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Abstract: This paper proposes a new algorithm for Model-Free Control (MFC) combined 

with an improved Nonsingular Fast Terminal Sliding Mode Control (NFTSMC) technique 

for current control of a Permanent Magnet Synchronous Motor (PMSM). This new improved 

NFTSMC technique adds more advantages to the conventional terminal sliding mode control 

theory to enhance transient and steady state performance. The proposed new improved 

NFTSMC bridged over the traditional difficulties of Terminal Sliding Mode Control (TSMC) 

theory, like the limited values of its constraints and its state differentiation and avoids the 

complexity of its following versions. The MFC was based on the Radial Basis Function 

Neural Network (RBF NN) which doesn’t require known bounds of uncertainty. The stability 

of the proposed method was analyzed using Lypunov stability theory. Therefore, this 

technique was compared with Model Free Fractional Order Sliding Mode Control 

(MFFOSMC) [11] using MATLAB/SIMULINK in a vector control scheme to validate its 

design and show its faster torque and speed response, as well as its strong robust 

performance against varying parameters and external load disturbances. 

Keywords: Model Free Control (MFC); Nonsingular Fast Terminal Sliding Mode Control 

(NFTSMC); Permanent Magnet Synchronous Motor (PMSM); Fractional Order Sliding 

Mode Control (FOSMC) 

1 Introduction 

PMSM played a great role in adjustable speed drives and Electric Vehicles (EVs) 

thanks to great features and characteristics like high power density, high efficiency, 

and lower maintenance. These applications exposed it to varying temperatures that 

affected its parameters, abrupt changes in applied loads according to the process 

requirements, and sharply changing speed requirements or all these conditions 

simultaneously. 
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Model-Free Control (MFC) is an effective control approach that doesn’t need the 

process model or its parameters. Therefore, it can compensate for large parameter 

uncertainties and conquer high model nonlinearities using an accurate model 

estimator like RBF NN. RBF NN has high control accuracy, a simple structure, and 

fast convergence scheme to model highly nonlinear processes [1-3]. Therefore, it 

was motivated to be combined with other advanced nonlinear controllers [4-8]. In 

the early last decade, MFC was combined with Intelligent Proportional (iP), 

Intelligent Proportional Integral (iPi) [6] and Intelligent Proportional Differentiator 

(iPD) Controllers. But in the early part of this decade, the MFC approach was 

combined with advanced linear predictive controllers [9] and nonlinear controllers 

like fractional order sliding mode controllers [10] to add their excellent features. 

Sliding mode control proved its robustness against parameter uncertainties and 

external disturbances, and it is simple, implantable, and easily accommodated by 

nonlinear controllers [11]. But it suffered from two conventional difficulties; 

chattering phenomena and the singularity of the solution. Second Order SMC 

(SOSMC) based on Super Twisting Algorithm (STA-SOSMC) gives a continuous 

control input proposed to eliminate chattering [12]. But it faced difficulties like gain 

tuning because of the system nonlinearity, and it occupied a major research field 

[13]. Ref. [14] overcomes this obstacle by employing rooted tree optimization to 

tune this gain. While Ref. [15] adapts this problem using a variable gain algorithm. 

But the gain and the parameters of the control law in our proposed method don’t 

need any tuning, and its power has no restrictions compared to the conventional 

TSMC form. 

Therefore, SMC should be enhanced to eliminate its conventional drawbacks by 

enhancing its sliding surface design. This motivated the creation of the Fractional 

Order Sliding Mode (FOSM) surface, which enhances the controller performance 

by adding more degrees of freedom and flexibility to support the dynamics of highly 

and strongly nonlinear systems and provides the role of optimizing algorithms. 

However, In [16], the authors not only added the exponential reaching law, but 

introduced Extended State Observer (ESO) design to compensate parameters 

changes and disturbances. In [17], designing FOSMC wasn’t enough, the authors 

also designed a fractional order estimator to compensate for uncertainties and 

disturbances without prior knowledge of their bounds. In our paper, NFTSMC was 

in its original form without any added functions, more terms, or optimizing 

algorithms. 

NTSMC was developed to get fast and finite convergence time, accurate tracking, 

and to eliminate the singularity of the solution compared to conventional TSMC. 

Despite that, Ref. [18] added an integral term of the conventional signum function 

to the integral terminal sliding mode surface to decrease the convergence time when 

the reference speed is far from the equilibrium point to construct the Fast Integral 

Terminal Sliding Mode Controller (FITSMC) to overcome the disadvantages of 

ITSMC. Ref. [19] designed NFTSMC based on an adaptive finite controller with 

adaptive tuning laws-based barrier functions to tune the adaptive controller to 
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strengthen the robustness of the system, speed the convergence time, and eliminate 

the singularity. In [20], the authors not only designed TSMC based on adaptive law 

but also designed the sliding mode manifold as a recursive structure of the sliding 

mode surface  and simulated it using fuzzy control to eliminate the chattering to 

design Fuzzy Adaptive Terminal Sliding Mode Control (FATSMC). Ref. [21] 

designed a new NFTSMC surface with a new adaptive law to compensate for the 

unknown upper bounds of uncertainties and disturbances and increase the 

convergence time. But in our paper, NFTSMC wasn’t supported by adaptive law, 

ESO, or any other controller in the whole design. Also, the reaching law is the 

conventional signum function to avoid any complexities in the final control input. 

Therefore, the main contributions of our paper are as follows: 

1) The proposed method is a new improved NFTSMC, which is a new version 

of TSMC that is free of the constraints of the conventional TSMC (i.e., its 

parameters p and q are any positive values) and doesn’t need any tuning. 

2) The proposed method is free of any complexities as in the previous 

literature, like added functions, adaptive laws, optimizing algorithms, or 

state differentiations. 

3) A novel design of an improved NFTSMC combined with mode free control 

provides finite time convergence, accurate tracking, and smaller chattering 

than other methods in the literature. 

This paper was organized as follows: The PMSM motor was modeled in Section 2. 

Model free, NFTSMC design and its stability analysis were presented in Section 3. 

RBF NN modeling was introduced in Section 4. The simulation results were given 

in Section 5 and conclusions were drawn in Section 6. 

2 Mathematical Modeling of the PMSM 

The d- and q-axis stator currents of PMSM in the rotor reference frame can be 

expressed as follows [10, 18]: 

𝐿𝑑
𝑑𝑖𝑑

𝑑𝑡
= −𝑅𝑠𝑖𝑑 + 𝜔𝑟𝐿𝑞𝑖𝑞 + 𝑣𝑑                                                              (1) 

𝐿𝑞
𝑑𝑖𝑞

𝑑𝑡
= −𝑅𝑠𝑖𝑞 − 𝜔𝑟𝐿𝑑𝑖𝑑 − 𝜔𝑟𝜓𝑓 + 𝑣𝑞                                                  (2) 

where vd and vq are the stator d and q axis stator voltages respectively, Rs is the stator 

resistance, Ld and Lq are the d and q axis stator inductances, λf is the permanent 

magnet flux and ωr is the electrical rotating speed and is defined as: ωr = Pωm, ωm 

is the mechanical angular velocity of the rotor and P is the number of pole pairs. 

For surface mounted PMSM, the stator d and q inductances are equal i.e., Ld = Lq= 

L. The electromagnetic torque can be expressed as: 
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                       𝑇𝑒 =
3𝑃

2
(𝜆𝑓𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞) =

3𝑃

2
𝜆𝑓𝑖𝑞 = 𝑘𝑡𝑖𝑞                     (3) 

 P is the number of pole pairs and kt is the torque constant 

The mechanical equation of the PMSM can expressed as follows: 

𝑇𝑒 = 𝐽
𝑑𝜔𝑚

𝑑𝑡
+ 𝐵𝜔𝑚 + 𝑇𝐿 

J is the rotor moment of inertia, B is the viscous friction factor, and TL represents 

the applied load torque disturbance. 

To efficiently use the electromagnetic torque of an IPMSM, the Maximum Torque 

Per Ampere (MTPA) control method provides a maximum torque/current ratio, to 

decrease losses and increase the efficiency of the motor. In this technique, the 

relationship between id and iq is given by [36]: 
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For real-time implementation of the MTPA control, the above relationship can be 

simplified by taking Taylor’s series expansion around zero as follows: 
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Neglecting the higher orders, it can be simplified to:              
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As shown from Eq. (4), the outer loop (speed loop) can be regulated using a PI 

controller to get the torque reference value and the reference value of the q-axis 

current (iq
*) using Eq. (3). The reference value of d-axis current (id

*) can be set to 

zero for SPMSM to obtain independent control of d and q-axis current. The d and 

q-axis currents can be regulated to obtain the d and q-axis stator voltages from Eq. 

(1) as follows: 

𝑣𝑑 = 𝐿𝑑
𝑑𝑖𝑑

𝑑𝑡
+ 𝑅𝑠𝑖𝑑 + 𝜔𝑟𝐿𝑞𝑖𝑞                                 (4a) 

𝑣𝑞 = 𝐿𝑞
𝑑𝑖𝑞

𝑑𝑡
+𝑅𝑠𝑖𝑞 + 𝜔𝑟𝐿𝑑𝑖𝑑 + 𝜔𝑟𝜓𝑓                        (4b)  

These two equations represent the current loop of the standard vector control 

scheme of PMSM as shown in Fig. 1. 
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Figure 1 

The block diagram of vector control scheme of PMSM 

3 Model Free-NFTSMC Design and Stability 

Analysis 

3.1 Model-Free NFTSMC Design 

Model free control doesn’t depend on the process or the plant model. It is local 

modeling of the plant from the input-output data of the plant during normal and 

practical conditions. MFC can be given by the following local model [4, 5, 22, 23]: 

                                                        y (v) = F(t) + α*u                                             (5) 

Where y is the control output, v is the order of differentiation of the output, u is the 

control input, and F(t) is the estimated model obtained from the input-output data. 

𝑈 =
1

𝛼
[𝑦 + 𝐹(𝑡) + 𝛾] = [𝑦 + 𝐹(𝑡) + 𝑘𝑝𝑒(𝑡)] 

Proposing the new improved NFTSM [24]: 

𝑆 = 𝑒 + 𝛽 ∫ 𝑒(𝑝/𝑞)−1    , p and q any positive values, p/q >1                (6) 

Differentiating the new improved NFTSMC as follows: 

�̇� = �̇� + 𝐾𝑒𝑝/𝑞                                                         (7) 

The switching control input is expressed as us. The final model free nonsingular fast 

terminal sliding mode control can be expressed as: 

𝑢(𝑡) =
1

𝛼
[𝑘𝑝𝑒(𝑡) + 𝑘𝑖 ∫ 𝑒(𝑡) + 𝑘𝑑�̇�(𝑡) + �̇�𝑟𝑒𝑓(𝑡) − 𝜀̂(𝑡)] + 𝑢𝑠                          (8) 
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Substituting Eq. (8) in Eq. (5) results in the new closed steady state error: 

�̇�(𝑡) + 𝑘𝑝𝑒(𝑡) + 𝑘𝑖 ∫ 𝑒(𝑡) + 𝑘𝑑𝑒(𝑡) + 𝛼𝑢𝑠 + 𝜀𝑚 = 0                                         (9) 

𝜀̂(𝑡)is the estimation of the motor using RBF modeling. 𝜀̃ = 𝜀̂ − 𝜀, ‖𝜀̃‖ < 𝜀𝑚 

𝜀𝑚 is the upper bound of the estimation error. 

Therefore, the added switching control input is used to compensate for the 

uncertainties, external disturbances, and measurement noise. According to the 

sliding mode control framework, a switching function S is defined as the NFTSM 

as (6) [24]. 

Replacing �̇�(𝑡) from Eq. (8) in Eq. (7) results: 

�̇� = −𝑘𝑝𝑒(𝑡) − 𝑘𝑖 ∫ 𝑒(𝑡) − 𝑘𝑑�̇�(𝑡) + �̇�𝑟𝑒𝑓(𝑡) − 𝛼𝑢𝑠 − 𝜀(𝑡) + 𝐾𝑒𝑝/𝑞              (10) 

To eliminate the chattering phenomena and fast finite time convergence, the 

following conventional fast reaching law is proposed: 

�̇� = −𝑘𝑠𝑖𝑔𝑛(𝑒)                  , k is a positive constant                                (11) 

From Eq. (11) and Eq. (10), the input us can be defined as: 

𝑢𝑠 =
1

𝛼
[−𝑘𝑝𝑒(𝑡) − 𝑘𝑖 ∫ 𝑒(𝑡) − 𝑘𝑑�̇�(𝑡) − 𝜀𝑚 + 𝑘𝑠𝑖𝑔𝑛(𝑒) + 𝐾𝑒𝑝/𝑞]                 (12) 

The total input can be derived by replacing Eq. (12) with Eq. (8): 

𝑢 =
1

𝛼
[�̇�𝑟𝑒𝑓 − 𝜀̂(𝑡) − 𝜀𝑚 + 𝑘𝑠𝑖𝑔𝑛(𝑒) + 𝐾𝑒𝑝/𝑞]                                                 (13) 

Applying the control Eq. (13) to the current loop of PMSM (Eq. (4)), the proposed 

new control equation of MFNFTSMC will be as follows: 

𝑣𝑑 =
1

𝛼
[𝑖̇𝑑𝑟𝑒𝑓

̇ − 𝑣𝑑−𝑛𝑒𝑢𝑟𝑎𝑙(𝑡) + 𝑘𝑠𝑖𝑔𝑛(𝑒) + 𝐾𝑒𝑝/𝑞]               (14a) 

𝑣𝑞 =
1

𝛼
[𝑖�̇�𝑟𝑒𝑓

̇ − 𝑣𝑞−𝑛𝑒𝑢𝑟𝑎𝑙(𝑡) + 𝑘𝑠𝑖𝑔𝑛(𝑒) + 𝐾𝑒𝑝/𝑞]              (14b) 

The control equations of Model Free Fractional Order Sliding Mode Control 

(MFFOSMC) as expressed in [10]: 

𝑣𝑑 =
1

𝛼
[𝑖̇𝑑𝑟𝑒𝑓

̇ − 𝑣𝑑−𝑛𝑒𝑢𝑟𝑎𝑙(𝑡) + 𝑘𝐷𝛾𝑠𝑖𝑔𝑛(𝑒𝑑)𝑎 + 𝐾𝑠𝑖𝑔𝑛(𝑒𝑑)𝑏]                      (15a) 

𝑣𝑞 =
1

𝛼
[𝑖�̇�𝑟𝑒𝑓

̇ − 𝑣𝑞−𝑛𝑒𝑢𝑟𝑎𝑙(𝑡) + 𝑘𝐷𝛾𝑠𝑖𝑔𝑛(𝑒)𝑎 + 𝐾𝑠𝑖𝑔𝑛(𝑒𝑑)𝑏]                        (15b) 

The structure of Model-Free NFTSMC is shown in Fig. 2. 
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The structure of MF-NFTSMC 

3.2 Stability Analysis 

Lyapunov theory [27] has two conditions to verify the proposed sliding mode 

control. The first condition guarantees the system will be maintained on the sliding 

mode surface regardless of uncertainties and external disturbances. Therefore, the 

equivalent control will support that by setting the first condition, �̇� = 𝑆 = 0 as 

obtained from Eq. (12). 

The second condition should verify the reaching condition of the proposed control 

law, therefore, the Lyapunov candidate was chosen as follows: 

𝑉 = (1/2)𝑆2 

Differentiating the Lypunov function as follows: 

�̇� = 𝑆�̇� 

Substituting Eq. (13) in Eq. (5) results in: 

𝜀𝑚 − 𝜀̃ = �̇�(𝑡) + 𝑘𝑠𝑖𝑔𝑛(𝑒) + 𝐾𝑒𝑝/𝑞                                                                        (16) 

The estimated error of RBF NN modeling is defined as  𝜀̃ = 𝜀 − 𝜀̂ 

Substituting �̇� from Eq. (7) results: 

�̇� = 𝑆 (�̇� + 𝐾𝑒
𝑝

𝑞) = −𝑆(𝜀̃ − 𝜀𝑚 + 𝐾𝑠𝑖𝑔𝑛(𝑒))                                                   (17) 

Simplifying Eq. (17) gives the following: 

�̇� = −𝑆(𝜀̃ − 𝜀𝑚 + 𝐾𝑠𝑖𝑔𝑛(𝑒)) ≤ −|𝑆[𝐾 − |𝜀𝑚 − 𝜀̃|]| 

According to the boundedness of the error 𝜀̃, �̇� < 0 if 𝐾 > 2𝜀𝑚. Then, the right side 

term is negative, which ensures the stability condition of the fractional order sliding 

surface based on the new reaching law. 
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4 RBF NN Modeling and its Stability Analysis 

4.1 RBF NN Modeling 

Intelligent control techniques like fuzzy control and neural networks can deal with 

high nonlinearities due to their ability to approximate and reason about uncertain 

systems [25-26], and so, RBF NN is a very good model approximator. It can 

improve the performance of the process due to its advantages, like fast convergence 

and high control accuracy. The derivation of control (20) was based on the bound 

of the disturbance, which is known. Since the bound of the disturbance is difficult 

to know, we chose a large K to compensate for model uncertainties and external 

disturbances. At the same time, a large K leads to serious chattering. To obtain a 

compromise solution between attenuating the chattering and compensating the 

uncertainties, a RBF NN is used to estimate the plant because it has a high ability 

for accurate model approximation and doesn’t require the known bounds of 

uncertainties, disturbances, or approximation errors. It is trained off-line, and the 

weights were obtained from MATLAB and can’t be changed during the control 

process, which supports its real-time implementation. It has the following 

advantages [30-34]: 

a) A partial persistency of excitation (PE) condition can be satisfied by local radial 

basis functions for any periodic trajectory. In this work, Gaussian radial basis 

functions were implemented, and they are bounded, strictly positive, absolutely 

integrable on compact subsets of Rn, and furthermore, they are their own Fourier 

transforms. Linear superposition of Gaussian RBF is the optimal solution of 

function approximation, given a finite set of data points in Rn. 

b) Fast rate convergence, minimum training time, and better learning capability 

without local minima. 

c) The RBF neural network reduces the computational burden with a single hidden 

layer and without adaptation law compared to [34-35]. 

The RBF network is a three-layers feedforward network. The function of the output 

layer is linear, where ω = [ω1, ω2,... , ωn] and 𝜔 is the weight vector connecting the 

n neuron in the hidden layer and the output neuron. φ represents the activation 

function of each node in the hidden layer; φ= [φ1 φ2 ... φn] and T is the output 

vector of the hidden layer. The Gaussian function was implemented at each node in 

the hidden layer. Fig. 3 displays the structure of RBF NN. Fig. 4 shows the 

validation, training and testing results of RBF NN modeling based on MATLAB. 
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Figure 3 

The structure of RBF NN 

4.2 Stability Analysis of RBF NN as a Modeling Estimator 

Define the tracking error as: 

                                                     �̃� = 𝑋𝑑 − �̃�                                                     (18) 

The derivative of the tracking error is: 

                                                     �̇̃� = �̇�𝑑 − �̃�                                                     (19) 

When parameters change and external disturbances are considered, the state space 

equation can be reformulated as: 

𝑋 = (𝐴 + ∆𝐴) + 𝑋 + 𝐵𝑈 + 𝑑 

where ∆A represents the uncertainty of A, d is the external nonlinear disturbance. 

The system model can be expressed as: 𝑋 = 𝐴𝑋 + 𝐵𝑈 + 𝐹 where F is the lumped 

unknown parameter uncertainties and external disturbance, expressed as 𝐹 =
∆𝐴𝑋 + 𝑑. 

Assumption 1: The lumped parameter uncertainties and external disturbance is 

bounded such that | F | ≤ Fd, where Fd is a positive constant. 

The NFTSMC sliding surface was expressed as (6): 𝑆 = 𝑒 + 𝛽 ∫ 𝑒𝑝+𝑞−1 and its 

derivative as (7): �̇� = �̇� + 𝐾𝑒𝑝/𝑞 . 

Setting: �̇� = �̇� + 𝐾𝑒𝑝/𝑞 = �̇�𝑑 − 𝐴𝑋 − 𝐵𝑈 − 𝐹 + 𝐾𝑒𝑝/𝑞, then the equivalent 

control can be expressed as: 

                                   𝑈𝑒𝑞 =
1

𝐵
[�̇�𝑑 − 𝐴𝑋 − 𝐹 + 𝐾𝑒𝑝/𝑞]                                     (20) 

Therefore, the sliding mode control can be expressed as: 

               𝑈 =
1

𝐵
[�̇�𝑑 − 𝐴𝑋 + 𝑘𝑠𝑖𝑔𝑛(𝑒) + 𝐾𝑒𝑝/𝑞]                                        (21) 
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The gain k of the switching term is an adjustable positive constant so that the 

switching controller can compensate for any external disturbances. 

Eq. (21) can be the final sliding mode controller, but the system model A is 

unknown. Therefore, adaptive control should be employed to estimate the unknown 

system model. The estimate of system model A can be expressed as �̂� 

and  �̃� is defined as  �̃� = 𝐴 − �̂�. 

The total sliding mode control can be defined as follows: 

                           𝑈 =
1

𝐵
[�̇�𝑑 − �̂�𝑋 + 𝑘𝑠𝑖𝑔𝑛(𝑒) + 𝐾𝑒𝑝/𝑞]                                   (22) 

Choose a Lyapunov function as: 

                              𝑉 =
1

2
𝑠𝑇𝑠 +

1

2
𝑡𝑟(�̃�𝑇 η �̃�)                                                       (23) 

Differentiating (22) with respect to time gives: 

          �̇�=𝑆𝑇�̇� +
1

2
𝑡𝑟(�̃��̇�  η �̃�)=𝑆𝑇( �̇�𝑑 − 𝐴𝑋 − 𝐵𝑈 − 𝐹 + 𝐾𝑒

𝑝

𝑞)+ 𝑡𝑟(�̃��̇�  η �̃�)     (24) 

Substituting the control law (22) into (24): 

�̇� = 𝑆𝑇�̇� +
1

2
𝑡𝑟(�̃��̇�  η �̃�) = 𝑆𝑇(�̇�𝑑 − 𝐴𝑋 − 𝐵𝑈 − 𝐹 + 𝐾𝑒

𝑝

𝑞)+(𝑡𝑟(�̃��̇�  η �̃�) 

�̇� = 𝑆𝑇�̇� +
1

2
𝑡𝑟(�̃��̇�  η �̃�) = 𝑆𝑇(�̇�𝑑 − 𝐴𝑋 − 𝐵

1

𝐵
[�̇�𝑑 − �̂�𝑋 + 𝑘𝑠𝑖𝑔𝑛(𝑒) + 𝐾𝑒𝑝/𝑞] −

𝐹 + 𝐾𝑒
𝑝

𝑞)+(𝑡𝑟(�̃��̇�  η �̃�) 

Then, we can get: 

�̇� = 𝑆𝑇((�̂� − 𝐴)𝑋 − [𝑘𝑠𝑖𝑔𝑛(𝑒) + 𝐾𝑒𝑝/𝑞] + 𝐾𝑒
𝑝

𝑞)+(𝑡𝑟(�̃��̇�  η �̃�)     

 �̇� = 𝑆𝑇�̃�𝑋 − 𝑆𝑇𝑘𝑠𝑖𝑔𝑛(𝑒) + 𝑡𝑟(�̃��̇�  η �̃�)                                                      (25) 

To make �̇� ≤ 0̇  , the adaptive laws, they are proposed as: 

�̃��̇� =
𝑋𝑆𝑇

η 
                                                        (26) 

Where the property of the trace of the matrix is used: 𝑡𝑟(𝑆𝑇�̃�𝑋) = 𝑡𝑟(𝑋𝑆𝑇�̃�) 

Substituting (26) in (25) results: �̇� = −𝑆𝑇𝑘𝑠𝑖𝑔𝑛(𝑒) 

According to Assumption 1, if the gain of the switching controller is greater than 

the disturbance bound such that k > Fd:          �̇� ≤ −|𝑆𝑇|𝑘 

Since the Lyapunov function is positive definite and the derivative of the Lyapunov 

function is negative definite, by Lypunov stability theory, the closed loop system of 

the controller (21) is asymptotically stable. 
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Figure 4 

The validation, training, and testing results of the proposed RBF NN modeling 

5 Simulation Results and Discussions 

In this section, the proposed method confirms its strong robustness and superiority 

over other advanced sliding mode control strategies through a fair comparison with 

the advanced SMC method, which is Model Free Fractional Order Sliding Mode 

Control (MFFOSMC) [10] using (MATLAB 2018). Many tests were carried out 

under different operating conditions to verify its excellent transient and steady state 

performance and prove its strong robustness against varying parameters and 

external disturbances. Therefore, the comparison was carried out under the 

following conditions: 

1) During normal conditions 

2) 100% stator resistance (Rs) and inductance (Ld, Lq) uncertainties. 

3) -50% stator resistance (Rs) and inductance (Ld, Lq) uncertainties. 

4) Different fluxes with a higher saliency ratio of the motor  
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The parameters of IPMSM are as follows: Rs=2.875 ohm, Ld=Lq=12e-3 H, J=0.0008 

Kg.m2, B=0.001 N.m.s and P=4. Figs. 5 and 6 show the model of the proposed 

system and the proposed controller MFNFTSMC respectively. 

 

Figure 5 

The MATLAB model of the proposed system 

 

Figure 6 

The MATLAB model of the proposed MFNFTSMC 

5.1  During Normal Steady State Operation 

In this subsection, many tests were carried out to confirm the validity, superiority 

of the proposed method in the transient and steady state during normal operation 

compared to the advanced (MFFOSMC) presented in [10]. 

5.1.1 Startup Response 

As shown in Fig. 7, the torque startup response of the proposed method is faster 

than MFFOSMC. Where the rise time of the proposed method is 16.1 ms and that 

of MFFOSMC is 17. 1 ms. Fig. 8 displays the speed startup responses of the two 
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controllers. As displayed in the figure, the proposed method, MFNFTSMC, is also 

faster than MFFOSMC and the response of both have little overshoot. This verifies 

the superior torque and speed transient performance of the proposed controller 

compared to the advanced MFFOSMC. 

5.1.2  Torque Step Change 

Figure 9 depicts the step load change response of the two controllers at t=0.2 ms, 

where their responses may be identical in this case. Figure 10 shows that the step 

change in load has no effect on the speed response of the two controllers, proving 

the strong robustness of both controllers against external disturbances during 

normal operation. 

Figure 7 

The torque startup response during normal conditions 

 

Figure 8 

The speed startup response during normal conditions 
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Figure 9 

The step torque response during normal operation 

 

Figure 10 

The speed response due to step change of load during normal operation 

5.2 100% Stator Resistance (Rs) and Inductance (Ld, Lq) 

Uncertainties 

In this test, the motor was tested for 100% uncertainties of stator resistance and 

inductance. The stator resistance, the d- and q- inductances values were doubled in 

this test. 

5.2.1  Startup Response 

Fig. 11 shows the torque startup response of the two controllers. As depicted in this 

figure, the proposed controller is still faster than MFFOSMC regardless of the 100% 

uncertainties of stator resistance and inductances. The response of both controllers 

became slower than normal operation where the rise time of the proposed controller 

(MFNFTSMC) is 20.5 ms and that of MFFOSMC is 23.6 ms. This confirms that 
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the proposed controller has stronger robustness against parameter variations than 

the other advanced MFFOSMC. 

Fig. 12 depicts that the speed of the startup response of the proposed controller 

(MFNFTSMC) is faster than MFFOSMC, but the uncertainties in this test increased 

the speed overshoot for both controllers, which reached 1.5 rpm for the proposed 

controller and 3 rpm for MFFOSMC. Therefore, the proposed controller still attains 

its superior adaptive capability compared to the advanced MFFOSMC under 100% 

uncertainties. 

5.2.2 Torque Step Change 

Fig. 13 displays the step torque response for the two controllers from 6 N.m to 5 

N.m at t= 0.2 ms. As displayed in the figure, the torque response of the proposed 

controller MFNFTSMC is still faster than MFFOSMC with a small value (0.1 ms). 

In Fig. 14, the step load change has no effect on the speed response of the controllers 

at t= 0.2 ms. Therefore, the two controllers still attain their excellent adaptive 

capability to compensate for external load step changes. 

Figure 11 

The torque startup response of the proposed method at 100% uncertain stator parameters 

Figure 12 

The speed startup response for 100% stator resistance and inductance uncertainties 
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Figure 13 

The torque step change response for 100% stator resistance and inductances uncertainties 

5.2.3  Torque Ripples 

The 100% uncertainties had a positive effect on the torque ripples, which were 

decreased to less than 0.2 N.m. This proves the excellent adaptive capability of both 

controllers, as shown in Fig. 13. 

 In general, in this subsection, both controllers proved they possess tremendous and 

superior capability under the effect of 100% uncertainties, like normal operation, 

with the superiority advantage of the new improved NFTSMC. 

 

Figure 14 

The speed response due to torque step change for 100% uncertainties 

5.3 -50% Stator Resistance (Rs) and Inductance (Ld, Lq) 

Uncertainties 

In this test, the motor was tested for -50% uncertainties in stator resistance and 

inductances. The stator resistance, the d and q inductances values were halved in 

this test. 
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5.3.1 Startup Response 

Fig. 15 depicts the torque startup response of the two controllers. As depicted in 

Fig. 15, the proposed controller is still faster than MFFOSMC. The response became 

faster than normal operation, where the rise time of the proposed controller 

(MFNFTSMC) is 14 ms and that of MFFOSMC is 14.4 ms. 

Fig. 16 depicts that the speed startup response of the proposed controller 

(MFNFTSMC) is faster than that of MFFOSMC, but the uncertainties in this test 

eliminated the speed overshoot for both controllers. Therefore, the proposed 

controller still attains its excellent adaptive capability compared to the advanced 

MFFOSMC in the transient state. 

Figure 15 

The torque startup response for -50% stator resistance and inductance uncertainties 

Figure 16 

The speed startup response for -50% stator resistance and inductance uncertainties 

5.3.2  Torque Step Change 

Figure 17 depicts the step load change response of the two controllers at t=0.2 ms 

where their responses may be identical in this case. Figure 18 shows that the step 

change of load has no effect on the speed response of the two controllers, proving 

the strong robustness of both controllers against external disturbances under the 

effect of -50% stator resistance and inductance uncertainties. 
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5.3.3  Torque Ripples 

The -50% uncertainties had a negative effect on the torque ripples when they were 

increased to more than 0.6 N.m. This proves the adaptive capability of the two 

controllers, as shown in Fig. 17.  In general, in this section, the proposed controller 

proved it possesses tremendous and superior capability under the effect of -50% 

uncertainties like normal operation and 100% uncertainties. 

Figure 17 

The torque step change response for -50% stator resistance and inductance uncertainties 

Figure 18 

The speed response due to torque step change for -50% stator resistance and inductance uncertainties 

5.4 Different Fluxes with a Higher Saliency Ratio of the Motor 

This test verifies the excellent performance of the motor with different fluxes at 

higher saliencies of the motor (Ld=6 mH and Lq=12 mH). As shown in Fig. 19, the 

rise time increases with decreasing flux (12.3 ms, 15.3 ms and 21.2 ms). Therefore, 

the proposed controller attains strong and robust torque transient performance. In 

similar manner, the speed kept its strong robust transient performance for different 

fluxes, as shown in Fig. 20. Where, the rise time increases with decreasing 

overshoot for increasing flux and so the overshoot disappeared at flux=0.15 V.s. 
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Fig. 21 shows the similar minimum torque ripples for the three different values of 

fluxes at high saliency of the motor. The proposed controller had no effect on 

different fluxes and didn’t affect any conditions related to its magnet flux or 

saliency. In this way, the proposed controller proved its optimum adaptive 

capability against high saliency with different fluxes for different magnets. 

Figure 19 

The torque startup for different fluxes at high saliency 

Figure 20 

The speed startup for different fluxes 

Figure 21 

The torque step response for different fluxes 
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Conclusions 

A successful design and application of a novel algorithm of Model Free Control 

(MFC) combined with an improved NFTSMC was proved through a fair 

comparison with the advanced Model Free Fractional Order Sliding Mode 

Controller (MFFOSMC). The proposed method proved its adaptive capability 

during normal operation and against long ranges of uncertainties (time varying) in 

electrical and mechanical parameters. A MATLAB/SIMULINK simulation 

validation for the proposed controller applied to PMSM. The system response with 

the proposed controller, MFNFTSMC, is compared to that controlled using 

MFFOSMC. The simulation results of the proposed method have been proved its 

strong robust capability against different disturbances in the load torque and 

commanded speed. In all scenarios of operation, the speed and torque, of the 

MFNFTSMC, have the faster response, lower steady state error, and the minimum 

speed and torque ripples. Also, it offered strong, robust transient, and steady state 

performance against different flux and parameter variations at high saliency of the 

motor. These achievements are thanks to more degrees of freedom imposed by the 

control terms in the new improved NFTSMC structure. 
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