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Abstract: In the context of error detection in measurements, various methods are available
depending on the magnitude of the errors. Very large gross errors, often coming from
mistakes, typically need to be removed before the adjustment process. In fields such as
photogrammetry and geodesy, these errors, among others, can include swapping of
coordinates and misidentification of measurement points. The next two categories consist of
moderate and small gross errors, which are more challenging to identify, as they result
inaccuracies rather than mistakes. Assuming we have redundancy in measurements for the
computation of unknown parameters, we solve the task through adjustment using the least
squares method. Faulty measurements are characterized by multiples of the mean error of
unit weight. We consider measurements burdened with small gross errors as those where the
error magnitude exceeds three times the mean error of unit weight, but does not reach twenty
times. Most established methods aim to identify and filter out these errors during the
adjustment process, either in a single step or through iterative refinement by modifying the
weight functions. This paper introduces an error-filtering algorithm capable of identifying
small, moderate, and large gross errors before executing the adjustment. The sole
requirement is that the given task can be solved with the minimum necessary number of
measurements, i.e., without redundancy in measurements. After presenting the general
algorithm, the effectiveness of the method is demonstrated through one example.
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1 Introduction

Gross errors, also known as outliers, are measurements that significantly deviate
from the expected values due to errors or anomalies in the data. Detecting and
removing these gross errors is a critical step in data analysis to ensure the reliability
and accuracy of results.

—179-



T. Jancs6 General Algorithm for Gross Error Filtering Utilizing Weighted
Arithmetic Mean Value Preceding Least Square Adjustment

Specifically in photogrammetry, several gross error filtering methods and
techniques are employed to detect and correct errors in measurements [2], [3], [4],
[6]. Some common methods include:

* Residual Analysis: This method involves the examination of the residuals, which
are the differences between observed and computed values. Large residuals can
indicate the presence of gross errors.

» Checkpoints: Checkpoints are additional control points whose coordinates are
known with high accuracy. They are used to assess the quality of the adjustment
and can help identify gross errors when there is a significant deviation between the
measured and known coordinates.

* Cross-validation: Cross-validation is a technique where different subsets of
measurements are used to adjust the parameters. Discrepancies between the results
from different subsets can reveal the presence of gross errors [5].

» Statistical tests: Various statistical tests, such as the Grubb’s test or the T-test, can
be applied to identify outliers or gross errors in the data.

* Geometric consistency checks: These checks involve assessing the geometric
relationships between different points or features in the photogrammetric model. If
these relationships do not conform to geometric constraints, it may indicate the
presence of gross errors.

* Image Matching Algorithms: In the case of stereo photogrammetry, image
matching algorithms can be used to identify inconsistencies between corresponding
points in stereo image pairs. These inconsistencies can be indicative of gross errors.

* Quality control procedures: Implementing quality control procedures in data
collection and processing can help prevent and identify gross errors. This includes
ensuring proper sensor calibration and data collection techniques.

* Manual inspection: Visual inspection and expert judgment play a role in detecting
gross errors, especially in cases where anomalies are visually apparent in the data.

* Bundle block adjustment: This is a photogrammetric technique that involves
adjusting the orientation and position of all images simultaneously. Gross errors can
be identified during the adjustment process [7].

Among the above methods, the algorithm proposed in this article is based on
combining cross-validation and statistical test. In the following, during the detailed
discussion, we will take the field of photogrammetry as a basis, but when we come
to the summary of the article, we will see that the proposed method can also be used
in other areas.
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2 Algorithm

2.1

Cross-Validation

The specific method or combination of methods used in photogrammetry will
depend on the nature of the data, the accuracy requirements, and the available tools
and software. Additionally, advancements in computer vision and machine learning
have led to the development of automated methods for gross error detection in
photogrammetry. The cross-validation is indeed a useful technique for identifying
gross errors and ensuring the reliability of measurements and parameter
adjustments. When different subsets of measurements are used to adjust parameters,
discrepancies in the results can indicate the presence of gross errors. Here are some
methods and approaches for gross error filtering in photogrammetry using cross-
validation:

Residual analysis: When cross-validation is employed, residual analysis is
a fundamental technique. It involves comparing the differences between
the observed and calculated values for each measurement. Large or
systematic discrepancies in residuals among different subsets can be
indicative of gross errors.

Checkpoint validation: Cross-validation often involves the use of
checkpoints (additional control points with known accurate coordinates).
The discrepancy between the coordinates derived from checkpoints and
the results obtained from different subsets of measurements can help
identify gross errors.

K-Fold cross-validation: This method divides the dataset into 'k' subsets or
folds. The parameters are adjusted 'k' times, each time using a different
fold for validation and the remaining folds for adjustment. Discrepancies
in the results between these iterations can reveal gross errors.

Leave-one-out cross-validation: In this method, each measurement point
is left out one at a time, and the parameters are adjusted without that
particular measurement. The resulting discrepancies when the point is
omitted can highlight errors associated with that specific measurement.

Comparison of subsets: Subsets of measurements can be randomly or
systematically chosen for adjustment. By comparing the parameters and
residuals obtained from these subsets, inconsistencies can indicate the
presence of gross errors.

Robust estimation techniques: Cross-validation can be used in
combination with robust estimation techniques, such as RANSAC
(Random Sample Consensus), which iteratively selects subsets of
measurements while identifying and filtering out outliers.
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2.1.1 RANSAC Method

By applying cross-validation in photogrammetry, these methods help to
systematically identify and filter out gross errors, ultimately leading to more
accurate and reliable photogrammetric results. The choice of method may depend
on the nature of the data, the available tools, and the specific requirements of the
project.

Before I describe the combined error filtering method mentioned in the introduction
in more detail, let's briefly examine one of the most well-known methods, the
Random Sample Consensus (RANSAC) method [8]. By reviewing this approach,
we also understand the strengths and weaknesses of this procedure.

The RANSAC method is a robust statistical technique used in various fields,
including photogrammetry, to identify and filter out gross errors and outliers from
datasets. RANSAC is particularly effective when dealing with data that may contain
a significant number of erroneous measurements or when the distribution of errors
is not known. Here's an overview of how RANSAC works when applied for gross
error filtering:

1) Initialization: RANSAC begins with an initialization process by setting a few
key parameters: the maximum number of iterations to perform (usually a
predetermined value), a threshold value that defines the acceptance criterion for
inliers, and a minimum number of data points required to fit the model (this
number depends on the model being estimated).

2) Random Sample Selection: The process continues by randomly selecting a
subset of data points from the entire dataset. This subset is often referred to as
the "sample" or "minimal sample".

3) Model estimation: Using the randomly selected data points, RANSAC estimates
a mathematical model that best fits this subset of the data. The choice of model
depends on the specific problem at hand. For instance, in photogrammetry, this
model could represent the transformation between image points and real-world
coordinates, or the model could represent the relationships between image
features, camera parameters, or other relevant parameters. The main idea is, that
the model is estimated based on the randomly selected subset of data points.
The number of these data points contains only the minimum number of
measurements required for the solution of the given task, i.e. only as much as is
necessary for the solution without the application of adjustment procedure.

4) Inlier classification: RANSAC then evaluates how well the estimated model fits
the remaining data points. Data points that fall within a certain tolerance or
threshold of the model are considered "inliers." These inliers are presumed to
represent the "good" data, while data points that deviate significantly from the
model are considered "outliers" or gross errors.
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5) Model quality assessment: RANSAC performs an assessment of the quality of
the model by counting the number of inliers, which is a measure of how well the
model describes the "correct" data.

Steps 2 to 5 are repeated for a predetermined number of iterations. In each iteration,
a new random sample is selected, a model is estimated, and the number of inliers is
counted. After multiple iterations, RANSAC selects the model that has the largest
number of inliers. This model is considered the best estimate for the "correct" data.
RANSAC identifies the data points that are inliers of the selected model.
The remaining data points, which are outliers, are considered potential gross errors
or erroneous measurements.

The procedure can be refined. Depending on the application, further refinement or
filtering of the gross errors may be performed. For instance, additional statistical
tests or techniques may be applied to verify whether the identified outliers should
be removed or retained.

RANSAC is especially useful in situations where the data may contain a significant
proportion of gross errors, as it focuses on estimating models based on the
consensus of the "good" data while filtering out the erroneous measurements. It is
a versatile technique that can be applied in various domains, including image
analysis, computer vision, and photogrammetry, to enhance the accuracy and
reliability of data analysis and parameter estimation.

On the other hand, RANSAC method does not guarantee the filtering of all outliers
in a dataset. The purpose of RANSAC is to identify and filter a subset of outliers,
specifically those that are inconsistent with a particular model, while retaining the
data points that are considered inliers. The key reasons for this are:

e Random Sampling: RANSAC selects random subsets of data points during
its iterations. If there are a majority of measurements with gross errors, the
random sampling process makes it possible with some probability that
there will never be at least one subset that consists of only measurements
without gross errors.

e Threshold setting: RANSAC employs a distance or error threshold to
determine which data points are inliers. Data points that fall within this
threshold distance of the estimated model are considered inliers, while
those beyond the threshold are considered outliers. If the threshold is too
strict, some legitimate data points may be incorrectly labeled as outliers.
Conversely, if the threshold is too lenient, some true outliers may be
treated as inliers.

e  Minimum inlier requirement: To establish that a model is a good fit for the
data, RANSAC typically requires a minimum number of inliers. If this
requirement is not met during the iterations, the model may be discarded,
even if it is a reasonable fit for the data. Conversely, a model with the
minimum number of inliers may still leave some outliers unfiltered.
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e Stochastic nature: RANSAC is a stochastic algorithm, meaning that its
results can vary depending on the random subsets selected and the order
of iterations. This stochastic character can result in differences in which
outliers are identified and filtered in different runs of the algorithm.

While RANSAC is effective in filtering a subset of outliers that are inconsistent
with the voting scheme and its main goal is not to filter all outliers with hundred
percent probability, rather, the method is designed to use a specific voting scheme
to find the optimal fitting result with a certain probability. If we want to increase
the probability, more iterations are needed. In this respect, the method presented in
this article is based on clearly identifying all gross errors based on the entire
variation scheme. Thus, this method can be an alternative to the RANSAC method
when analyzing a small number of data, but it is not claimed that the presented
method is more accurate or less complex. The advantage of the presented method
lies in the fact that the error filtering takes place before the calculation of the
adjusted values. The method also includes the calculation of the adjusted values as
a final step as well.

Its primary goal is to find a model that best fits the majority of the data (inliers)
while isolating the most significant outliers. For the filtering of all outliers, other
techniques, such as more advanced outlier detection methods, may be required.

2.1.2 Combination of Cross-Validation and Statistical Test

Let's review the proposed combined method. Our main goal is to detect all gross
errors before the adjustment procedure is performed. Another goal is to calculate
the adjusted unknown parameters the value of which should be equivalent to the
result obtained by the method of least squares. The general process of error filtering
consists of the following steps:

1) Derivation of a solution for the given task using only the minimally
necessary k measurements. The solution should be done directly, without
the use of iterations.

2) Forming g = Cf groups from i = 1, ...,n measurements in all possible
combinations forming I; vectors based on the minimally required k
measurements.

3) Find the solution for each j =1,...,g group with minimal number of
measurements k. The solutions are stored in X; vectors.

4) Calculate P; weight matrix for each j = 1, ..., g group. The weight matrix
is calculated by the implicit error propagation using Jacobians [9] as it is
indicated in Eq. (1).

Coj =Juj TyiCollyi'Taj ™ > Py = 2Cy 1
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In Eq. (1) C,, indicates the covariance matrix of measurements, usually it is a
diagonal matrix, where the squared value of the expected p, standard error of
measurements are placed in the diagonal. Cy; is the covariance matrix of
unknowns. J,; and J,; are Jacobians of unknowns and measurements
respectively. P; is calculated with the help of inverse of Cyj, ¢ is a
proportionality factor and its value can be chosen freely, and usually its value
is equal to the expected (a-priori) y, standard error of measurements.

3)

6)

=

7)

8)

Hy,:

Xf

Formation of g’ = C}},; groups in every combination by increasing k
number of minimally required measurements by one. This means that the
system of equations will be overdetermined. After this. we form
g" = C¥*1 groups from eachm’ = 1, ..., g’ group.

Calculation of the unknown parameters in x, vectors for each
overdetermined m' =1, ...,g" group by calculating Jacobian weighted
arithmetic mean as it is shown in Eq. (2). During the calculation of the
weighted mean value, we use the previously determined P; weight
matrices and x; solutions as P,,» and x,,n corresponding to the
appropriate m" =1, ..., g"' group.

" -1 "
= (Zil”zl Pm”) X an”:l(Pm”xm”) (2)

Calculation of v, vectors of residuals for each m' =1, ...,g" group
containing overdetermined measurements. Determination of o, standard
error of unit weight and the chi-square test value [10] for each
m' combination.

The adjustment clearly not burdened by a gross error, if o, standard error
of unit weight obtained after adjustment is smaller than the ¢ value taken
in Eq. (1), where c is equal to the expected (a-priori) p, standard error of
measurements. If the g, standard error of unit weight obtained during
adjustment is greater than u,, then we proceed as follows. Let's set up the
null hypothesis to compare two standard deviations as it is shown in Eq.

Q).
c? = 2 (3)

In the case of the null hypothesis in Eq. (3), the chi-square test value is
used as follows in Eq. (4).

a3
=f Pl 4)

At a certain probability level of p = 0.95% and a certain degree of
freedom of f , the statistics is given for the comparison of the standard
errors of unit weight. Let’s consider this value as a theoretical value and

denote it by )(L?. At the same time, its value can be calculated based on Eq.

().

—185—



T. Jancsé

General Algorithm for Gross Error Filtering Utilizing Weighted
Arithmetic Mean Value Preceding Least Square Adjustment

9)

2
— 00
=f= )
The calculated chi-square test value of )(3 cannot exceed the pre-set value
)(L? according to the null hypothesis formed in Eq. (3), otherwise the
corresponding combination is regarded as a solution containing gross

errors. In summary, it means, the adjustment is not burdened with a gross
error if the condition in Eq. (6) is true.

> < xt (6)

The measurements together with g, standard error of unit weight, the chi-
square test value and the decision (accepted or denied) are stored in a
matrix for each m’ combination.

10) By examining the decision matrix using a deductive method, we can select

the measurements responsible for gross errors. One possible algorithm for
selecting measurements with gross error is as follows:

o Selection of the smallest o, standard error of unit weight among
all combinations. The smallest o, error of unit weight cannot
exceed the pre-set apriori value according to the chi-square
statistical test value by null hypothesis as it is explained in Eq.
(6). The corresponding combination is regarded as the best
estimated solution. which is free from gross errors.

o We add the remaining measurements to the previously selected
and deemed the best solution one by one. With this, we increase
the number of measurements by two compared to the minimally
required measurements.

o We form all the possible combinations from this subset forming
groups in every combination by increasing the number of
minimally required measurements by one.

o We check whether the given combination is incorrect based on
the previously compiled decision matrix. If the answer is yes, then
it is clear that the extra measurement added to the best and error-
free combination causes the error and that measurement is
marked as a measurement having a gross-error.

11) After excluding the measurements having gross errors, we repeat the

calculation of the Jacobian mean value for the unknown parameters using
all the remained groups with minimally necessary measurements and
weight matrices. The obtained values will be equivalent to the values
calculated by the method of least squares.

With this algorithm, we can filter out all measurements with gross errors. One of
the important conditions for this is that we have at least enough error-free
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measurements that provide enough equations for the adjustment in at least one
group among all combinations.

This algorithm can be modified by the following as an alternative error filtering
method:

The steps are the same until step 8.

9) Selection of the smallest g, standard error of unit weight among all
combinations. The smallest o, error of unit weight cannot exceed the pre-
set apriori value according to the chi-square statistical test by null
hypothesis as it is explained in Eq. (6). The corresponding combination is
regarded as the best estimated solution. which is free from gross errors.

10) Using the best estimated solution, we calculate v; residuals for all
measurements.

11) Where v; residual exceeds the preset € allowable error, the measurement
is considered to have a gross error. Normally € allowable error is equal to
3uy, where p, denotes the estimated standard error of measurements.

12) After excluding the measurements having gross errors, we repeat the
calculation of the Jacobian mean value for the unknown parameters using
all the remained groups with minimally necessary measurements and
weight matrices. The obtained values will be equivalent to the values
calculated by the method of least squares.

3 Numerical Example

3.1 Sample Data Explanation

In photogrammetry, on a digital image with fiducial marks, the origin of the pixel
coordinate system is in the upper left corner of the image, the x coordinate axis
points to the right, and the y axis points down. The image coordinate system having
& and 7 is taken at the geometric center M of the image, as shown in Figure 1.

The affine transformation can be used to convert x,y pixel coordinates into &,n
image coordinates as it is shown in Eq. (7).

E=ay+a;x+ayy

n = bo + blx + be (7)
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Figure 1

Pixel and image coordinate systems

The parameters of ag,a,, a,, by, by, b, required for the transformation can be
calculated during the interior orientation based on the fiducial marks as common
points [1]. £, image coordinates of the fiducial marks are assumed to be known
and error-free, which were determined during the camera calibration. x,y pixel
coordinates of the fiducial marks are determined manually or by automatic
measurement using image matching with cross correlation technique. Our task is to
filter out measurements with gross-error before finalizing the transformation
parameters calculated by least-square adjustment procedure.

3.2 Error Filtering Process

Table 1 shows the image and pixel coordinates of the fiducial marks without gross
errors. The expected p, measurement accuracy is 0.5 pixel, which corresponds to
0.007 mm since the pixel size is 0.014 mm.

Table 1

Dataset of fiducial marks without gross errors

Point Pixel Coordinates [pixel] Image Coordinates [mm]

No. x y £ n
1 773.236 | 15751.796 106.006 -106.006
2 15913.793 | 15708.444 -106.003 -106.002
3 15870.307 566.669 -106.003 106.003
4 729.299 610.475 106.007 106.006
5 8344.258 | 16016.505 0.000 -110.008
6 16176.831 8137.517 -110.002 -0.001
7 8298.946 303.384 -0.001 110.004
8 466.456 8181.997 110.005 0.000
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All measurements are considered to have the same weight. Adjustment according
to the method of least squares gives the results indicated in Table 2.

Table 2

Affine transformation parameters derived from an error-free dataset

ao a; aj by b, b,
116.19862 -0.01400 0.00004 114.58093 -0.00004 -0.01400

The calculated residuals are listed in Table 3. The result of g, standard error of unit
weight calculated on the basis of residuals was 0.006, which also corresponds to the
root mean square error calculated from the residual errors as 0.006 mm. It indicates
that we obtained a result better than the expected error of 0.007 mm, and our
measurements are not burdened by gross errors.

Table 3

Calculated residuals without gross errors

Point Residuals
No. [mm]

v, vy
1 0.0016 0.0046
2 -0.0031 0.0009
3 -0.0060 0.0077
4 0.0040 -0.0020
5 0.0019 -0.0032
6 0.0067 -0.0051
7 0.0024 -0.0035
8 -0.0075 0.0007

After this, we change intentionally the measurements and there are gross errors in
measurements of 3 points (point 2, 4 and 6) as it is seen in Table 4. The values of
intentionally committed errors are also indicated in the last three columns in mm.
In this case, the result of o, standard error of unit weight calculated on the basis of
residuals was 0.1387, which also corresponds to the root mean square error
calculated from the residual errors. It indicates that there should be gross errors
among the measurements. Table 5 shows the residuals. We can see that large
residuals exist in every measurement compared to Table 3. Table 5 is a good
example, as we can see that gross errors are distributed among all the points, and
therefore it is difficult to judge which points are responsible for these errors.

After this, let's review the process of error filtering according to the proposed
methodology.
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Table 4

Dataset of fiducial marks with gross errors

Point Pixel Coordinates [pixel]

Image Coordinates [mm]

Gross errors [mm]

No. X y é_’ n du dv
1 773.236 15751.796 106.006 -106.006
2 15923.793 15708.444 -106.003 -106.002 | +0.140
3 15870.307 566.669 -106.003 106.003
4 729.299 640.475 106.007 106.006 +0.420
5 8344.258 16016.505 0.000 -110.008
6 16156.831 8137.517 -110.002 -0.001 -0.280
7 8298.946 303.384 -0.001 110.004
8 466.456 8181.997 110.005 0.000
Table 5
Calculated residuals in case of gross errors
Point Residuals [mm]
No. v, v,

1 0.0308 0.0576

2 -0.1619 -0.0838

3 -0.0703 0.0596

4 -0.0111 -0.2333

5 0.0080 -0.0213

6 0.2444 -0.0228

7 -0.0388 0.1195

8 -0.0002 0.1242

We need minimally the coordinates of three points to calculate the parameters of
the affine transformation. It means, we can create 6 equations with 6 unknowns
based on Eq. 7. Forming groups of 3 points in each combination, the number of
combinations will be 56. We form the weight matrices for each combination based
on the concepts of implicit error propagation based on Eq. (1). To do this, we first
form the functions f(§), f(n) for every combination with three points. Eq. (8)
shows an example of system of equations for points 1, 2 and 3. We create the other
systems of equations for each combination group g in analogous way.

fii=ag+ax; +ay; —§ =0
f(M1:=bo+ byx; + byy; =1, =0
f@zi=ao+aix; +ay, —§ =0
f(M)2:= Dby +byxy + by, =1, =0
f@si=ap+axs+ay; —§=0
f(M)3:=by+bix3+byy; —m3 =0

®)
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Based on Eq. (8), we can form Jacobians J, and J,, for unknowns and measurements
respectively. Eq. (9)-(10) and (11)-(12) show Jacobians J, and J,, for group of

points 1, 2 and 3 as an example.

0f(§)1 0f(©)1 0f(1 9f1 9f()1 9f (1]
dag daq day dbg dbq db,
ofm1 ofm1 ofGM1 ofm1 9f(m1 df(m1
dag daq day dbg dbq dby
0f(§)2 0f()2 0f(2 9f(2 9f(E)2 9f (D)2
] — ap ag a bo by b, (9)
x(123) T laf(m,  afma AfMz f(M2 fM)z  f(m):
dag da; da, b, by b,
0f(9s 9f(Dsz 9f)z 9f)3 9f)s 9f(Ds
dao da, da, abg aby b,
ofms  df(ms of(ms of(ms df(mz af(m)s
L Jdag daq day dbg dbq db,
1 x y1 0 O
0 0 0 1 x5 »n
1 x 0 0
Jxa23) = 0 02 362 1 % ¥, (10)
1 x3 y3 0 0
0 0 0 1 x3 Y3
rof(§)1 0f(®1 9f1 9f(1 ()1 f (D17
9x1 9y1 0x2 ) 0x3 dys
Ofm1 0f(m)1 9f(mar 9751 0f(m1  9f(ma
9x1 dy1 0x3 0y, dx3 dys3
0f(§2 0f(2 0f2 09f(2 9f(E2 9f ()2
J _| 9 0y1 0x 0y 0x3 dys3 (11)
yA23) T harm, Afme dfm2 A2 Af(2  dF (M
9x1 dy1 0x2 dy2 Ox3 dys
0f(§)s 0f()s 9f(§s 9f(Hs 9f(&s 9f (s
9x1 9y1 0x2 oy 0x3 dy3
ofms of(m)s 9f(ms 9fm)s of(ms 9f(ms
L 0x; dy1 0x oy dx3 dys
a, a, 0 0 0 O
by b, 0 0 0 O
10 0 a a, 0 O
]y(1,2,3) 0 0 bl bz 0 0 (12)
0O 0 o0 0 a a
0 0 0 0 by b,

After this, we calculate the transformation parameters as weighted mean values for
each combination with 3 points. Then we form groups of 4 points in each
combination, where the number of combinations will be 70. We calculate the
weighted mean values of parameters for each combination with 4 points. Based on
these parameters, we calculate the residuals in each combination of 4 points. Using
the residuals, we calculate the standard errors of unit weight for each case.
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We calculate the chi-square test values for each combination, and comparing them
with the pre-set the chi-square test value, we can decide the result is free from gross
errors or not by null-hypothesis. The results of the accepted combinations are
summarized in Table 6 out of all 70 possible combinations formed from 4 points,
where the chi-square test values are under the previously set value of th =5.990.
In any other combination of 4 points, there is a chance for a measurement with gross
error at some point or points.

Table 6
Accepted combinations of 4 points

Combinations of Standard Error of Chi-square test
4 Points Unit Weight (op) value (x2)
1357 0.0074 2.223

1358 0.0047 0.895

1378 0.0067 1.819

1578 0.0045 0.819
3578 0.0079 2.561

The smallest value of standard error of unit weight is 0.0045 and it belongs to the
combination having points 1, 5, 7 and 8. The chi-square test value is 0.819, which
is less than the previously set value of 5.990. It means we can accept this
combination and we can regard it as the best estimated solution, which is free from
gross errors. After that, by assigning the remaining points to the selected 4 points
one by one, we can form 4 combinations of 5 points, where only one point differs
from the other combinations. We calculate the chi-square test values for these
combinations four times, since we can form four combinations from 5 points where
the added point is always included. Comparing the chi-square values with the pre-
set value of 5.990, we conclude that point 3 is free form gross-errors, but points 2,
4, 6 are having gross errors as it is seen in Table 7.

Table 7
Results of combinations consisting 5 points
Point No. to be | Combinations | Combinations | Standard Error of | Chi-square test
investigated of 5 Points of 4 Points Unit Weight (ay) value (x2)
2 12578 1257 0.0426 73.993
1258 0.0412 69.464
1278 0.0244 24.349
2578 0.0525 112.686
3 13578 1357 0.0074 2223
1358 0.0047 0.895
1378 0.0067 1.819
3578 0.0079 2.561
4 14578 1457 0.1536 963.263
1458 0.1194 581.387
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1478 0.1288 677.456
4578 0.1933 1524.465
6 15678 1567 0.0933 355.553
15638 0.0625 159.286
16738 0.0438 78.193
5678 0.0973 386.603

After excluding these points, we repeat the calculation of the weighted mean value
and using the adjusted parameters, we calculate the final residuals. There are
residuals marked with asterisks which exceed three times the expected error in
Table 8. We can conclude that the gross-error detection was successful, the residual
values calculated at wrong points are close to the real errors (see also Table 4).

Table 8

Calculated residuals in case of gross error detection

Point Residuals Gross errors
No. [mm] [mm]
v, v, d, d,
1 0.0017 0.0044
2 -0.1451* -0.0022 +0.140
3 -0.0036 0.0049
4 0.0097 -0.4223* +0.420
5 0.0009 -0.0046
6 0.2870* -0.0071 -0.280
7 0.0060 -0.0051
8 -0.0051 0.0004

Table 9 proves that the calculated parameters after excluding the points with gross-
errors show a good fit with the parameters calculated from the error-free data set,
and the standard error of unit weight is the same as the pre-estimated error.

Table 9

Affine transformation parameters derived from an error-free dataset
Parameters a, a, a, b 0 b, b,
Gross-error | 116.19862 -0.01400 0.00004 114.58093 -0.00004 -0.01400
free
solution
Solution 116.20344 -0.01400 0.00004 114.58073 -0.00004 -0.01400
after
detection
Difference -0.00482 0.00000 0.00000 0.00020 0.00000 0.00000
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3.2 Error Filtering Process with RANSAC

As a comparison, let's examine the example presented in the previous chapter using
the RANSAC method. The first step is the initialization. We need to set the
following parameters:

s — the smallest number of points required to solve affine transformation
d — the threshold used to identify a point that fits well to the solution
T — the number of nearby points required to assert a model fits well

N — the number of iterations required

In our case, the value of s is 3, since at least this number of points is required to
solve the affine transformation without adjustment. The value of d can be chosen
in many ways, for example based on the gross-error filtering theory, the value of d
should be five times the mean error of the expected image coordinate measurement,
since exceeding this value the measurements are burdened by gross error.
Accordingly, d = 5 * 0.007 mm, i.e. d = 0.035 mm. The value of T depends on
how many points are assumed to have gross error. If n is the number of points,
among which m point are assumed to be faulty points, then T = n — m. Or to put
it another way: let e denote the probability that a point is an outlier, then T = (1 —
e) - n. The probability e can be calculated as e = 0/n where o denotes the number
of faulty points as assumed. We decide the value of o and setting this value has a
big impact on the reliability of the RANSAC method. Since the number of outlier
points in the previous chapter was 3, let's set this value here as well. Then. the value
e will be 3/8, i.e. 0.375. Accordingly, T is 5. Value T is used for early termination,
which means we terminate the error detection process when the number of inliers
reaches the value of T. We choose N so that, with probability p, at least one random
sample is free from outliers. e.g. p = 0.95. N can be calculated by Eq. (7) [11].
log (1-p)

= log (1-(1—-e)%) (7)
The result must be rounded up to an integer number. According to our example N =

log (1-0.95) =11.
log (1-(1-0.375)3)
After running the RANSAC algorithm, the result was the same as Table 8. Between
multiple runs, there was only a difference in which of the 11 random samples the
early termination occurred. As an example, let's look at one of the report received
after the run in Fig. 2. We can see from the report that the 11 randomly selected
samples did not have to be carried through since T=5 condition was already fulfilled
at the 4th sample, so we were able to close the process with an early termination.
Compare the obtained results with the values obtained in Tables 8 and 9. We can
conclude that we got exactly the same solution.

During the execution of the program, we used the assumption that the correct
number of errors was 0=3, and accordingly e=0.375 and N=11. Now let's see what
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happens when the number of outlier points is 0=2. Then e=0.25, N=6, T=6. In this
case the result is varied.
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Figure 2
RANSAC report with early termination of random sample number 4
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RANSAC report with the assumed outliers of 0=2
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RANSAC report with too many outliers
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Sometimes we get the same result as in Fig. 2, sometimes we get false results as it
is seen in Figs. 3 and 4. In Fig. 3 the result shows 4 outliers, which is not true. In
Fig. 4 we got even 5 outliers, which means there are only 3 points remained for the
affine transformation and it is not enough number of points for an adjustment
procedure. Finally, in Fig. 5 we see the result when the half of points (four points)
are assumed to be wrong. Even in some case we get the same result as in Fig. 3.

In summary, we can state that the RANSAC method is sensitive to the setting of the
initial parameters. A reliable and repeatable good result is obtained if we can
precisely set the number of points considered faulty. In other cases, if the value of
o is taken to be smaller or larger, the good result is obtained in the majority of cases,
but not in all cases. It is important to note that in the examples presented, the ratio
of outlier points to total points is higher than usual. If the RANSAC method
provides the correct result, the values of the obtained parameters and standard errors
are the same as the results of the method presented in this paper. Furthermore, it can
be stated that the RANSAC method cannot be considered more complex from a
programming point of view compared to the presented method. In my opinion, the
two methods are similar in complexity. The complexity of the programs is well
reflected if we compare the running times. Running the presented example on the
computer with both methods resulted in similar running times. Using the RANSAC
method, the running time was 336 msec without early termination. Due to its early
termination, running times varied, with an average of 150 msec. The running time
of the program based on weighted arithmetic mean value was 249 msec on average.
This time also includes the calculation of adjusted values as well.

Conclusions

In conclusion, the detection and removal of gross errors or outliers are crucial steps
in ensuring the accuracy and reliability of data analysis, especially in fields like
photogrammetry. This article discussed various methods employed for gross error
filtering, ranging from traditional techniques such as residual analysis and statistical
tests to more advanced approaches like image matching algorithms and bundle
block adjustment.

The focus then shifted to a proposed algorithm that combines cross-validation and
statistical tests for gross error detection in photogrammetry. The algorithm aims to
identify all gross errors before the adjustment procedure and calculate adjusted
unknown parameters with values equivalent to those obtained through the least
squares method. By systematically deriving solutions based on different subsets of
measurements and employing statistical tests, this method offers a comprehensive
approach to identify and filter out gross errors in photogrammetric data.

The detailed exploration of the Random Sample Consensus (RANSAC) method
provided valuable insights into its strengths and limitations. While RANSAC is
effective in filtering a subset of outliers consistent with a selected voting scheme, it
does not guarantee the filtering of all outliers in a dataset due to its stochastic nature
and reliance on random sampling.
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The combined method utilizing weighted arithmetic mean values introduced in the
article addresses the limitations of RANSAC by systematically considering
different subsets of measurements, performing statistical tests, and iteratively
refining the results. The algorithm's ability to filter out all measurements with gross
errors is contingent on having a sufficient number of error-free measurements,
ensuring there are enough equations for the adjustment in at least one group among
all combinations.

Additionally, an alternative modification to the algorithm was presented,
introducing an allowable error threshold to identify gross errors based on residuals.
This modification provides flexibility in handling gross errors and offers an
alternative approach to ensure the reliability of the photogrammetric results.

In summary, the proposed combined method of gross-error filtering using weighted
arithmetic mean values demonstrates a comprehensive and systematic approach to
gross error filtering in photogrammetry. Its adaptability to other domains suggests
its potential applicability beyond the scope of photogrammetry, explaining the
versatility of the algorithm in ensuring the accuracy and reliability of measurements
in diverse fields.

The presented methodology for error filtering in photogrammetric measurements
has demonstrated its effectiveness in identifying and eliminating gross errors in the
dataset. In the numerical example, the process involved the application of an affine
transformation to convert pixel coordinates into image coordinates, with parameters
calculated through the least-squares adjustment procedure. The coordinates of
fiducial marks served as common points for interior orientation, assuming known
and error-free £, image coordinates obtained during camera calibration.

The error filtering process involved intentionally introducing gross errors to
evaluate the robustness of the proposed methodology. The results showed that the
standard error of unit weight (co) and the root mean square error remained within
acceptable limits for the error-free dataset. However, deliberate errors led to
increased oo, indicating the presence of gross errors.

The proposed methodology for error filtering included forming combinations of
three and four points, calculating weighted mean values, and performing a chi-
square test to identify potential gross errors. The process successfully identified and
excluded erroneous points, and the final residuals demonstrated close agreement
with the intentionally introduced errors.

The effectiveness of the proposed methodology was further validated by comparing
the calculated parameters before and after error detection. The standard error of unit
weight for the gross-error-free solution and the solution after detection remained
consistent, indicating the reliability of the error filtering process.

In summary, the presented approach provides a systematic and robust method for
identifying and filtering out gross errors in photogrammetric measurements,
enhancing the accuracy and reliability of the resulting affine transformation
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parameters. The successful application of this methodology contributes to the
overall improvement of data quality in photogrammetric applications.
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