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Abstract: This study introduces a practical method for diagnosing subsurface structures 

which focuses on roads and uses ground-penetrating radar (GPR) and deep learning.  

The study proposes an implementation to interpret radargrams captured by the OKO-2 

system, which records signals reflected from underground layers. Two interpretation 

methods are used, i.e., one based on physics formulas, the other on mathematical modeling. 

Before applying neural networks, the data undergo analytical processing using the 

GeoScan32 software, which filters noise, enhances signals, and identifies layer boundaries. 

This analytical foundation is crucial for effectively training deep learning models to 

interpret complex subsurface data. 
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1 Introduction 

Application of non-destructive electromagnetic surveying methods to investigate 

heterogeneous media enforces a significant challenge in the interpretation of 

radargrams. The primary method to study the subsurface structures is ground-

penetrating radar (GPR). Typically, GPR provides data on signal travel times 

through heterogeneous media. From a mathematical perspective, these travel times 

correspond to a time-dependent function that represents wave propagation [1].  

The main task in radargram interpretation is to reconstruct functions dependent on 

depth from the time-domain data, characterizing the properties of the 

heterogeneous medium. This problem belongs to the class of ill-posed inverse 

problems. Developing algorithms and software to address this class of problems is 

of significant relevance and practical importance, particularly in applications such 

as archaeological site detection and the monitoring of road surfaces, highways, 

and airstrips. The GPR has undergone significant advancements over the past 

three decades. It covers various aspects of geophysical science, technology, and 

scientific and engineering applications [2]. Georadar systems play a crucial role in 
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non-destructive testing and diagnostics within the construction industry, such as in 

the inspection of buildings, road surfaces (e.g., aerodromes), and mineral 

exploration. These systems emit electromagnetic signals into the survey 

environment, capture reflected signals, and generate radargrams based on these 

reflections. Radargrams represent time-domain scans at observation points.  

The main goal of experimental studies is to interpret these radargrams. Engineers 

and researchers accomplish this by comparing obtained radargrams with reference 

patterns in databases and performing additional calculations based on wave 

propagation theory. Practical and theoretical methods related to subsurface radar 

are documented in works by local and international authors [3]-[4]. Inverse 

problems related to hyperbolic equations arise in various practical contexts, 

including seismology, georadar technology, medicine, and electric network theory 

[5]-[9]. For numerical methods concerning coefficient-based hyperbolic inverse 

problems, readers are referred to the monograps [10]-[11]. Additionally, methods 

have been developed for solving direct radar problems in horizontally layered 

media. The layer-by-layer recalculation method was used in [12]-[13], and further 

algorithms were proposed in [14]-[15]. In recent years, train-mounted GPR has 

become a widely used tool for fast and non-destructive assessment of railway 

infrastructure prior to track rehabilitation works on the French railway network. 

Accurate evaluation of the substructure condition is crucial, as it directly affects 

the planning and quality of maintenance operations. However, the interpretation of 

GPR data remains a complex and time-consuming process that typically requires 

expert involvement. Kahil et al. [16] proposed two methods to improve and 

automate GPR data analysis for railway diagnostics. The first uses entropy-based 

signal processing to measure layer thickness, detect fouling, and locate water 

retention, with field tests confirming its accuracy. The second applies deep 

learning to identify mud pumping defects, a common railway issue, with strong 

results for severe cases. These approaches support the development of more 

automated diagnostic tools and inform the current study. 

2 Experimental Investigations of the Highway 

We assess the condition of road pavement along the Astana–Makinka highway 

using a mobile diagnostic lab equipped with Oko-2 ground-penetrating radar.  

The lab uses two antenna types: 400 MHz for deeper scans up to 3 meters and 

1000 MHz for higher-resolution images of shallow layers. The experiment 

highlights the use of the 1000 MHz antenna to analyze the area between asphalt 

and crushed stone. Signal cleaning, including denoising and interference removal, 

was carried out using GeoScan32 software on data collected from this antenna. 
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Figure 1 

Signal Data over 500 Meters 

 

Figure 2 

Signal Data at a Specific Point of the Profile 

The white and black horizontal lines show the signal’s peaks and valleys, while 

gray lines mark transitions between them. A vertical slice through the profile 

reveals a 2D signal graph called a trace, and many traces together form the full 

radar image. Traces are taken every 15 centimeters. As a first processing step, the 

signal gain is initially set to zero. 

 

Figure 3 

Signal Data with Zero Gain 

In the second step, band-pass filtering is applied to remove industrial noise from 

the signal, including interference from cables, wires, and vehicle sounds, yielding 

the trace presented in Figure 4. 



K. Iskakov et al. Development of Software for the Interpretation of Radar Images using Deep Learning Methods 

 – 284 – 

 

Figure 4 

Signal Data after Industrial Noise Removal 

In the third step, mean subtraction is applied, in which the mean across all traces is 

computed and subtracted from each trace. Next, automatic gain control is applied 

to enhance the visibility of layer boundaries within the road structure.  

The processed signal data after mean subtraction and automatic gain control are 

presented in Figure 5. In the final step, the layers of the road pavement are 

delineated. 

 

Figure 5 

Signal Data after Automatic Gain Control 

Figure 6 uses color to show different road layers: white for air, yellow for asphalt, 

and brown for crushed stone. By GeoScan32 and layer thicknesses, we calculate 

each layer’s dielectric permittivity, as in Figure 7, the asphalt layer (yellow) is 

300 mm thick with a permittivity of 4.38. To analyze deeper layers like the 

crushed stone, a lower-frequency antenna, e.g., 400 MHz is needed. 
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Figure 6 

Signal Data after Layer Delineation 

 

Figure 7 

Determination of relative dielectric permittivity values of the signal layers 

3 Hilbert Transform for GPR Signal Processing 

The Hilbert transform enhances the analysis of GPR signals. We shift the signal's 

phase, the transform reveals energy distribution, to identify subsurface features. 

Applied to radar scans of road pavements, it highlights boundaries where 

reflections occur and improves the visibility of buried objects, especially in 

complex environments with inclusions or varying terrain. The transform's ability 

to detect energy peaks makes it valuable for outlining layer geometry and 

identifying curved reflections, such as those caused by buried objects or voids. 

The Hilbert transform of a function u(t) is given by the following convolution: 
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Here, the integral is understood in the sense of the principal value . The polarity of 

the reflected wave pulse is determined by the values of the imaginary part of the 

transform at the time of the modulus maximum. A sign change indicates reflection 

from a medium with a lower wave velocity compared to the original medium. 

Conversely, if the sign remains unchanged, it signifies partial reflection and 

transmission into a medium with higher wave velocity. Figure 5 illustrates a 

typical wave field pattern and the Hilbert transform for a four-layer medium 

where the wave velocity reaches a minimum in the last layer. The transformation 

was performed using discrete equations based on the relationship between the 

Fourier transform and the Hilbert transform: 

 

 

4 Wavelet Filtering of GPR Signals 

To remove noise from GPR signals, the Daubechies wavelet of order 4 (db4) was 

applied [20]. Daubechies wavelets do not have an analytical expression and are 

defined solely by their associated filter coefficients. In practical applications, only 

the approximating hk and detail gk coefficients are used, without computing the 

explicit shape of the wavelet function [21]. For the db4 wavelet, these coefficients 

are as follows: 

 , 

 

 

 

The decomposition into approximation and detail components using discrete 

Daubechies wavelets is performed according to the following equations (4): 

 

 

                                                             (4) 
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The wavelet analysis cleans up signals by separating useful information from 

noise. It uses filters to split a signal into low and high-frequency parts. The low 

frequencies hold the main signal, while high frequencies often contain noise. To 

reduce that noise, a method called thresholding is applied to the high-frequency 

data. This approach is flexible and can be adjusted based on the type of signal. For 

best results, you need to understand the noise pattern, choose the right 

thresholding method, and set the right threshold level. There are two widely 

accepted rules for threshold clipping of wavelet coefficients: 

1. Hard thresholding: 

 

2. Soft thresholding: 

 

Here, ν denotes the threshold value. The effectiveness of noise reduction depends 

on choosing the right threshold level and too low keeps noise, too high removes 

important details. Wavelet improves GPR signal clarity by breaking it into parts 

through several levels. Usually, five levels are enough to enhance resolution 

without losing signal quality. At each level, a threshold is applied to remove noise. 

The signal is then rebuilt using the main structure from the final level and cleaned 

details from earlier ones, step-by-step from coarse to fine. The goal is to find a 

threshold that improves signal quality (SNR) without distorting it. The SURE 

method is often used to find this optimal balance. This assumes that the detail 

coefficients from previous levels have been stored. 

 , where .                                              (5) 

 

                                                                  (6) 

 (odd). 

 (even). 

5 Inverse Problem in the Frequency Domain 

The physical formulation of the subsurface radar imaging problem is presented 

below. Data acquisition is performed on the surface of a road pavement using the 

OKO-2 automotive georadar system, equipped with 400 MHz and 1000 MHz 
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antennas. Different layers of the road structure exhibit distinct values of dielectric 

permittivity and electrical conductivity. An electromagnetic pulse is transmitted 

into the subsurface by the GPR transmitter and antenna, and the receiving antenna 

captures the medium's response, which consists of waves varying in travel time, 

amplitude, and waveform. The inverse problem in subsurface radar imaging 

involves reconstructing the underground medium's structure using GPR data 

representing the medium's response. We now examine the problem formulation, 

which has been thoroughly studied with respect to the uniqueness of solutions for 

both the direct and inverse geoelectric equations in works [10]. Consider an 

external current source of the form: 

                                                                                 (7) 

The excitation of an external current, as represented by equation (7), corresponds 

to the instantaneous switching of a current parallel to the axis Oy and localized at 

the point z*. This current is distributed along the axis Ox with a density g(x), e.g., 

representing an infinitely long cable. Over time, the current behavior is described 

by a function f(t). Now, let's consider a Nl -layered structure with boundaries at zk 

( ) and ; the m-th layer spans the interval , and the last 

(subbase) layer extends into half-space , while the air occupies half-space 

 (see Figure 8). 

 

Figure 8 

The medium model is horizontally layered 

The electromagnetic properties of each layer are characterized by the values of 

dielectric permittivity , conductivity , and magnetic permeability .  

The known values are  F/m and  H/m. For a 

sufficiently wide range of materials, the value of  varies within the interval 

[1,80], while  remains constant at 1. Therefore, magnetic permeability is 

considered a known constant. Since the medium is horizontally layered, the 

parameters ,  are piecewise constant functions of the variable z ( ). 

It is assumed that, at the initial time, the electromagnetic field is in a state of rest: 

                                                                                        (8) 
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Under the aforementioned physically justified assumptions, the system of 

Maxwell's equations is reduced to three equations [10], which can be further 

simplified to a single equation. By then applying the Fourier transform with 

respect to the horizontal variable  and the time variable : 

 

This leads to the following problem formulation [24]: 

                                                                 (9) 

              (10) 

 Here,  and  are the parameters of the Fourier transform with respect to the 

variables  and , respectively. The notation  is used for conjugation, that is, 

. 

The following notation is introduced: 

                                                              (11) 

The function  is piecewise constant, as both  and  are piecewise constant 

functions. The most significant influence on the change in  comes from 

variations in  and , especially when   and . 

Assuming , the following result is obtained: 

                                                                                                              (12) 

The decay conditions at infinity are given by: 

                                                                                                (13) 

Assume additional information (the medium's response) is known with respect to 

the solution of the direct problem (9)–(11): 

                                                                                                  (14) 

To find solutions for the direct problem (9)-(11), the original equation is 

transformed into a Riccati equation, and the layer-by-layer recalculation method 

[20] is applied. 

After applying the layer-by-layer recalculation method, the solution to the forward 

problem (9)–(11) is obtained over the interval  and within each interval 
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              (15) 

The values of  u*, s0, u0, um-1 and sm are calculated using the recursive formulas 

presented in studies [24]. 

6 Neural Networks Modeling 

Several machine learning models had previously addressed modeling of 

pavement, e.g., [25-30]. We aim at using Neural Networks. Assume that 

additional information (the medium's response) is known with respect to the 

solution of the direct problem (9)-(11). From equation (9), using the known 

expressions (10)-(11) and the additional information (11), the objective is to 

reconstruct the set of parameters: 

                                                                                           (16) 

                                                                                          (17) 

Here, the sets  represent the dielectric permittivity and specific conductivity 

of the -th layer, while the pair  corresponds to the dielectric permittivity and 

specific conductivity of air, with  and . To find the parameter sets 

(16)-(17), the process begins with constructing computational groups for all 

possible parameter combinations, as described below: 

                                        (18) 

                                              (19) 

                                        (20) 

Here, group  corresponds to dielectric permittivity , and group  corresponds to 

specific conductivity . Constructing these groups (18)-(20) is feasible since 

dielectric permittivity  varies from 1 to 80 in the medium, and specific 

conductivity  ranges from 0 to 1. The obtained groups  and  are combined 

into a unified group , which takes the following form: 

                                          (21) 

                                            (22) 

Piecewise constant functions  and  are introduced for groups  and 

, respectively: 
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                                          (23) 

                                             (24) 

Here, functions  and  correspond to parameter sets  and . 

Subsequently, for each parameter set  from the overall  group, the 

direct problem is solved: 

                                 (25) 

          (26) 

The coefficient  is chosen such that: 

 

where  and  represent the piecewise constant functions (23) and (24), 

respectively. The solutions obtained from (25)-(26) are combined into a solution 

group : 

                                                               (27) 

Due to the uniqueness theorem, for the direct problems (25)–(26), each parameter 

set  from group  corresponds to a unique solution  from group , 

and vice versa. Furthermore, due to the same uniqueness theorem, applying a 

neural network allows us to precisely determine the solution (25)-(26) for the 

inverse problem. Consider a quadratic functional of the following form: 

                           (28) 

where ,  and  are the parameters of the solution 

 from equations (9)-(11), replacing  with , respectively. 

The task is to minimize the quadratic functional and find approximate values of 
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 that approximate the exact values of , respectively. For this purpose, we 

construct an iterative process (similar to the gradient descent method): 

                                         (29) 

                                         (30) 

Although, from an optimization perspective, the functional is a constant and its 

gradient is zero, from the neural network's viewpoint, the functional depends on 

parameters , and the gradients of the functional are non-zero. Thus, the 

iterative processes (29)-(30) are meaningful in terms of existence. The sequence 

of approximations (29)–(30) is rewritten as follows: 

                                       (31) 

                                       (32) 

The idea is to train the neural network to find an approximate solution  

that corresponds to the accurate solutions  from the overall  parameter 

group. 

7 Numerical Analysis 

The Hilbert transform is calculated using the signal's discrete Fourier transform, 

which avoids complex integral calculations. It was applied to radar data from 

layered road and subsurface structures. In the example shown, markers indicate 

layer boundaries, with the first marking the ground surface. The original signal is 

shown in orange, and its Hilbert transform in violet. 

 

Figure 9 

Hilbert transform of a road pavement radargram for a four-layer medium with velocity minimum 
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Examples are presented of transformations performed for media with irregular 

subbase surfaces. In the case of distinct subsurface relief, such as a single 

depression illustrated in Figure 9, the line of maxima in the transformation 

exhibits distortion within the relief depressions and closely follows the shape of 

the relief depression, as illustrated in Figure 11. Additionally, the layer 

boundaries, represented by the 2nd, 3rd, and 4th horizontal lines in Figure 11, are 

distinctly identifiable. The performance is validated through a comparison of the 

results with transformations provided by the NumPy package in Python. GPR 

often lack clear guidance for interpreting data. A custom software was developed 

to test new filtering and visualization methods, including wavelet-based 

processing and Fourier analysis of signals. This tool helps users clean and 

visualize GPR data more accurately, improving interpretation beyond what typical 

commercial software offers. 

 

Figure 10 

Model of a medium with relief layered subbase 

 

Figure 11 

Hilbert transform for a model medium with relief four-layer subbase 
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Figure 12 

Software Interface Window 

7.3 Numerical Solution of the Direct Problem in Frequency 

Domain 

Let us consider a model of the medium corresponding to road pavement: The first 

layer consists of fine-grained and coarse-grained asphalt, along with a fiberglass 

mesh layer. The second layer is a base layer composed of a mixture of fine gravel 

with a particle size of 0.4 mm and containing 7% cement by weight. The third 

layer is a base layer composed of a mixture of coarse gravel with a particle size of 

0.8 mm. The fourth layer consists of the subbase, which is clay-rich soil. 

Table 1 

Represents the road structure model 

layer 

number 

A B C Subbase 

 (relative) 
3.0 6.0 4.0 20.0 

 [S/m] 
0.00512 0.00725 0.00592 0.0132 

 [m] 
0.15 0.45 0.70 2.20 

Since the functions  and  are piecewise constant, it is straightforward to 

compute their average values using depth-averaged integrals: 

 

The characteristic circular frequency  is calculated using formula 

(9). Figure 13 shows the external current source  with a duration of 1.5 ns: 



Acta Polytechnica Hungarica Vol. 22, No. 9, 2025 

 – 295 – 

 

Figure 13 

External Current Source 

Figures 14 and 15 depict  and , respectively, for the 

selected road structure model: 

 

Figure 14 

 

 

Figure 15 
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The circular frequency varies in the interval  with . 

Since , the spatial frequency is chosen from the interval [0, 2] with 

. 

8 Results of Applying Neural Networks for Inverse 

Problems in Subsurface Radar Imaging 

Based on the available supplementary data, the subsurface medium structure was 

successfully reconstructed using a neural network. Table 2 below provides the 

dielectric permittivities and specific conductivities of the actual subsurface 

medium, as well as their corresponding approximate values. 

Table 2 

Exact and approximate characteristics of the given medium 

layer number 1 2 3 subbase 

 (relative) 
3.0 6.0 4.0 20.0 

 [S/m] 
0.00512 0.00725 0.00592 0.0132 

 
3.11 5.92 4.21 20.32 

 [S/m] 
0.00521 0.0072 0.00607 0.0133 

Here,  represent the exact medium characteristics, and  corresponds to their 

approximate values, respectively. 

 

Figure 16 

Neural Network Architecture 



Acta Polytechnica Hungarica Vol. 22, No. 9, 2025 

 – 297 – 

Figure 16 illustrates the architecture of a neural network designed to approximate 

the medium characteristics p and q. A three-layer neural network, with 32 neurons 

in each layer, was used. The network accepts a single spatial variable z (depth) as 

input and outputs a parameter p (or q), corresponding to the dielectric permittivity 

(or specific conductivity). The hyperbolic tangent function was selected as the 

activation function. The Adam optimization method, with a learning rate of 10-4, 

was employed for training. This step was determined experimentally and 

demonstrated the best convergence of the parameters p and q. It is important to 

consider that parameter p, which corresponds to the relative permittivity ε, varies 

within the range [1, 80], while parameter q, representing the electrical 

conductivity σ, ranges from 0 to 1. Since the hyperbolic tangent function outputs 

values in the interval [-1, 1], it is necessary to scale this output to match the target 

intervals [1, 80] and [0, 1], corresponding to ε and σ, respectively. Therefore, a 

data validation process is performed at each iteration of the training procedure. 

The quadratic functional (28) was used as the loss function. 

The exact and approximate solutions to the direct problem, along with the relative 

error, are presented in Figures 17 and 18. Additionally, the  norm error is of the 

following order: 

 

The approximate solution in Figure 17 was derived using the neural network 

algorithm for solving the inverse problem. The approximate solution presented in 

Figure 17 was obtained by applying an intelligent method for solving the inverse 

problem. Figures 17 and 18 compare the exact and approximate values of the 

additional information — specifically, the medium's response. It is important to 

note that the most significant changes occur within the time range of 1.5 ns to 2.5 

ns. This behavior can be attributed to variations in the values of relative 

permittivity ε and electrical conductivity σ , which depend on the properties of the 

surrounding medium. 

 

Figure 17 

Exact and approximate solutions to the direct problem 
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Figure 18 

Relative error (in percentage) of the direct problem solution 

Conclusions 

This study introduces an interdisciplinary approach to subsurface diagnostics by 

integrating geophysics, mathematical modeling, signal processing, and deep 

learning. A radargram interpretation method was developed and implemented in 

the GeoScan32 software. Key processing steps included noise reduction, filtering, 

layer detection, and estimation of dielectric properties. The Hilbert transform 

enabled accurate identification of reflection boundaries through energy peaks. 

Analytical algorithms were used to solve both forward and inverse problems, 

forming the basis for effective neural network training. The trained model was 

successfully applied to road pavement diagnostics, demonstrating both scientific 

validity and practical usefulness. For future research, we propose to incorporate 

comparative analysis with various machine learning models is recommended to 

develop higher-performing solutions. 
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