
zero entropy. 

4.2 The Munich Biovoice Corpus 

We performed our experiments on the Munich Biovoice Corpus (MBC, [31]). It 
contains the utterances of 19 subjects (4 female and 15 male) of three nations 
(Chinese, German and Italian) both after light and heavy physical load. They had 
to pronounce sustained vowels as well as reading a short story, which was 
recorded by two different microphones. Besides the audio recordings, heart rate 
and skin conductivity was monitored as well. The dataset was later used in the 
Interspeech ComParE 2014 Physical Load Sub-Challenge [10]. 

4.3 Experimental Setup 

In our experiments we employed the feature set used in [10]. It contained 6373 
features overall, extracted by using the tool called openSMILE [32]. The set 
includes energy, spectral, cepstral (MFCC) and voicing related low-level 
descriptors (LLDs), as well as a few other LLDs including logarithmic harmonic-
to-noise ratio (HNR), spectral harmonicity, and psychoacoustic spectral sharpness. 
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Similarly to other machine learning areas, separate training and test sets were 
defined, consisting of 6 speakers each. The feature selection process including the 
application of PCA was performed on the training set, as well as the parameter 
setting of the clustering algorithms (c for the FCM and its variants and α for s-
FCM). Then, the test set was transformed in a similar way to the training one (i.e. 
using the same (basic) features, then transformed by PCA using the same principal 
components, and keeping the same number of transformed attributes). Lastly, the 
transformed test set was clustered using the clustering parameter values obtained 
on the training set, and the result was evaluated using the purity and entropy 
metrics. 

For the pre-processing steps, we experimented with keeping the 20, 50 and 100 
most correlated features; after PCA, we kept 75%, 90%, 95% and 99% of the 
information. 

4.4 Parameter Setting for the Clustering Methods 

Although m = 2 is the most frequently employed value for the fuzzy exponent, it is 
not suitable when the number of dimensions is several dozens because it leads all 
cluster prototypes to the grand mean of the input data. In all algorithms that 
contain the probabilistic exponent m, we tested values in the range of 1.05 to 1.5. 
For all algorithms that use the possibilistic exponent p, we set p = m. Possibilistic 
penalty terms ηi (i = 1,…,c) were always chosen equal for all clusters, but their 
value always depended on the actual number of dimensions d. In case of PFCM 

algorithm, fine results were obtained for 0.6 d  ≤ i  ≤ 1.25 d , while 

FPPPCM performed best for 1.2 d  ≤ i  ≤ 2 d . The actual number of 

dimensions varied between 2 (for 20 features and 75% PCA) and 54 (for 100 
features and 99% PCA). For the suppressed FCM algorithm, all suppression rates 
multiple of 0.1 were considered, but most accurate results were obtained in the 
range 0.5 ≤ α ≤ 0.8. 

As HCM has no parameters at all, it required no parameter adjustment. However, 
as it is not a robust procedure, for this algorithm we performed 100 clusterings for 
each preprocessing configuration, and averaged out the resulting purity and 
entropy scores. 

5 Results 

The resulting purity scores can be seen in Table 1, while the corresponding 
entropy values are listed in Table 2. The best values for a pre-processing 
configuration are shown in bold. We can see that by increasing the number of 
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features, the quality of clustering also improves, and it also improves if we retain 
more information after the PCA step. When using 100 features, however, the 
difference is quite small between keeping 95% or 99% of the information; on the 
other side, it is pointless using fewer than 50 features, or keeping only 75% of the 
information after the PCA step, as the resulting purity scores are pretty low. 

Table 1 

Purity scores achieved with the different preprocessing configurations and clustering algorithms 

Inform. Kept 

after PCA 

Clustering 

Method 

Number of Features 
20 50 100 

Train Test Train Test Train Test 

75% 

HCM 68.6% 59.2% 77.7% 59.9% 77.9% 59.1% 
FCM 68.6% 59.4% 80.5% 61.2% 79.7% 60.4% 
s-FCM 69.1% 58.6% 80.8% 61.7% 79.0% 60.9% 
PFCM 72.7% 57.6% 82.1% 62.5% 80.0% 61.4% 
FPPPCM 73.0% 57.3% 82.3% 66.2% 80.8% 66.4% 

90% 

HCM 77.1% 64.8% 84.2% 69.3% 80.3% 74.2% 
FCM 76.9% 64.3% 85.2% 76.6% 85.5% 77.6% 
s-FCM 77.1% 65.1% 84.9% 75.5% 85.7% 75.0% 
PFCM 77.1% 65.1% 86.0% 76.0% 87.3% 78.1% 
FPPPCM 76.9% 65.1% 86.8% 82.0% 88.9% 80.7% 

95% 

HCM 73.3% 67.7% 86.0% 71.4% 79.2% 76.3% 
FCM 74.6% 65.9% 86.0% 80.0% 85.7% 78.1% 
s-FCM 76.6% 65.9% 85.2% 78.4% 86.5% 77.1% 
PFCM 75.1% 67.2% 87.0% 78.4% 88.3% 77.1% 
FPPPCM 75.9% 68.5% 87.8% 76.8% 89.6% 83.1% 

99% 

HCM 73.5% 66.2% 85.2% 75.0% 80.2% 79.5% 
FCM 75.8% 69.5% 86.0% 80.2% 85.5% 79.7% 
s-FCM 75.1% 70.6% 86.2% 76.0% 87.0% 82.0% 
PFCM 76.9% 64.8% 86.2% 76.0% 86.8% 82.3% 
FPPPCM 76.1% 66.2% 86.8% 82.6% 88.8% 83.9% 

 

Regarding the choice of the clustering method, it is clear that HCM performed the 
worst; the likely reason for this is that it is a stochastic method. There is no great 
difference among the performances of the other four methods, but generally, 
FPPPCM performed best both on the training and on the test sets. This seems to 
indicate that it is not just a method that can be fine-tuned to suit our needs, but the 
tuned parameter values perform well on another set of examples (e.g. the test set), 
meaning that the method is a very robust one. 
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Table 2 

Entropy scores achieved with the different preprocessing configurations and clustering algorithms 

Inform. Kept 

after PCA 

Clustering 

Method 

Number of Features 
20 50 100 

Train Test Train Test Train Test 

75% 

HCM 0.428 0.544 0.327 0.577 0.307 0.611 
FCM 0.421 0.548 0.328 0.565 0.292 0.598 
s-FCM 0.425 0.559 0.327 0.547 0.289 0.599 
PFCM 0.358 0.552 0.312 0.555 0.293 0.579 
FPPPCM 0.359 0.546 0.277 0.510 0.254 0.544 

90% 

HCM 0.313 0.456 0.265 0.462 0.285 0.450 
FCM 0.309 0.488 0.280 0.416 0.256 0.434 
s-FCM 0.313 0.453 0.256 0.446 0.262 0.438 
PFCM 0.313 0.453 0.256 0.446 0.242 0.422 
FPPPCM 0.312 0.467 0.235 0.467 0.211 0.372 

95% 

HCM 0.336 0.442 0.232 0.434 0.305 0.407 
FCM 0.315 0.494 0.270 0.397 0.259 0.405 
s-FCM 0.314 0.476 0.248 0.397 0.255 0.371 
PFCM 0.309 0.442 0.248 0.397 0.233 0.407 
FPPPCM 0.317 0.436 0.238 0.385 0.206 0.335 

99% 

HCM 0.340 0.491 0.240 0.406 0.290 0.371 
FCM 0.313 0.451 0.263 0.380 0.259 0.404 
s-FCM 0.312 0.472 0.223 0.404 0.241 0.361 
PFCM 0.306 0.443 0.230 0.404 0.247 0.347 
FPPPCM 0.313 0.427 0.254 0.327 0.217 0.328 

 

In general, the variations of fuzzy c-means performed somewhat better than the 
standard algorithm: the latter achieved its best results with 50 features, while the 
other three methods were able to utilize the extra information stored in the 
additional features, thus achieving a clustering, which is of a better quality. 

Figure 1 shows the purity scores given by the employed set of clustering algorithm 
in various scenarios. It is evident that FCM's accuracy drops as the fuzzy exponent 
m grows beyond a critical value situated around 1.3. Among all tested algorithms, 
FPPPCM performed the best, while the other fuzzy and possibilistic approaches 
provided results of approximately same quality, but better than the outcome of 
HCM. FPPPCM even gave purity scores above 0.85, but that setting never 
coincided with the best performing scenario on the train data set. 
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Figure 1 

The purity scores obtained plotted against the fuzzy exponent m for the different clustering methods 

and preprocessing configurations on the training set. In case of 50 features and PCA 99%, the black 

curve fully covers the green one 
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The results of two clustering configurations can be seen on Figure 2: the left hand 
side shows the baseline setting, using all the 6373 features with the standard HCM 
clustering method, while the right hand side shows the FPPPCM method with the 
optimal configuration, using 100 features and keeping 99% of the information 
after PCA. In the latter case, clearly most of the utterances belonging to a given 
speaker could be mapped in the same cluster (see the rectangles near the 
diagonal). A number of utterances were assigned to wrong speakers (these form 
small straight lines). Overall, this clustering is of a much higher quality than the 
baseline one shown on the left hand side, where some speakers were confused by 
each other (see the boxes off the diagonal). This is reflected by the accuracy 
values as well: while the baseline setting had a purity score of 46.9% and an 
entropy value of 0.560 on the test set, we were able to achieve scores of 83.9% 
and 0.328, purity and entropy, respectively. 

 

.    

Figure 2 

"Confusion matrix" of the test set when using all the features with the HCM method (left), and the best 

configuration of FPPPCM (right). Each row and column corresponds to one utterance; each point 

shows whether the corresponding utterances were assigned to the same cluster. 

Conclusions 

Blind Speaker Clustering (or simply Speaker Clustering) is a task where we have a 
set of utterances, and our goal is to identify which ones were uttered by the same 
person. To aid the forming of the desired kinds of clusters, we applied pre-
processing steps such as feature selection and Principal Component Analysis 
(PCA). However, even after these steps it is not trivial to decide which clustering 
method to apply. Besides the standard algorithms of Hard c-means (HCM) and 
Fuzzy c-means (FCM), we tested three further variations of FCM; among them, 
the fuzzy-possibilistic product partition c-means (FPPPCM) proved to be the most 
effective one, achieving a purity score of 83.9%, which is far above the baseline 
value of 46.9%. 
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