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Abstract: Data lakes are the next generation of technology to process and store big data. As 
usual, new challenges and problems arise inevitably with new technologies. One of these 
problems is the occurrence of duplicate data in the storage. Our paper aims to address this 
challenge during the data ingestion phase that is currently overlooked or addressed 
insufficiently. The first part discusses the design of a suitable architecture for the data lake 
and deduplication workflow for processing structured and unstructured data. The proposed 
solution is evaluated through experiments that deal with the flexible deduplication window, 
the scalability of the proposed solution, the suitable hash function, and the advantages of an 
in-memory pointer repository. 
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1 Introduction 

The volume and variety of data are constantly increasing [1]. Most technologies that 
work with big data cannot adapt to this trend. Therefore, to solve these problems, 
the technology of data lakes [2] was created. Its main advantage is flexible work 
with data stored in low-budget storage [3]. Another benefit is minimal or no data 
processing before storing, which prevents the loss of data that may show potential 
value in the future. 

Despite all the advantages, this technology has not yet perfected the work with big 
data. There are still open issues [4]. One of them is the occurrence of duplicate 
records in data lake storage [5]. Our work is focused on this problem. The proposed 
solution is based on the application of a deduplication process in the data ingestion 
phase when the data lake receives uploaded data. 
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2 Background and Related Work 

2.1 Data Lakes 

Every large organization uses a certain way of storing and processing data. In recent 
years, data warehouses have been used for these purposes, but data lakes [6] are 
being used more often. Data warehouses have become overwhelmed with data 
processing and storage due to the increasing volume and variety of data that need 
to be processed [7]. Since data warehouses process, clean, and then store the 
received data, it can lead to potential data loss. The raw data appeared to be useful 
over time because it could be used for other purposes [8]. It was necessary to react 
to emerging shortcomings of data warehouses, which is why the technology of data 
lakes was created. Modern data lake is a decentralized system (often exploiting 
cloud computing) that allows to store big data in its natural format. 

Another important aspect is scalability. Cloud computing paved the way for scalable 
[9] and effective [10] infrastructures and platforms that can handle even big data 
stored in data warehouses or data lakes [11]. To obtain results from the data 
warehouses, the user must first understand their schema, structure, and quality. For 
this reason and to be able to store raw data, data lake works on the principle of 
schema-on-read. 

There are several architecture types for data lakes. When the structure of the data 
stored in a data lake is known their analysis is easier. The most suitable architectural 
type is based on the principle of data ponds which divides the data in the data lake, 
according to their structure, into four basic ponds [8]. When the granularity of this 
approach is too low, zone architecture is more appropriate. Its main idea is the 
division of the data into several zones according to the stage of processing [12].  
A special type of zone architecture is lambda architecture. It is divided into two 
zones: a batch processing zone for bulk data and a real-time processing zone for fast 
data (e.g. edge devices, IoT [13]) [14]. 

2.2 State of the Art 

Data lake driven by data pipelines [15]: The data lake collects heterogeneous data 
from various sources. Its architecture is based on the principle of a data pipeline 
[16]. The data lake is designed to receive, process, store, analyze and visualize data. 
The whole process is divided into several phases. The first phase is custom data 
collection that takes advantage of multiple data extraction tools to collect data from 
sources such as web pages, application programming interfaces, or files in various 
formats. The data ingestion phase mainly gathers data from the data collection phase 
[17] carried out mainly by Apache Flume. It solves data loss problems that can 
occur during the collection of data. Thus, the data lake becomes reliable and fault 
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tolerant. The proposed approach supports manual data ingestion (the user uploads 
data directly into the data lake), as well as automatic data ingestion. The data are 
stored directly in the Apache Hadoop file system, which supports storing data in 
different formats. Afterward, the user can analyze the stored data by Apache Solr 
and Apache Spark. The last phase is data visualization using the Hue web interface 
together with Matplotlib. 

Data lake lambda architecture [18]: Its architecture is divided into four layers: 
data collecting, data storing and processing, data querying and analytics. Since the 
data come from various sources and their format is not uniform, the first layer 
collects the data using Apache Flume. It is capable of handling data source diversity 
and data heterogeneity. Its main advantage is ensuring that data are saved in storage, 
even when disconnections or outages occur. Protection against data loss is solved 
by virtual memory channels. Each of these channels contains data that have been 
removed only after they are fully migrated to storage. Data storage and processing 
are performed by the batch layer and the speed layer. The batch sublayer uses 
Hadoop as a distributed file system and MapReduce to create previews of the stored 
data. The speed sublayer processes data in real-time. It fulfills the functionality of 
supplementing previews from the batch layer. The speed layer uses Apache Spark 
which can process data fast due to memory clustering. Previews from both layers 
are connected to the service layer. The data querying layer supports data extraction, 
loading, and aggregation. According to it, this layer is made up of several tools.  
The last layer dedicated to data analysis is carried out through various methods of 
artificial intelligence. 

Data lake for archeological data [19]: The core of the data lake is divided into six 
layers. The whole data lake has 11 layers. Since the other layers are dedicated to 
resource and workflow management, data governance, or security, the analysis is 
focused on the core layers, which handle the whole data lifecycle within the data 
lake. The first layer selects a metadata model that best suits the received data. After 
collecting data properties and choosing the right metadata model, data ingestion 
takes place. Two different tools are used for data ingestion. Apache Sqoop is used 
to ingest structured data, and semi-structured and unstructured data are ingested by 
Apache Flume. The data quality after the data ingestion process is not always 
sufficient. The data often contains duplicate records along with other unwanted 
values. That is why data are polished by the data distillation layer which cleans data 
from duplicate records and missing or inappropriate values. The distillation layer 
can clean data that come directly from the data ingestion layer or are stored in the 
data lake. The data lake storage itself is located in the data storage layer. It is based 
on Hadoop, which can be easily replaced with Amazon S3. The data storage layer 
is directly connected to the data ingestion, distillation, and insights layers.  
The functionality of the last-mentioned layer is related to exploratory data analysis 
or data transformation. Data transformation provides data preparation for use in 
other data applications, which are part of the data application layer. Through the 
tools in this layer, the user can discover useful information from the data itself. 
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Serverless data lake [20]: The serverless paradigm [21] enables maximum use of 
shared resources with the lowest possible costs. All this can be achieved by turning 
off shared resources during idle time [22]. The data lake processes received data in 
batches, within pre-planned deadlines to exploit the serverless benefits as much as 
possible. Based on these assumptions, the proposed data processing consists of data 
extraction, task scheduling, data distribution, and data deduplication. The first step 
of the data lifecycle is to create tasks that are initialized by providing a configuration 
file to the tasks creator. It loads the credentials and sends requests to add the tasks 
to the tasks queue. In the next step, the tasks executor is emptying the tasks queue 
by fulfilling task requests and storing the received data in the landing zone.  
The tasks executor and tasks creator estimate the completion time of the tasks on 
limited system resources, so they are regulated by throttlers. The last step is to 
combine and deduplicate the data located in the landing zone. Tasks data partitioner 
and deduplicationer perform them according to tasks metadata. Unique data are 
stored in the persistent storage layer. 

Encrypted data lake [23]: Since the classic methods of deduplication do not work, 
a new deduplication approach suitable for encrypted data in large storages (e.g., 
data lake) is proposed. The first step is keyword extraction from the uploaded data 
which are further analyzed by the multi-label unsupervised algorithm and used for 
data management. Once the data are uploaded to the server, the deduplication 
process is triggered. If the uniqueness check is negative, additional information is 
added to the existing data in the storage. It fulfills the functionality of a pointer on 
the data, and they are not uploaded to the data lake. In case of the opposite result, 
the data are encrypted and together with the deduplication token are stored in the 
data lake. 

Data lake for the financial sector [24]: Part of the data lake platform is a data 
warehouse. Before uploaded data are stored in the data warehouse, they are 
processed through extraction, transformation, and loading, followed by a 
deduplication process. The deduplication pipeline consists of several steps. In the 
first step, the data received by the data channel are divided into smaller blocks that 
may represent duplicate records. The goal of the division is to reduce the data.  
The blocks are compared to each other and clustered according to their degree of 
similarity. After clustering, groups of similar blocks are merged. The core 
component is the Cloud Data Repository, which follows the data lake paradigm. Its 
main task is to receive data from heterogeneous internal and external sources.  
The extraction, transformation, and loading processes are applied later to the data 
in the data lake, after which they are directed to the data warehouse storage, which 
is an internal component of the data lake. 
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3 Design of Deduplication Process for Data Lake 

3.1 Data Lake Architecture 

The proposed data lake architecture is depicted in Figure 1. The data lake consists 
of data ingestion and data storage. The other parts of the data lake are not 
considered, while they are not a part of our research. 

 
Figure 1 

Data Lake Architecture (the relevant parts) 

The proposed data lake can receive both unstructured and structured data. 
Unstructured data are not restricted. On the other hand, structured data are restricted 
to the SQL format. However, it is not a significant limitation of the proposed 
approach since receiving data in other formats can be supported through an 
extension using the API within the data lake. The uploaded data are handled by a 
dedicated data ingestion module, which is the main and only component of the data 
ingestion phase. The module not only serves to receive diverse types of data and 
ensures that the data lake receives complete data, but our approach also uses it to 
deduplicate uploaded data before saving them to the data lake. The proposed data 
ingestion module consists of the following parts: 

• The first part of the deduplication process is data preparation. It depends 
on the data format. In the case of unstructured data, it divides the input 
data into smaller blocks (chunks). On the other hand, in the case of 
structured data, individual insertion queries are identified. 

• After data preparation, hash values are calculated from the outputs of the 
previous step. In the case of structured data, hash values are calculated 
from data input queries, and in the case of unstructured data, hash values 
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are calculated from data chunks that were created from uploaded 
unstructured files in the first part of the deduplication process. 

• The last part is deduplication according to the hash values and 
updating the necessary repositories. The data are handled iteratively, 
while the last chunk does not have to process its hash value. Initially, data 
chunks are marked as unique or duplicates based on their hash values. This 
requires access to a pointer repository, which stores data as key pairs.  
The key is the hash value of a data chunk already stored in the data lake, 
and the value is a pointer to that chunk (see Sections 3.3 and 3.4). 

Data storage is divided into three repositories that store data in the data lake. One 
particularly important repository is the pointer repository. According to the state 
of the art, there is no data lake similarly designed. Thus, its impact on the data lake 
is evaluated in the experiment section. Other data storages are the unstructured 
data repository and the structured data repository. As the names suggest, the 
unstructured data repository contains data chunks together with its metadata, and 
the structured data repository contains structured data in tabular form. 

The proposed methodology for deduplication is based on hashing, which is a very 
suitable approach for this purpose. However, several critical aspects have to be 
considered when applying this technique. The most significant is collision handling. 
While this paper concentrates on data deduplication in data lakes rather than the 
hash functions as the concept, it operates under the assumption of an ideal hash 
function that ensures no collisions occur. 

3.2 Deduplication Workflow 

The whole deduplication workflow is depicted in Figure 2. It starts with uploading 
data to the data lake. They are received by a specialized data ingestion module (see 
Section 3.1), which starts processing the uploaded data. The module distinguishes 
whether the user has uploaded structured or unstructured data because it affects how 
the data are treated in the next parts of the workflow. 

For structured data, the ingestion module identifies all insertion queries of the 
uploaded SQL file. Subsequently, it calculates hashes for each data from the 
insertion queries. In the case of unstructured data, the ingestion module divides 
them into smaller chunks, which hashes are calculated. After the end of this cycle 
or, in the case of structured data, after the calculation of the hash value of the last 
identified data insertion query, data deduplication begins with the processing of the 
hash values, and the relevant repositories are updated according to the deduplication 
results. 
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Figure 2 

General workflow for big data deduplication within data lake 

After successfully storing the unique data, it is necessary to save its pointer in the 
pointer repository. In the case of unstructured data, the pointer on a unique data 
chunk is added to the list of pointers for the entire unstructured data (i.e., the file) 
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that the user initially uploaded. This list of the uploaded unstructured data is then 
stored, together with its metadata, in the unstructured data repository. 

If the ingestion module marked the uploaded data as duplicate, the necessary 
repositories are updated. This update occurs only under the following conditions: 

1) A duplicate data chunk of uploaded unstructured data has the same hash 
as a data chunk of other unstructured data. In this case, the metadata of the 
duplicate data chunk is updated, and the updated list of pointers for the 
uploaded unstructured data is saved together with its metadata. 

2) The unstructured data uploaded by the user is composed of several data 
chunks which are used more than once in the uploaded unstructured data. 
Firstly, the data ingestion module processed it as unique, but since it is in 
the data lake, it becomes a duplicate. However, because it is used in a 
different place in the unstructured data, it is necessary to add this 
information to the metadata of the data chunk in the unstructured 
repository. The list of pointers is also updated for the uploaded 
unstructured data, as well as its metadata. 

Regardless of whether the data have been identified as unique or duplicated and 
subsequently processed adequately, the deduplication process and updating of the 
repositories continue until all uploaded data (i.e., its insertion queries or data 
chunks) have been processed. 

3.3 Structured Data Processing 

Structured data can be handled as tabular data. According to it, they can be stored 
in databases with a predefined schema [25]. The advantage of this approach is quick 
and simple analysis. Unfortunately, data lakes cannot define the data schema for 
uploaded data in advance [26], which complicates the deduplication process in 
general. 

Structured data are uploaded to the data lake as an SQL file that is processed by the 
ingestion module. The module divides individual queries into several categories 
according to their functionality during query extraction. From a data lake 
perspective, the most interesting are insertion queries. However, insertion queries 
can also contain duplicate data. To identify duplicates, the ingestion module 
calculates a hash for each insertion query. 

In the case of unique data, its insertion query is executed, which stores the new data 
in the structured data repository. Subsequently, a new pointer is stored in the pointer 
repository (in this case, the table name changed by the query) together with the hash 
of the query. This type of data is stored in the key:value pair, where key is the hash 
value of the query, and the value is the table name over which the insertion query 
is executed. In the case of a duplicate request, none of these operations are 
performed. 
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3.4 Unstructured Data Processing 

To solve the deduplication problem of unstructured data, it is useful to detect 
duplicate data at the level of smaller regions because the approach is more effective. 
The first step is to divide the uploaded data (i.e., files) into data chunks and calculate 
their hashes, based on which the data ingestion module determines whether it is a 
unique or duplicate data chunk. 

In the case of a unique data chunk, the ingestion module stores it in the unstructured 
data repository. Subsequently, the key:value pair is stored in the pointer repository. 
Key is the hash value of the data chunk, and value is a pointer to this chunk in the 
unstructured data repository. The last step is to update the information about its 
usage, which plays an important role in the reuse of data chunks in multiple 
unstructured data. In the case of a duplicate data chunk, the metadata in the 
unstructured data repository is updated, because it has to add another reference to a 
different data on its pointer. 

4 Platform for Data Lake Deduplication 

Since the paper deals with big data in data lakes, it is very important to choose a 
suitable tool for the deduplication process. The deduplication is performed during 
the data ingestion phase, which reduces a set of all existing tools to a set of tools 
that are designed for data ingestion. Majority of existing data lakes [19] [15] [18] 
use Apache Flume which was originally designed to ingest heterogeneous data in 
Hadoop Distributed File System (HDFS) [27] [28] [29], according to which it is 
necessary to find a different tool since not all data lake repositories use HDFS. 
Apache Flume alternatives are Apache NiFi and Apache Kafka [18], according to 
which the module is built on Apache Kafka [28] because Apache NiFi was designed 
to stream data from one system to another [30]. Given that the data ingestion module 
receives files via API, the choice of Apache Kafka over Apache NiFi is clear. 
Apache Kafka is a distributed and scalable tool that allows sending messages with 
low latency and high throughput. It was created to process log messages [28], but 
is currently also used in systems that require real-time data processing [31].  
The module uses this tool for data ingestion, in which data deduplication is 
implemented. 

However, Apache Kafka does not support data deduplication, and thus the module 
had to use external libraries through which it becomes a part of data ingestion. As 
part of the deduplication process, it is necessary to solve the division of unstructured 
data into data chunks and the calculation of hash values which are computed as 
SHA256 hashes. 
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Dividing unstructured data into data chunks is implemented by the FastCDC library, 
which uses the method of dividing data into smaller blocks of different lengths 
(content-defined-chunking). The advantage of its algorithm is that it divides the data 
several times faster than the tools that use the Asymmetric Extremumu algorithm 
or the Rabin algorithm [32]. 

Apache Kafka manages messages by publishing and subscribing. The component 
that publishes messages is called a producer, and the component that subscribes 
these messages is called a consumer. The consumer does not need to immediately 
subscribe to the messages that the producer has published, so these messages are 
stored in a component named topic. Individual topics are filled with messages of a 
certain type. The module uses two different topics. One of them is filled with 
messages containing structured data and the other with messages containing 
unstructured data. These topics are part of the broker component, which behaves as 
a server and is coordinated by Zookeeper. 

Messages in the topics are stored in a byte array in the Avro format. Operations over 
Avro schemes are handled by the schema registry component. The producer and the 
consumer communicate with the schema register. 

4.1 Data Repositories 

The data ingestion module has three different data repositories which use the 
following technologies. The structured data repository is based on PostgreSQL 
because the structured data are deduplicated at the query level. Thus, it is necessary 
to select a technology supporting query-driven data management, i.e. storing 
structured data in tabular form, allowing the creation of relationships between stored 
data and inserted data via insertion queries. 

The unstructured data repository is based on an open-source technology MinIO, 
which is an object storage designed for cloud usage. It is chosen as an alternative to 
HDFS because other technologies are outdated, have limited performance, and scale 
poorly [33]. 

− In MinIO, unstructured data is stored in buckets. The data ingestion 
module uses a files-bytes bucket and a files-pointers bucket. The files-bytes 
bucket contains records in JSON format. Their content consists of 
attributes used_in_files and data. The data attribute contains a data chunk 
(as a string) to which this record in the files-bytes bucket belongs.  
The names of the records in the files-bytes bucket are the hash values of 
the data chunks stored in the data attribute. 

− The used_in_files attribute is more complex than the data attribute. It 
contains information about the occurrence of the data chunks in different 
files that have been uploaded to the data lake. 
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− The information consists of the pair key:value. Key in this case is the name 
of the file that contains the data chunk. Value consists of two attributes. 
The attribute named occurrences contains a number that represents 
information about the number of data chunk occurrences in the file with 
the name stored in the key. The attribute at_indexes is an array of numbers 
through which it is possible to correctly reconstruct a file whose content 
consists of multiple data chunks. The array contains the order of the data 
chunk within the content of the file. Since a data chunk can be used more 
than once in a file, the at_indexes attribute is implemented as an array of 
digits. 

The pointer repository consists of records that contain lists of pointers to files that 
were previously uploaded to the data lake. The records are in JSON format, and 
their name contains the original file name. The record has two attributes: pointers 
and original_file_name. The pointer attribute contains a list of pointers to the data 
chunks of the original file. Each pointer has a bucket attribute and a chunk_hash 
attribute. The bucket attribute carries information about the bucket in which the 
record of the data chunk is stored. The chunk_hash attribute contains the hash value 
of the data chunk so that the data lake can find the record of that data chunk in the 
bucket where it is stored. 

− To identify whether a user uploads unique or duplicate data, it is necessary 
to find out if the hash of the data already exists in the pointer repository. 
This means that for every deduplication check, the module has to query 
this repository. According to it, the repository needs to respond as fast as 
possible to queries providing information about the occurrence of the 
searched data. Thus, the pointer repository is based on Redis. Searching 
for data in this technology is faster than in classic databases operating over 
the disk because it works as an in-memory database. 

− Redis database stores data in the format key:value. Key contains the hash 
value of the unique data, and the content of the value is a pointer to it.  
The hash value has the same form whether it belongs to structured or 
unstructured data. On the other hand, the pointer that is stored in a value 
always has a JSON format, but its content and structure depend on the data 
type. In the case of structured data, it is very simple but sufficient. It only 
contains the table_name attribute with the name of the table in which the 
structured data is stored. A pointer to unstructured data contains the bucket 
and chunk_hash. The bucket attribute carries information about the bucket 
in which the unstructured data is stored within the MinIO repository. To 
be able to access the given unstructured data, it is necessary to know the 
name of the record in which it is stored within the bucket, which is the 
content of the chunk_hash attribute. 
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4.2 Data Ingestion 

Figure 3 shows the architecture of the data ingestion module for data lake 
deduplication. The whole solution is dockerized, which enables scaling individual 
components as needed, and at the same time, dockerization simplifies module 
launch in different environments. 

 
Figure 3 

The architecture of the data ingestion module 

The whole data ingestion process is based on Apache Kafka, which prevents data 
loss in the data lake. The data are uploaded to the data lake through application 
programming interfaces which are available to the structured data producer and the 
unstructured data producer. The uploaded data are subsequently processed and 
published by the relevant producer. The published data are further consumed by an 
adequate consumer, which performs the appropriate operations, according to the 
results of the deduplication process. If the uploaded data are unique, then they are 
forwarded to the PostgreSQL storage repository (structured data) or the MINIO 
storage repository (unstructured data). Together with these data, their pointers are 
also stored in the Redis database as a key:value pair, where the key is the hash of 
the stored data. 

5 Experiments and Evaluation 

This section presents the experiments through which the proposed solution is 
evaluated. The following experiment aspects are considered: 

• Ideal size of a flexible window - the experiment deals with the hypothesis 
of whether there is a bottleneck when a small flexible window is used. 

• Scalability of uploaded files - the experiment investigates if the total time 
of data ingestion grows linearly with the increasing size of uploaded files. 
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• Hash functions – the experiment is focused on trade-off simple hash 
functions. 

• Advantages of in-memory pointer repository - the experiment examines 
if the total time of published messages processing is faster when the pointer 
repository is based on an in-memory database instead of a disk database. 

5.1 Experiment Environment 

The experiments are evaluated on a virtual machine with the Linux operating system 
(Ubuntu 20.04.5 LTS). This virtual machine had 8 CPU cores Intel(R) Xeon(R) 
model X5570 @ 2.93GHz with x86_64 architecture. The size of the SSD disk of 
the virtual machine was 40GB, and its RAM has 16 GB. 

The virtual machine had installed Docker and docker-compose along with all 
required dependencies. The docker version is 23.0.1 and the docker-compose 
version is 1.25.0. The experiments are dockerized and run within the IISAS 
scientific cloud. Figure 4 shows a deployment diagram of the experiment 
environment. The only externally accessible point is MinIO GUI, through which 
the individual experiments are monitored. This interface is available on port 80 
using NGINX. 

 
Figure 4 

Deployment diagram 

5.2 Ideal Size of Flexible Window 

The experiment aims to find out whether there exists a bottleneck related to the size 
of a flexible window determining the size of data chunks. 

The dataset of this experiment consists of 100 000 files with a size of 4000 bytes. 
The file content is generated randomly by our proprietary generator. The experiment 
evaluates several flexible windows, and its results are shown in Figure 5. 
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The experiment also shows that Apache Kafka is the main bottleneck in terms of 
message processing and consumption. This bottleneck grows in direct proportion to 
the size of the flexible window. 

 
Figure 5 

Consumption time per individual size of the flexible window 

Part of the experiment was the evaluation of deduplication process sensitivity, 
chunking time, production time, and repository sizes. It is focused on the size of 
data chunks. The whole chunking process works with a flexible window, which is 
defined by its minimum, average, and maximum size. The ratio between these 
values is 4. The exception are configurations reaching value 4000, which is the size 
of the whole file. The paper presents them for demonstration purposes.  
The configuration 512, 2048, and 4000 has the best time, but it is affected by the 
experiment configuration (the file size is 4000 bytes). Within these aspects, the 
configuration 128, 1024, and 20481 is dominating, according to that it is considered 
the ideal size of the flexible window. 

5.3 Scalability of Uploaded Files 

This experiment scenario explores how uploading an increasing number of unique 
files affects the deduplication process. The experiment starts with 100 000 unique 
files and ends with 300 000 unique files. The size of a file is 4000 bytes. Figure 6 
shows that the consumption time increases linearly with the number of uploaded 
files. 

 
1  These values determine the minimum, average, and maximum size of the data chunks. 
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Figure 6 

Consumption time per different number of unique files 

The part of the experiment was also how the deduplication process depends on the 
size of the uploaded file. There were three datasets composed of 4000 bytes, 8000 
bytes, and 12000 bytes. The results are similar. According to it, the achieved results 
can be generalized to that the deduplication process has linear space complexity. 

5.4 Hash Functions 

The proposed deduplication approach for the data lake is based on the SHA256 hash 
function. The design considered SHA-family hash functions, which is the most 
popular hashing algorithm nowadays [34]. There are also several other reasons for 
this decision, however, the most important aspect is its tradeoff between 
breakability and time complexity. Since SHA256 is not a simple hash function [35], 
this experiment tries to find out how much the use of computationally simpler 
hashing functions can speed up the overall data ingestion process in our data lake. 

During this experiment, 100 000 unique randomly generated files of size 4000 bytes 
were uploaded to the data lake. These files were uploaded in three different runs, 
each run using a different hash function in the deduplication process. 

As Figure 7 shows, there is a speed-up when a simpler hash function is used. 
However, the improvement is not significant enough to outweigh the risk of a 
hashing collision. The stronger hash functions make the deduplication process more 
time-consuming. On the other hand, MD5 weaker hash function does not represent 
a significant improvement in the context of the deduplication process. According to 
it, weaker hash functions are not considered in the experiment. 
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Figure 7 

Total chunking time for the individual hash functions 

5.5 Advantages of In-Memory Pointer Repository 

The proposed approach uses the in-memory pointer repository. Thus, this 
experiment compares an in-memory database (Redis) with a disk database (HBase). 
The experiment examines whether the in-memory approach is more suitable 
because disk databases have to read each data chunk from the disk, which is a time-
consuming operation. 

 
Figure 8 

Total time consumed by different pointer repository implementations 

The experiment uses a dataset consisting of 100 000 files with a size of 4000 bytes. 
Figure 8 shows that the total consumption time is shorter in the case of the in-
memory database. 
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5.6 Comparison with State of the Art Solutions 

The last part of the evaluation is a comparison of the proposed approach with 
existing solutions (see Section 2.2). The typical characteristic is to divide the data 
lake into several layers or zones which also adapts the proposed solution working 
with data ingestion zone and storage zone. 

The deduplication approach of the proposed solution can handle structured and 
unstructured data regardless of their origin, size, or schema. Deduplication is part 
of the data ingestion phase, which is one of the studied innovations of the proposed 
solution. The evaluation primarily compares the solution parameters with related 
works due to the lack of qualitative assessments (see Table 1). 
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Conclusions 

The paper focuses on the deduplication of big data in the data ingestion phase, 
during which a data lake receives uploaded data. The analysis of related work 
confirmed that duplicate records in the data lake are one of the current open 
problems. 

According to it, data lake architecture is specified. Subsequently, a deduplication 
workflow is designed.  Through it, the proposed data lake ingests, deduplicates, and 
stores uploaded data. Given that one of the requirements of a data lake is the ability 
to process all data, regardless of its form, the design deals with the processing of 
structured and unstructured data. 

The proposed solution is evaluated within several experiments that focus on various 
aspects of big data deduplication in the data lake. The first experiment shows how 
window size affects the deduplication process. The next experiment evaluates the 
scalability of the proposed solution. The third experiment examines whether a 
simple hash function is worth the collision risk. The last experiment focuses on the 
advantages of an in-memory pointer repository. 
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