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Abstract: In the context of error detection in measurements, various methods are available 
depending on the magnitude of the errors. Very large gross errors, often coming from 
mistakes, typically need to be removed before the adjustment process. In fields such as 
photogrammetry and geodesy, these errors, among others, can include swapping of 
coordinates and misidentification of measurement points. The next two categories consist of 
moderate and small gross errors, which are more challenging to identify, as they result 
inaccuracies rather than mistakes. Assuming we have redundancy in measurements for the 
computation of unknown parameters, we solve the task through adjustment using the least 
squares method. Faulty measurements are characterized by multiples of the mean error of 
unit weight. We consider measurements burdened with small gross errors as those where the 
error magnitude exceeds three times the mean error of unit weight, but does not reach twenty 
times. Most established methods aim to identify and filter out these errors during the 
adjustment process, either in a single step or through iterative refinement by modifying the 
weight functions. This paper introduces an error-filtering algorithm capable of identifying 
small, moderate, and large gross errors before executing the adjustment. The sole 
requirement is that the given task can be solved with the minimum necessary number of 
measurements, i.e., without redundancy in measurements. After presenting the general 
algorithm, the effectiveness of the method is demonstrated through one example. 
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1 Introduction 
Gross errors, also known as outliers, are measurements that significantly deviate 
from the expected values due to errors or anomalies in the data. Detecting and 
removing these gross errors is a critical step in data analysis to ensure the reliability 
and accuracy of results. 
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Specifically in photogrammetry, several gross error filtering methods and 
techniques are employed to detect and correct errors in measurements [2], [3], [4], 
[6]. Some common methods include: 

• Residual Analysis: This method involves the examination of the residuals, which 
are the differences between observed and computed values. Large residuals can 
indicate the presence of gross errors. 

• Checkpoints: Checkpoints are additional control points whose coordinates are 
known with high accuracy. They are used to assess the quality of the adjustment 
and can help identify gross errors when there is a significant deviation between the 
measured and known coordinates. 

• Cross-validation: Cross-validation is a technique where different subsets of 
measurements are used to adjust the parameters. Discrepancies between the results 
from different subsets can reveal the presence of gross errors [5]. 

• Statistical tests: Various statistical tests, such as the Grubb’s test or the T-test, can 
be applied to identify outliers or gross errors in the data. 

• Geometric consistency checks: These checks involve assessing the geometric 
relationships between different points or features in the photogrammetric model. If 
these relationships do not conform to geometric constraints, it may indicate the 
presence of gross errors. 

• Image Matching Algorithms: In the case of stereo photogrammetry, image 
matching algorithms can be used to identify inconsistencies between corresponding 
points in stereo image pairs. These inconsistencies can be indicative of gross errors. 

• Quality control procedures: Implementing quality control procedures in data 
collection and processing can help prevent and identify gross errors. This includes 
ensuring proper sensor calibration and data collection techniques. 

• Manual inspection: Visual inspection and expert judgment play a role in detecting 
gross errors, especially in cases where anomalies are visually apparent in the data. 

• Bundle block adjustment: This is a photogrammetric technique that involves 
adjusting the orientation and position of all images simultaneously. Gross errors can 
be identified during the adjustment process [7]. 

Among the above methods, the algorithm proposed in this article is based on 
combining cross-validation and statistical test. In the following, during the detailed 
discussion, we will take the field of photogrammetry as a basis, but when we come 
to the summary of the article, we will see that the proposed method can also be used 
in other areas. 
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2 Algorithm 

2.1 Cross-Validation 
The specific method or combination of methods used in photogrammetry will 
depend on the nature of the data, the accuracy requirements, and the available tools 
and software. Additionally, advancements in computer vision and machine learning 
have led to the development of automated methods for gross error detection in 
photogrammetry. The cross-validation is indeed a useful technique for identifying 
gross errors and ensuring the reliability of measurements and parameter 
adjustments. When different subsets of measurements are used to adjust parameters, 
discrepancies in the results can indicate the presence of gross errors. Here are some 
methods and approaches for gross error filtering in photogrammetry using cross-
validation: 

• Residual analysis: When cross-validation is employed, residual analysis is 
a fundamental technique. It involves comparing the differences between 
the observed and calculated values for each measurement. Large or 
systematic discrepancies in residuals among different subsets can be 
indicative of gross errors. 

• Checkpoint validation: Cross-validation often involves the use of 
checkpoints (additional control points with known accurate coordinates). 
The discrepancy between the coordinates derived from checkpoints and 
the results obtained from different subsets of measurements can help 
identify gross errors. 

• K-Fold cross-validation: This method divides the dataset into 'k' subsets or 
folds. The parameters are adjusted 'k' times, each time using a different 
fold for validation and the remaining folds for adjustment. Discrepancies 
in the results between these iterations can reveal gross errors. 

• Leave-one-out cross-validation: In this method, each measurement point 
is left out one at a time, and the parameters are adjusted without that 
particular measurement. The resulting discrepancies when the point is 
omitted can highlight errors associated with that specific measurement. 

• Comparison of subsets: Subsets of measurements can be randomly or 
systematically chosen for adjustment. By comparing the parameters and 
residuals obtained from these subsets, inconsistencies can indicate the 
presence of gross errors. 

• Robust estimation techniques: Cross-validation can be used in 
combination with robust estimation techniques, such as RANSAC 
(Random Sample Consensus), which iteratively selects subsets of 
measurements while identifying and filtering out outliers. 
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2.1.1 RANSAC Method 

By applying cross-validation in photogrammetry, these methods help to 
systematically identify and filter out gross errors, ultimately leading to more 
accurate and reliable photogrammetric results. The choice of method may depend 
on the nature of the data, the available tools, and the specific requirements of the 
project. 

Before I describe the combined error filtering method mentioned in the introduction 
in more detail, let's briefly examine one of the most well-known methods, the 
Random Sample Consensus (RANSAC) method [8]. By reviewing this approach, 
we also understand the strengths and weaknesses of this procedure. 

The RANSAC method is a robust statistical technique used in various fields, 
including photogrammetry, to identify and filter out gross errors and outliers from 
datasets. RANSAC is particularly effective when dealing with data that may contain 
a significant number of erroneous measurements or when the distribution of errors 
is not known. Here's an overview of how RANSAC works when applied for gross 
error filtering: 

1) Initialization: RANSAC begins with an initialization process by setting a few 
key parameters: the maximum number of iterations to perform (usually a 
predetermined value), a threshold value that defines the acceptance criterion for 
inliers, and a minimum number of data points required to fit the model (this 
number depends on the model being estimated). 

2) Random Sample Selection: The process continues by randomly selecting a 
subset of data points from the entire dataset. This subset is often referred to as 
the "sample" or "minimal sample". 

3) Model estimation: Using the randomly selected data points, RANSAC estimates 
a mathematical model that best fits this subset of the data. The choice of model 
depends on the specific problem at hand. For instance, in photogrammetry, this 
model could represent the transformation between image points and real-world 
coordinates, or the model could represent the relationships between image 
features, camera parameters, or other relevant parameters. The main idea is, that 
the model is estimated based on the randomly selected subset of data points.  
The number of these data points contains only the minimum number of 
measurements required for the solution of the given task, i.e. only as much as is 
necessary for the solution without the application of adjustment procedure. 

4) Inlier classification: RANSAC then evaluates how well the estimated model fits 
the remaining data points. Data points that fall within a certain tolerance or 
threshold of the model are considered "inliers." These inliers are presumed to 
represent the "good" data, while data points that deviate significantly from the 
model are considered "outliers" or gross errors. 
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5) Model quality assessment: RANSAC performs an assessment of the quality of 
the model by counting the number of inliers, which is a measure of how well the 
model describes the "correct" data. 

Steps 2 to 5 are repeated for a predetermined number of iterations. In each iteration, 
a new random sample is selected, a model is estimated, and the number of inliers is 
counted. After multiple iterations, RANSAC selects the model that has the largest 
number of inliers. This model is considered the best estimate for the "correct" data. 
RANSAC identifies the data points that are inliers of the selected model.  
The remaining data points, which are outliers, are considered potential gross errors 
or erroneous measurements. 

The procedure can be refined. Depending on the application, further refinement or 
filtering of the gross errors may be performed. For instance, additional statistical 
tests or techniques may be applied to verify whether the identified outliers should 
be removed or retained. 

RANSAC is especially useful in situations where the data may contain a significant 
proportion of gross errors, as it focuses on estimating models based on the 
consensus of the "good" data while filtering out the erroneous measurements. It is 
a versatile technique that can be applied in various domains, including image 
analysis, computer vision, and photogrammetry, to enhance the accuracy and 
reliability of data analysis and parameter estimation. 

On the other hand, RANSAC method does not guarantee the filtering of all outliers 
in a dataset. The purpose of RANSAC is to identify and filter a subset of outliers, 
specifically those that are inconsistent with a particular model, while retaining the 
data points that are considered inliers. The key reasons for this are: 

• Random Sampling: RANSAC selects random subsets of data points during 
its iterations. If there are a majority of measurements with gross errors, the 
random sampling process makes it possible with some probability that 
there will never be at least one subset that consists of only measurements 
without gross errors. 

• Threshold setting: RANSAC employs a distance or error threshold to 
determine which data points are inliers. Data points that fall within this 
threshold distance of the estimated model are considered inliers, while 
those beyond the threshold are considered outliers. If the threshold is too 
strict, some legitimate data points may be incorrectly labeled as outliers. 
Conversely, if the threshold is too lenient, some true outliers may be 
treated as inliers. 

• Minimum inlier requirement: To establish that a model is a good fit for the 
data, RANSAC typically requires a minimum number of inliers. If this 
requirement is not met during the iterations, the model may be discarded, 
even if it is a reasonable fit for the data. Conversely, a model with the 
minimum number of inliers may still leave some outliers unfiltered. 
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• Stochastic nature: RANSAC is a stochastic algorithm, meaning that its 
results can vary depending on the random subsets selected and the order 
of iterations. This stochastic character can result in differences in which 
outliers are identified and filtered in different runs of the algorithm. 

While RANSAC is effective in filtering a subset of outliers that are inconsistent 
with the voting scheme and its main goal is not to filter all outliers with hundred 
percent probability, rather, the method is designed to use a specific voting scheme 
to find the optimal fitting result with a certain probability. If we want to increase 
the probability, more iterations are needed. In this respect, the method presented in 
this article is based on clearly identifying all gross errors based on the entire 
variation scheme. Thus, this method can be an alternative to the RANSAC method 
when analyzing a small number of data, but it is not claimed that the presented 
method is more accurate or less complex. The advantage of the presented method 
lies in the fact that the error filtering takes place before the calculation of the 
adjusted values. The method also includes the calculation of the adjusted values as 
a final step as well. 

 Its primary goal is to find a model that best fits the majority of the data (inliers) 
while isolating the most significant outliers. For the filtering of all outliers, other 
techniques, such as more advanced outlier detection methods, may be required. 

2.1.2 Combination of Cross-Validation and Statistical Test 

Let's review the proposed combined method. Our main goal is to detect all gross 
errors before the adjustment procedure is performed. Another goal is to calculate 
the adjusted unknown parameters the value of which should be equivalent to the 
result obtained by the method of least squares. The general process of error filtering 
consists of the following steps: 

1) Derivation of a solution for the given task using only the minimally 
necessary 𝑘𝑘 measurements. The solution should be done directly, without 
the use of iterations. 

2) Forming 𝑔𝑔 = 𝐶𝐶𝑘𝑘𝑛𝑛 groups from 𝑖𝑖 = 1, … ,𝑛𝑛 measurements in all possible 
combinations forming 𝒍𝒍𝑗𝑗 vectors based on the minimally required 𝑘𝑘 
measurements. 

3) Find the solution for each 𝑗𝑗 = 1, … ,𝑔𝑔 group with minimal number of 
measurements 𝑘𝑘. The solutions are stored in 𝒙𝒙𝑗𝑗 vectors. 

4) Calculate 𝑷𝑷𝑗𝑗 weight matrix for each 𝑗𝑗 = 1, … ,𝑔𝑔 group. The weight matrix 
is calculated by the implicit error propagation using Jacobians [9] as it is 
indicated in Eq. (1). 

𝑪𝑪𝑥𝑥𝑗𝑗 = 𝑱𝑱𝑥𝑥𝑗𝑗−1𝑱𝑱𝑦𝑦𝑗𝑗𝑪𝑪𝑦𝑦𝑱𝑱𝑦𝑦𝑗𝑗𝑡𝑡𝑱𝑱𝑥𝑥𝑗𝑗−𝑡𝑡 → 𝑷𝑷𝑗𝑗 = 𝑐𝑐2𝑪𝑪𝑥𝑥𝑗𝑗−1                                            (1) 
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In Eq. (1) 𝑪𝑪𝑦𝑦 indicates the covariance matrix of measurements, usually it is a 
diagonal matrix, where the squared value of the expected 𝜇𝜇0 standard error of 
measurements are placed in the diagonal. 𝑪𝑪𝑥𝑥𝑗𝑗  is the covariance matrix of 
unknowns. 𝑱𝑱𝑥𝑥𝑗𝑗 and 𝑱𝑱𝑦𝑦𝑗𝑗 are Jacobians of unknowns and measurements 
respectively. 𝑷𝑷𝑗𝑗 is calculated with the help of inverse of 𝑪𝑪𝑥𝑥𝑗𝑗 , 𝑐𝑐 is a 
proportionality factor and its value can be chosen freely, and usually its value 
is equal to the expected (a-priori) 𝜇𝜇0 standard error of measurements. 

5) Formation of 𝑔𝑔′ = 𝐶𝐶𝑘𝑘+1𝑛𝑛  groups in every combination by increasing 𝑘𝑘 
number of minimally required measurements by one. This means that the 
system of equations will be overdetermined. After this. we form 
𝑔𝑔′′ = 𝐶𝐶𝑘𝑘𝑘𝑘+1 groups from each 𝑚𝑚′ = 1, … ,𝑔𝑔′ group. 

6) Calculation of the unknown parameters in 𝒙𝒙𝑚𝑚′  vectors for each 
overdetermined 𝑚𝑚′ = 1, … ,𝑔𝑔′ group by calculating Jacobian weighted 
arithmetic mean as it is shown in Eq. (2). During the calculation of the 
weighted mean value, we use the previously determined 𝑷𝑷𝑗𝑗 weight 
matrices and 𝒙𝒙𝑗𝑗 solutions as 𝑷𝑷𝑚𝑚′′  and 𝒙𝒙𝑚𝑚′′  corresponding to the 
appropriate 𝑚𝑚′′ = 1, … ,𝑔𝑔′′ group. 

𝒙𝒙𝑚𝑚′ = �∑ 𝑷𝑷𝑚𝑚′′
𝑔𝑔′′
𝑚𝑚′′=1 �

−1
× ∑ (𝑷𝑷𝑚𝑚′′𝒙𝒙𝑚𝑚′′)𝑔𝑔′′

𝑚𝑚′′=1                                                     (2) 

7) Calculation of 𝒗𝒗𝑚𝑚′  vectors of residuals for each 𝑚𝑚′ = 1, … ,𝑔𝑔′ group 
containing overdetermined measurements. Determination of 𝜎𝜎0 standard 
error of unit weight and the chi-square test value [10] for each 
𝑚𝑚′ combination. 

8) The adjustment clearly not burdened by a gross error, if 𝜎𝜎0 standard error 
of unit weight obtained after adjustment is smaller than the 𝑐𝑐 value taken 
in Eq. (1), where 𝑐𝑐 is equal to the expected (a-priori) 𝜇𝜇0 standard error of 
measurements. If the 𝜎𝜎0 standard error of unit weight obtained during 
adjustment is greater than 𝜇𝜇0, then we proceed as follows. Let's set up the 
null hypothesis to compare two standard deviations as it is shown in Eq. 
(3). 

  𝐻𝐻0: 𝑐𝑐2 = 𝜇𝜇02                                                                                                                (3) 
In the case of the null hypothesis in Eq. (3), the chi-square test value is 
used as follows in Eq. (4). 

𝜒𝜒𝑓𝑓2 = 𝑓𝑓 𝜎𝜎02

𝜇𝜇02
                                                                                                                 (4) 

At a certain probability level of  𝑝𝑝 = 0.95% and a certain degree of 
freedom of 𝑓𝑓 , the statistics is given for the comparison of the standard 
errors of unit weight. Let’s consider this value as a theoretical value and 
denote it by 𝜒𝜒𝑡𝑡2. At the same time, its value can be calculated based on Eq. 
(5). 
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𝜒𝜒𝑐𝑐2 = 𝑓𝑓 𝜎𝜎02

𝑐𝑐2
                                                                                                                 (5) 

The calculated chi-square test value of  𝜒𝜒𝑐𝑐2cannot exceed the pre-set value 
𝜒𝜒𝑡𝑡2 according to the null hypothesis formed in Eq. (3), otherwise the 
corresponding combination is regarded as a solution containing gross 
errors. In summary, it means, the adjustment is not burdened with a gross 
error if the condition in Eq. (6) is true. 

𝜒𝜒𝑐𝑐2 ≤ 𝜒𝜒𝑡𝑡2                                                                                                                      (6) 

9)  The measurements together with 𝜎𝜎0  standard error of unit weight, the chi-
square test value and the decision (accepted or denied) are stored in a 
matrix for each 𝑚𝑚′ combination. 

10) By examining the decision matrix using a deductive method, we can select 
the measurements responsible for gross errors. One possible algorithm for 
selecting measurements with gross error is as follows: 

o Selection of the smallest 𝜎𝜎0 standard error of unit weight among 
all combinations. The smallest 𝜎𝜎0 error of unit weight cannot 
exceed the pre-set apriori value according to the chi-square 
statistical test value by null hypothesis as it is explained in Eq. 
(6). The corresponding combination is regarded as the best 
estimated solution. which is free from gross errors. 

o We add the remaining measurements to the previously selected 
and deemed the best solution one by one. With this, we increase 
the number of measurements by two compared to the minimally 
required measurements. 

o We form all the possible combinations from this subset forming 
groups in every combination by increasing the number of 
minimally required measurements by one. 

o We check whether the given combination is incorrect based on 
the previously compiled decision matrix. If the answer is yes, then 
it is clear that the extra measurement added to the best and error-
free combination causes the error and that measurement is 
marked as a measurement having a gross-error. 

11) After excluding the measurements having gross errors, we repeat the 
calculation of the Jacobian mean value for the unknown parameters using 
all the remained groups with minimally necessary measurements and 
weight matrices. The obtained values will be equivalent to the values 
calculated by the method of least squares. 

With this algorithm, we can filter out all measurements with gross errors. One of 
the important conditions for this is that we have at least enough error-free 
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measurements that provide enough equations for the adjustment in at least one 
group among all combinations. 

This algorithm can be modified by the following as an alternative error filtering 
method: 

The steps are the same until step 8. 

9) Selection of the smallest 𝜎𝜎0  standard error of unit weight among all 
combinations. The smallest 𝜎𝜎0 error of unit weight cannot exceed the pre-
set apriori value according to the chi-square statistical test by null 
hypothesis as it is explained in Eq. (6). The corresponding combination is 
regarded as the best estimated solution. which is free from gross errors. 

10) Using the best estimated solution, we calculate 𝑣𝑣𝑖𝑖 residuals for all 
measurements. 

11) Where 𝑣𝑣𝑖𝑖 residual exceeds the preset 𝜀𝜀 allowable error, the measurement 
is considered to have a gross error. Normally 𝜀𝜀 allowable error is equal to 
3𝜇𝜇0, where 𝜇𝜇0 denotes the estimated standard error of measurements. 

12) After excluding the measurements having gross errors, we repeat the 
calculation of the Jacobian mean value for the unknown parameters using 
all the remained groups with minimally necessary measurements and 
weight matrices. The obtained values will be equivalent to the values 
calculated by the method of least squares. 

3 Numerical Example 

3.1 Sample Data Explanation 
In photogrammetry, on a digital image with fiducial marks, the origin of the pixel 
coordinate system is in the upper left corner of the image, the 𝑥𝑥 coordinate axis 
points to the right, and the 𝑦𝑦 axis points down. The image coordinate system having 
𝜉𝜉 and 𝜂𝜂 is taken at the geometric center M of the image, as shown in Figure 1. 

The affine transformation can be used to convert 𝑥𝑥, 𝑦𝑦 pixel coordinates into 𝜉𝜉, 𝜂𝜂 
image coordinates as it is shown in Eq. (7). 

𝜉𝜉 = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑦𝑦
𝜂𝜂 = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥 + 𝑏𝑏2𝑦𝑦

        (7) 
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Figure 1 

Pixel and image coordinate systems 

The parameters of 𝑎𝑎0, 𝑎𝑎1, 𝑎𝑎2, 𝑏𝑏0, 𝑏𝑏1, 𝑏𝑏2 required for the transformation can be 
calculated during the interior orientation based on the fiducial marks as common 
points [1]. 𝜉𝜉, 𝜂𝜂 image coordinates of the fiducial marks are assumed to be known 
and error-free, which were determined during the camera calibration. 𝑥𝑥,𝑦𝑦 pixel 
coordinates of the fiducial marks are determined manually or by automatic 
measurement using image matching with cross correlation technique. Our task is to 
filter out measurements with gross-error before finalizing the transformation 
parameters calculated by least-square adjustment procedure. 

3.2 Error Filtering Process 
Table 1 shows the image and pixel coordinates of the fiducial marks without gross 
errors. The expected 𝜇𝜇0 measurement accuracy is 0.5 pixel, which corresponds to 
0.007 mm since the pixel size is 0.014 mm. 

Table 1 
Dataset of fiducial marks without gross errors 

Point 
No. 

Pixel Coordinates [pixel] Image Coordinates [mm] 
𝑥𝑥 𝑦𝑦 ξ  η  

1 773.236 15751.796 106.006 -106.006 
2 15913.793 15708.444 -106.003 -106.002 
3 15870.307 566.669 -106.003 106.003 
4 729.299 610.475 106.007 106.006 
5 8344.258 16016.505 0.000 -110.008 
6 16176.831 8137.517 -110.002 -0.001 
7 8298.946 303.384 -0.001 110.004 
8 466.456 8181.997 110.005 0.000 
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All measurements are considered to have the same weight. Adjustment according 
to the method of least squares gives the results indicated in Table 2. 

Table 2 
Affine transformation parameters derived from an error-free dataset 

0a  1a  2a  0b  1b  2b  

116.19862 -0.01400 0.00004 114.58093 -0.00004 -0.01400 

The calculated residuals are listed in Table 3. The result of 𝜎𝜎0  standard error of unit 
weight calculated on the basis of residuals was 0.006, which also corresponds to the 
root mean square error calculated from the residual errors as 0.006 mm. It indicates 
that we obtained a result better than the expected error of 0.007 mm, and our 
measurements are not burdened by gross errors. 

Table 3 
Calculated residuals without gross errors 

Point 
No. 

Residuals 
[mm] 

xv  yv  

1   0.0016               0.0046 
2 -0.0031               0.0009 
3 -0.0060               0.0077 
4  0.0040             -0.0020 
5  0.0019             -0.0032 
6  0.0067             -0.0051 
7  0.0024             -0.0035 
8 -0.0075               0.0007 

After this, we change intentionally the measurements and there are gross errors in 
measurements of 3 points (point 2, 4 and 6) as it is seen in Table 4. The values of 
intentionally committed errors are also indicated in the last three columns in mm. 
In this case, the result of 𝜎𝜎0 standard error of unit weight calculated on the basis of 
residuals was 0.1387, which also corresponds to the root mean square error 
calculated from the residual errors. It indicates that there should be gross errors 
among the measurements. Table 5 shows the residuals. We can see that large 
residuals exist in every measurement compared to Table 3. Table 5 is a good 
example, as we can see that gross errors are distributed among all the points, and 
therefore it is difficult to judge which points are responsible for these errors. 

After this, let's review the process of error filtering according to the proposed 
methodology. 
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Table 4 
Dataset of fiducial marks with gross errors 

Point 
No. 

Pixel Coordinates [pixel] Image Coordinates [mm] Gross errors [mm] 
𝑥𝑥 𝑦𝑦 ξ  η  

ud  vd  

1 773.236 15751.796 106.006 -106.006   
2 15923.793 15708.444 -106.003 -106.002 +0.140  
3 15870.307 566.669 -106.003 106.003   
4 729.299 640.475 106.007 106.006  +0.420 
5 8344.258 16016.505 0.000 -110.008   
6 16156.831 8137.517 -110.002 -0.001 -0.280  
7 8298.946 303.384 -0.001 110.004   
8 466.456 8181.997 110.005 0.000   

Table 5 
Calculated residuals in case of gross errors 

Point 
No. 

Residuals [mm] 

xv  yv  

1  0.0308  0.0576 
2 -0.1619 -0.0838 
3 -0.0703  0.0596 
4 -0.0111 -0.2333 
5  0.0080 -0.0213 
6  0.2444 -0.0228 
7 -0.0388  0.1195 
8 -0.0002  0.1242 

We need minimally the coordinates of three points to calculate the parameters of 
the affine transformation. It means, we can create 6 equations with 6 unknowns 
based on Eq. 7. Forming groups of 3 points in each combination, the number of 
combinations will be 56. We form the weight matrices for each combination based 
on the concepts of implicit error propagation based on Eq. (1). To do this, we first 
form the functions 𝑓𝑓(𝜉𝜉), 𝑓𝑓(𝜂𝜂) for every combination with three points. Eq. (8) 
shows an example of system of equations for points 1, 2 and 3. We create the other 
systems of equations for each combination group 𝑔𝑔 in analogous way. 

𝑓𝑓(𝜉𝜉)1: = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥1 + 𝑎𝑎2𝑦𝑦1 − 𝜉𝜉1 = 0
𝑓𝑓(𝜂𝜂)1: = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥1 + 𝑏𝑏2𝑦𝑦1 − 𝜂𝜂1 = 0
𝑓𝑓(𝜉𝜉)2: = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥2 + 𝑎𝑎2𝑦𝑦2 − 𝜉𝜉2 = 0
𝑓𝑓(𝜂𝜂)2: = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥2 + 𝑏𝑏2𝑦𝑦2 − 𝜂𝜂2 = 0
𝑓𝑓(𝜉𝜉)3: = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥3 + 𝑎𝑎2𝑦𝑦3 − 𝜉𝜉3 = 0
𝑓𝑓(𝜂𝜂)3: = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥3 + 𝑏𝑏2𝑦𝑦3 − 𝜂𝜂3 = 0

     (8) 
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Based on Eq. (8), we can form Jacobians 𝑱𝑱𝑥𝑥 and 𝑱𝑱𝑦𝑦 for unknowns and measurements 
respectively. Eq. (9)-(10) and (11)-(12) show Jacobians 𝑱𝑱𝑥𝑥 and 𝑱𝑱𝑦𝑦 for group of 
points 1, 2 and 3 as an example. 

𝑱𝑱𝑥𝑥(1,2,3) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓(𝜉𝜉)1
𝜕𝜕𝑎𝑎0

𝜕𝜕𝑓𝑓(𝜂𝜂)1
𝜕𝜕𝑎𝑎0

𝜕𝜕𝑓𝑓(𝜉𝜉)1
𝜕𝜕𝑎𝑎1

𝜕𝜕𝑓𝑓(𝜂𝜂)1
𝜕𝜕𝑎𝑎1

𝜕𝜕𝑓𝑓(𝜉𝜉)1
𝜕𝜕𝑎𝑎2

𝜕𝜕𝑓𝑓(𝜂𝜂)1
𝜕𝜕𝑎𝑎2

𝜕𝜕𝑓𝑓(𝜉𝜉)1
𝜕𝜕𝑏𝑏0

𝜕𝜕𝑓𝑓(𝜂𝜂)1
𝜕𝜕𝑏𝑏0

𝜕𝜕𝑓𝑓(𝜉𝜉)1
𝜕𝜕𝑏𝑏1

𝜕𝜕𝑓𝑓(𝜂𝜂)1
𝜕𝜕𝑏𝑏1

𝜕𝜕𝑓𝑓(𝜉𝜉)1
𝜕𝜕𝑏𝑏2

𝜕𝜕𝑓𝑓(𝜂𝜂)1
𝜕𝜕𝑏𝑏2

𝜕𝜕𝑓𝑓(𝜉𝜉)2
𝑎𝑎0

𝜕𝜕𝑓𝑓(𝜂𝜂)2
𝜕𝜕𝑎𝑎0

𝜕𝜕𝑓𝑓(𝜉𝜉)2
𝑎𝑎1

𝜕𝜕𝑓𝑓(𝜂𝜂)2
𝜕𝜕𝑎𝑎1

𝜕𝜕𝑓𝑓(𝜉𝜉)2
𝑎𝑎2

𝜕𝜕𝑓𝑓(𝜂𝜂)2
𝜕𝜕𝑎𝑎2

𝜕𝜕𝑓𝑓(𝜉𝜉)2
𝑏𝑏0

𝜕𝜕𝑓𝑓(𝜂𝜂)2
𝜕𝜕𝑏𝑏0

𝜕𝜕𝑓𝑓(𝜉𝜉)2
𝑏𝑏1

𝜕𝜕𝑓𝑓(𝜂𝜂)2
𝜕𝜕𝑏𝑏1

𝜕𝜕𝑓𝑓(𝜉𝜉)2
𝑏𝑏2

𝜕𝜕𝑓𝑓(𝜂𝜂)2
𝜕𝜕𝑏𝑏2

𝜕𝜕𝑓𝑓(𝜉𝜉)3
𝜕𝜕𝑎𝑎0

𝜕𝜕𝑓𝑓(𝜂𝜂)3
𝜕𝜕𝑎𝑎0

𝜕𝜕𝑓𝑓(𝜉𝜉)3
𝜕𝜕𝑎𝑎1

𝜕𝜕𝑓𝑓(𝜂𝜂)3
𝜕𝜕𝑎𝑎1

𝜕𝜕𝑓𝑓(𝜉𝜉)3
𝜕𝜕𝑎𝑎2

𝜕𝜕𝑓𝑓(𝜂𝜂)3
𝜕𝜕𝑎𝑎2

𝜕𝜕𝑓𝑓(𝜉𝜉)3
𝜕𝜕𝑏𝑏0

𝜕𝜕𝑓𝑓(𝜂𝜂)3
𝜕𝜕𝑏𝑏0

𝜕𝜕𝑓𝑓(𝜉𝜉)3
𝜕𝜕𝑏𝑏1

𝜕𝜕𝑓𝑓(𝜂𝜂)3
𝜕𝜕𝑏𝑏1

𝜕𝜕𝑓𝑓(𝜉𝜉)3
𝜕𝜕𝑏𝑏2

𝜕𝜕𝑓𝑓(𝜂𝜂)3
𝜕𝜕𝑏𝑏2 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

    (9) 

𝑱𝑱𝑥𝑥(1,2,3) =

⎣
⎢
⎢
⎢
⎢
⎡10

𝑥𝑥1
0

𝑦𝑦1
0

0
1

0
𝑥𝑥1

0
𝑦𝑦1

1
0

𝑥𝑥2
0

𝑦𝑦2
0

0
1

0
𝑥𝑥2

0
𝑦𝑦2

1
0

𝑥𝑥3
0

𝑦𝑦3
0

0
1

0
𝑥𝑥3

0
𝑦𝑦3⎦
⎥
⎥
⎥
⎥
⎤

                (10) 

𝑱𝑱𝑦𝑦(1,2,3) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓(𝜉𝜉)1
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓(𝜂𝜂)1
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓(𝜉𝜉)1
𝜕𝜕𝑦𝑦1

𝜕𝜕𝑓𝑓(𝜂𝜂)1
𝜕𝜕𝑦𝑦1

𝜕𝜕𝑓𝑓(𝜉𝜉)1
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑓𝑓(𝜂𝜂)1
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑓𝑓(𝜉𝜉)1
𝜕𝜕𝑦𝑦2

𝜕𝜕𝑓𝑓(𝜂𝜂)1
𝜕𝜕𝑦𝑦2

𝜕𝜕𝑓𝑓(𝜉𝜉)1
𝜕𝜕𝑥𝑥3

𝜕𝜕𝑓𝑓(𝜂𝜂)1
𝜕𝜕𝑥𝑥3

𝜕𝜕𝑓𝑓(𝜉𝜉)1
𝜕𝜕𝑦𝑦3

𝜕𝜕𝑓𝑓(𝜂𝜂)1
𝜕𝜕𝑦𝑦3

𝜕𝜕𝑓𝑓(𝜉𝜉)2
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓(𝜂𝜂)2
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓(𝜉𝜉)2
𝜕𝜕𝑦𝑦1

𝜕𝜕𝑓𝑓(𝜂𝜂)2
𝜕𝜕𝑦𝑦1

𝜕𝜕𝑓𝑓(𝜉𝜉)2
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑓𝑓(𝜂𝜂)2
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑓𝑓(𝜉𝜉)2
𝜕𝜕𝑦𝑦2

𝜕𝜕𝑓𝑓(𝜂𝜂)2
𝜕𝜕𝑦𝑦2

𝜕𝜕𝑓𝑓(𝜉𝜉)2
𝜕𝜕𝑥𝑥3

𝜕𝜕𝑓𝑓(𝜂𝜂)2
𝜕𝜕𝑥𝑥3

𝜕𝜕𝑓𝑓(𝜉𝜉)2
𝜕𝜕𝑦𝑦3

𝜕𝜕𝑓𝑓(𝜂𝜂)2
𝜕𝜕𝑦𝑦3

𝜕𝜕𝑓𝑓(𝜉𝜉)3
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓(𝜂𝜂)3
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓(𝜉𝜉)3
𝜕𝜕𝑦𝑦1

𝜕𝜕𝑓𝑓(𝜂𝜂)3
𝜕𝜕𝑦𝑦1

𝜕𝜕𝑓𝑓(𝜉𝜉)3
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑓𝑓(𝜂𝜂)3
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑓𝑓(𝜉𝜉)3
𝜕𝜕𝑦𝑦2

𝜕𝜕𝑓𝑓(𝜂𝜂)3
𝜕𝜕𝑦𝑦2

𝜕𝜕𝑓𝑓(𝜉𝜉)3
𝜕𝜕𝑥𝑥3

𝜕𝜕𝑓𝑓(𝜂𝜂)3
𝜕𝜕𝑥𝑥3

𝜕𝜕𝑓𝑓(𝜉𝜉)3
𝜕𝜕𝑦𝑦3

𝜕𝜕𝑓𝑓(𝜂𝜂)3
𝜕𝜕𝑦𝑦3 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

               (11) 

𝑱𝑱𝑦𝑦(1,2,3) =

⎣
⎢
⎢
⎢
⎢
⎡
𝑎𝑎1
𝑏𝑏1
0
0
0
0

𝑎𝑎2
𝑏𝑏2
0
0
0
0

0
0
𝑎𝑎1
𝑏𝑏1
0
0

0
0
𝑎𝑎2
𝑏𝑏2
0
0

0
0
0
0
𝑎𝑎1
𝑏𝑏1

0
0
0
0
𝑎𝑎2
𝑏𝑏2⎦
⎥
⎥
⎥
⎥
⎤

                (12) 

After this, we calculate the transformation parameters as weighted mean values for 
each combination with 3 points. Then we form groups of 4 points in each 
combination, where the number of combinations will be 70. We calculate the 
weighted mean values of parameters for each combination with 4 points. Based on 
these parameters, we calculate the residuals in each combination of 4 points. Using 
the residuals, we calculate the standard errors of unit weight for each case.  
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We calculate the chi-square test values for each combination, and comparing them 
with the pre-set the chi-square test value, we can decide the result is free from gross 
errors or not by null-hypothesis. The results of the accepted combinations are 
summarized in Table 6 out of all 70 possible combinations formed from 4 points, 
where the chi-square test values are under the previously set value of 𝜒𝜒𝑡𝑡2 =5.990. 
In any other combination of 4 points, there is a chance for a measurement with gross 
error at some point or points. 

Table 6 
Accepted combinations of 4 points 

Combinations of 
4 Points  

Standard Error of 
Unit Weight (𝜎𝜎0) 

Chi-square test 
value (𝜒𝜒𝑐𝑐2) 

 1  3  5  7 0.0074  2.223 
 1  3  5  8 0.0047  0.895 
 1  3  7  8 0.0067  1.819 
 1  5  7  8 0.0045  0.819 
 3  5  7  8 0.0079  2.561 

The smallest value of standard error of unit weight is 0.0045 and it belongs to the 
combination having points 1, 5, 7 and 8. The chi-square test value is 0.819, which 
is less than the previously set value of 5.990. It means we can accept this 
combination and we can regard it as the best estimated solution, which is free from 
gross errors. After that, by assigning the remaining points to the selected 4 points 
one by one, we can form 4 combinations of 5 points, where only one point differs 
from the other combinations. We calculate the chi-square test values for these 
combinations four times, since we can form four combinations from 5 points where 
the added point is always included. Comparing the chi-square values with the pre-
set value of 5.990, we conclude that point 3 is free form gross-errors, but points 2, 
4, 6 are having gross errors as it is seen in Table 7. 

Table 7 
Results of combinations consisting 5 points 

Point No. to be 
investigated 

Combinations 
of 5 Points  

Combinations 
of 4 Points 

Standard Error of 
Unit Weight (𝜎𝜎0) 

Chi-square test 
value (𝜒𝜒𝑐𝑐2) 

2  1  2  5  7  8 1  2  5  7 0.0426 73.993 
1  2  5  8 0.0412 69.464 
1  2  7  8 0.0244 24.349 
2  5  7  8 0.0525 112.686 

3  1  3  5  7  8 1  3  5  7 0.0074 2.223 
1  3  5  8 0.0047 0.895 
1  3  7  8 0.0067 1.819 
3  5  7  8 0.0079 2.561 

4  1  4  5  7  8 1  4  5  7 0.1536 963.263 
1  4  5  8 0.1194 581.387 
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1  4  7  8 0.1288 677.456 
4  5  7  8 0.1933 1524.465 

6  1  5  6  7  8 1  5  6  7 0.0933 355.553 
1  5  6  8 0.0625 159.286 
1  6  7  8 0.0438 78.193 
5  6  7  8 0.0973 386.603 

After excluding these points, we repeat the calculation of the weighted mean value 
and using the adjusted parameters, we calculate the final residuals. There are 
residuals marked with asterisks which exceed three times the expected error in 
Table 8.  We can conclude that the gross-error detection was successful, the residual 
values calculated at wrong points are close to the real errors (see also Table 4). 

Table 8 
Calculated residuals in case of gross error detection 

Point 
No. 

Residuals 
[mm] 

Gross errors 
[mm] 

xv  yv  ud  vd  

1   0.0017     0.0044     
2  -0.1451*   -0.0022   +0.140  
3  -0.0036     0.0049     
4   0.0097    -0.4223*   +0.420 
5   0.0009    -0.0046     
6   0.2870*   -0.0071   -0.280  
7   0.0060    -0.0051     
8  -0.0051     0.0004     

Table 9 proves that the calculated parameters after excluding the points with gross-
errors show a good fit with the parameters calculated from the error-free data set, 
and the standard error of unit weight is the same as the pre-estimated error. 

Table 9 
Affine transformation parameters derived from an error-free dataset 

Parameters 0a  1a  2a  0b  1b  2b  

Gross-error 
free 
solution  

116.19862 -0.01400 0.00004 114.58093 -0.00004 -0.01400 

Solution 
after 
detection 

116.20344 -0.01400               0.00004            114.58073             -0.00004             -0.01400 

Difference -0.00482 0.00000 0.00000 0.00020 0.00000 0.00000 
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3.2 Error Filtering Process with RANSAC 
As a comparison, let's examine the example presented in the previous chapter using 
the RANSAC method. The first step is the initialization. We need to set the 
following parameters: 

𝑠𝑠 – the smallest number of points required to solve affine transformation 
𝑑𝑑 – the threshold used to identify a point that fits well to the solution 
𝑇𝑇 – the number of nearby points required to assert a model fits well 
𝑁𝑁 – the number of iterations required 

In our case, the value of 𝑠𝑠 is 3, since at least this number of points is required to 
solve the affine transformation without adjustment. The value of 𝑑𝑑 can be chosen 
in many ways, for example based on the gross-error filtering theory, the value of 𝑑𝑑 
should be five times the mean error of the expected image coordinate measurement, 
since exceeding this value the measurements are burdened by gross error. 
Accordingly, 𝑑𝑑 = 5 ∗ 0.007 𝑚𝑚𝑚𝑚, i.e. 𝑑𝑑 = 0.035 𝑚𝑚𝑚𝑚. The value of 𝑇𝑇 depends on 
how many points are assumed to have gross error. If 𝑛𝑛 is the number of points, 
among which 𝑚𝑚 point are assumed to be faulty points, then 𝑇𝑇 = 𝑛𝑛 −𝑚𝑚. Or to put 
it another way: let 𝑒𝑒 denote the probability that a point is an outlier, then 𝑇𝑇 = (1 −
𝑒𝑒) ∙ 𝑛𝑛. The probability 𝑒𝑒 can be calculated as 𝑒𝑒 = 𝑜𝑜/𝑛𝑛 where 𝑜𝑜 denotes the number 
of faulty points as assumed. We decide the value of 𝑜𝑜 and setting this value has a 
big impact on the reliability of the RANSAC method. Since the number of outlier 
points in the previous chapter was 3, let's set this value here as well. Then. the value 
𝑒𝑒 will be 3/8, i.e. 0.375. Accordingly, 𝑇𝑇 is 5. Value 𝑇𝑇 is used for early termination, 
which means we terminate the error detection process when the number of inliers 
reaches the value of 𝑇𝑇. We choose 𝑁𝑁 so that, with probability 𝑝𝑝, at least one random 
sample is free from outliers. e.g. 𝑝𝑝 = 0.95. 𝑁𝑁 can be calculated by Eq. (7) [11]. 

𝑁𝑁 = log (1−𝑝𝑝)
log (1−(1−𝑒𝑒)𝑠𝑠)

                                                                                                    (7) 

The result must be rounded up to an integer number. According to our example 𝑁𝑁 =
log (1−0.95)

log (1−(1−0.375)3)
= 11. 

After running the RANSAC algorithm, the result was the same as Table 8. Between 
multiple runs, there was only a difference in which of the 11 random samples the 
early termination occurred. As an example, let's look at one of the report received 
after the run in Fig. 2. We can see from the report that the 11 randomly selected 
samples did not have to be carried through since 𝑇𝑇=5 condition was already fulfilled 
at the 4th sample, so we were able to close the process with an early termination. 
Compare the obtained results with the values obtained in Tables 8 and 9. We can 
conclude that we got exactly the same solution. 

During the execution of the program, we used the assumption that the correct 
number of errors was 𝑜𝑜=3, and accordingly e=0.375 and 𝑁𝑁=11. Now let's see what 
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happens when the number of outlier points is 𝑜𝑜=2. Then 𝑒𝑒=0.25, 𝑁𝑁=6, 𝑇𝑇=6. In this 
case the result is varied. 

 
Figure 2 

RANSAC report with early termination of random sample number 4 
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Figure 3 

RANSAC report with the assumed outliers of o=2 
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Figure 4 

RANSAC report with too many outliers 



T. Jancsó General Algorithm for Gross Error Filtering Utilizing Weighted  
 Arithmetic Mean Value Preceding Least Square Adjustment 

‒ 198 ‒ 

 

Figure 5 
RANSAC report with four outliers 
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Sometimes we get the same result as in Fig. 2, sometimes we get false results as it 
is seen in Figs. 3 and 4. In Fig. 3 the result shows 4 outliers, which is not true. In 
Fig. 4 we got even 5 outliers, which means there are only 3 points remained for the 
affine transformation and it is not enough number of points for an adjustment 
procedure. Finally, in Fig. 5 we see the result when the half of points (four points) 
are assumed to be wrong. Even in some case we get the same result as in Fig. 3. 

In summary, we can state that the RANSAC method is sensitive to the setting of the 
initial parameters. A reliable and repeatable good result is obtained if we can 
precisely set the number of points considered faulty. In other cases, if the value of 
𝑜𝑜 is taken to be smaller or larger, the good result is obtained in the majority of cases, 
but not in all cases. It is important to note that in the examples presented, the ratio 
of outlier points to total points is higher than usual. If the RANSAC method 
provides the correct result, the values of the obtained parameters and standard errors 
are the same as the results of the method presented in this paper. Furthermore, it can 
be stated that the RANSAC method cannot be considered more complex from a 
programming point of view compared to the presented method. In my opinion, the 
two methods are similar in complexity. The complexity of the programs is well 
reflected if we compare the running times. Running the presented example on the 
computer with both methods resulted in similar running times. Using the RANSAC 
method, the running time was 336 msec without early termination. Due to its early 
termination, running times varied, with an average of 150 msec. The running time 
of the program based on weighted arithmetic mean value was 249 msec on average. 
This time also includes the calculation of adjusted values as well. 

Conclusions 

In conclusion, the detection and removal of gross errors or outliers are crucial steps 
in ensuring the accuracy and reliability of data analysis, especially in fields like 
photogrammetry. This article discussed various methods employed for gross error 
filtering, ranging from traditional techniques such as residual analysis and statistical 
tests to more advanced approaches like image matching algorithms and bundle 
block adjustment. 

The focus then shifted to a proposed algorithm that combines cross-validation and 
statistical tests for gross error detection in photogrammetry. The algorithm aims to 
identify all gross errors before the adjustment procedure and calculate adjusted 
unknown parameters with values equivalent to those obtained through the least 
squares method. By systematically deriving solutions based on different subsets of 
measurements and employing statistical tests, this method offers a comprehensive 
approach to identify and filter out gross errors in photogrammetric data. 

The detailed exploration of the Random Sample Consensus (RANSAC) method 
provided valuable insights into its strengths and limitations. While RANSAC is 
effective in filtering a subset of outliers consistent with a selected voting scheme, it 
does not guarantee the filtering of all outliers in a dataset due to its stochastic nature 
and reliance on random sampling. 
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The combined method utilizing weighted arithmetic mean values introduced in the 
article addresses the limitations of RANSAC by systematically considering 
different subsets of measurements, performing statistical tests, and iteratively 
refining the results. The algorithm's ability to filter out all measurements with gross 
errors is contingent on having a sufficient number of error-free measurements, 
ensuring there are enough equations for the adjustment in at least one group among 
all combinations. 

Additionally, an alternative modification to the algorithm was presented, 
introducing an allowable error threshold to identify gross errors based on residuals. 
This modification provides flexibility in handling gross errors and offers an 
alternative approach to ensure the reliability of the photogrammetric results. 

In summary, the proposed combined method of gross-error filtering using weighted 
arithmetic mean values demonstrates a comprehensive and systematic approach to 
gross error filtering in photogrammetry. Its adaptability to other domains suggests 
its potential applicability beyond the scope of photogrammetry, explaining the 
versatility of the algorithm in ensuring the accuracy and reliability of measurements 
in diverse fields. 

The presented methodology for error filtering in photogrammetric measurements 
has demonstrated its effectiveness in identifying and eliminating gross errors in the 
dataset. In the numerical example, the process involved the application of an affine 
transformation to convert pixel coordinates into image coordinates, with parameters 
calculated through the least-squares adjustment procedure. The coordinates of 
fiducial marks served as common points for interior orientation, assuming known 
and error-free ξ,η image coordinates obtained during camera calibration. 

The error filtering process involved intentionally introducing gross errors to 
evaluate the robustness of the proposed methodology. The results showed that the 
standard error of unit weight (σ₀) and the root mean square error remained within 
acceptable limits for the error-free dataset. However, deliberate errors led to 
increased σ₀, indicating the presence of gross errors. 

The proposed methodology for error filtering included forming combinations of 
three and four points, calculating weighted mean values, and performing a chi-
square test to identify potential gross errors. The process successfully identified and 
excluded erroneous points, and the final residuals demonstrated close agreement 
with the intentionally introduced errors. 

The effectiveness of the proposed methodology was further validated by comparing 
the calculated parameters before and after error detection. The standard error of unit 
weight for the gross-error-free solution and the solution after detection remained 
consistent, indicating the reliability of the error filtering process. 

In summary, the presented approach provides a systematic and robust method for 
identifying and filtering out gross errors in photogrammetric measurements, 
enhancing the accuracy and reliability of the resulting affine transformation 
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parameters. The successful application of this methodology contributes to the 
overall improvement of data quality in photogrammetric applications. 
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