
Acta Polytechnica Hungarica Vol. 21, No. 10, 2024

 – 301 –

Fuzzy FMEA-based Risk Evaluation of Student
Software Projects

Zsolt Csaba Johanyák1,2, Attila Pásztor1
1GAMF Faculty of Engineering and Computer Science, John von Neumann
University, Izsáki út 10, H-6000 Kecskemét, Hungary,
johanyak.csaba@nje.hu; pasztor.attila@nje.hu
2Bánki Donát Faculty of Mechanical and Safety Engineering, Óbuda University,
Népszínház utca 8, H-1081 Budapest, Hungary,
johanyak.csaba@bgk.uni-obuda.hu

Abstract: Team project work plays an important role in the curriculum of computer science
engineering students. It allows students to synthesize the theoretical and practical
knowledge and skills acquired during their previous studies. In the context of project work,
student teams are often as-signed a software development task. During the project, teams
often encounter various difficulties that can potentially jeopardize the successful
completion of the project. A preliminary risk assessment can identify potential hazards in a
systematic way, helping the team to prepare for and mitigate the associated risks. This
article reports the successful application of Fuzzy Process Failure Mode and Effects
Analysis (FPFMEA). The analysis started during the project preparation phase and
continued throughout the project life cycle. The article provides valuable insights into how
to improve risk management strategies for student-led software projects, helping create a
more flexible and successful project development environment. The results demonstrate
that this approach enables effective identification of project risks and mitigation of their
impact.

Keywords: fuzzy; FMEA; project; evaluation; team work

1 Introduction

The field of software engineering is a typical area where students can acquire up-
to-date and practical knowledge through field experience, i.e., by carrying out
software projects. In practice, software is almost exclusively a result of teamwork,
and therefore it is crucial to include team-based software projects in the curricula
of the computer science engineering students. These projects give an exceptional
opportunity for students to develop their skills and deepen their theoretical
knowledge by trying it in practice as well [1].

mailto:johanyak.csaba@nje.hu

Zs. Cs. Johanyák et al. Fuzzy FMEA-based Risk Evaluation of Student Software Projects

 – 302 –

However, project work has many pitfalls. Software projects are usually complex,
which results in several risks that could hinder the progress of the project or can
even endanger the final success. For example, lack of the necessary technical and
cooperation skills, different expertise level of the team members, communication
difficulties, re-source limits resources occur frequently.

The final success of the project greatly depends on efficient project management
and understanding as well as prevention or at least alleviation of the risks
endangering the project [2]. A carefully selected and implemented preliminary
risk evaluation method can systematically identify, evaluate and rank in an early
stage of the project life cycle those factors that endanger the project. Using a
robust assessment technique could help the students to develop a tailored risk
management strategy to effectively mitigate the risk levels and enhance their
understanding of risk assessment. Students usually adopt an incremental and
iterative development model [3], thus the used risk evaluation method should
support periodic reviews and updates as well.

Process Failure Mode and Effects Analysis (PFMEA) is a well-established and
widely used technique aiming the identification and ranking of potential failures
and risks associated to the steps of a process [4]. PFMEA focuses on failure
modes, causes, their impact and effects as well as the possible mitigation solutions
to improve the efficiency, reliability, and quality of the investigated process.
Evaluating these factors in the case of a software project carried out by a student
team is am inherently subjective process containing vagueness which partly can be
traced back to the lack of experience in risk assessment [5].

In the almost 60-year history of fuzzy logic, it has been successfully applied to a
wide range of problems, including among others economics [6], aircraft control
[7], freight and supply chain management [8], etc. Fuzzy logic proved to be
particularly useful when dealing with imprecise input, and human-like reasoning
would be advantageous. Therefore, combining FMEA with a fuzzy approach
enables the inclusion of subjective or incomplete evaluations [9], the evaluations
given with linguistic terms [10], and the handling of inconsistencies [11], thus
leading sometimes to more accurate results [12].

The paper presents the application of Fuzzy PFMEA as a systematic approach for
identifying and ranking risks in software projects carried out by student teams
under instructor supervision. The paper also provides a list of recommended
actions to mitigate risks and increase the probability of successful project
completion.

The rest of this paper is organized as follows. Section 2 presents a review of
related works. Section 3 describes the fuzzy FMEA methodology applied for risk
evaluation of the investigated student project. Section 4 presents the results of the
analysis and the conclusions are drawn in Section 5.

Acta Polytechnica Hungarica Vol. 21, No. 10, 2024

 – 303 –

2 Related Works

Ahtee and Poranen [13] studied risks in software projects carried out by students.
They analyzed 76 final reports and identified four major risks faced by students:
tools and skills, technological problems, scheduling problems, and working or
studying simultaneously with the project.

Koolmanojwong and Boehm [2] analyzed the risks faced by student teams, ex-
plored the relationship between effective risk analysis and project success, and
discussed how risk patterns influence students' course of action. They collected
data using Distributed Assessment of Risk Tool (DART), milestone reports, and
surveys.

Thota, Niu, Wang, and Purdy [3] investigated how undergraduate students who
took part in agile software teams prioritized and alleviated risks. The top risks
identified by the students were significantly different from the ones that originated
from industry surveys.

Kirk, Luxton-Reilly, and Tempero [14] investigated the use of project
management reference models to identify the main areas of risk for student
projects. The computer science education (CSE) literature on group projects was
mapped to the PMBOK® Knowledge Areas (KAs), revealing a subset of relevant
KAs. The key risks for student projects were categorized using these KAs.

Khuankrue et al. [5] proposed a methodology for applying a fuzzy failure mode
and effects analysis (FMEA) model to support project-based software engineering
education. The presented methodology uses intelligent agents to construct
membership functions for a fuzzy rule-based system. These agents learn from
historical data and assist students in developing expertise in risk assessment.

Erbay and Özkan [11] proposed the integration of fuzzy cognitive maps (FCMs)
in-to the Fuzzy FMEA methodology to manage the risks of a software project.
They aimed to create a technique that allows to take into consideration the
relationships between the risks of a project under ambiguous circumstances.

Ibraigheeth and Abdullah [15] reported the development of an expert risk evalua-
tion system based on empirical study and real data from software projects to
identify factors that affect project success. They did not focus specifically on
student projects, but rather on real-world projects to help decision-makers evaluate
the expected risks and estimate risk probability based on critical success factors.

Zs. Cs. Johanyák et al. Fuzzy FMEA-based Risk Evaluation of Student Software Projects

 – 304 –

3 Fuzzy FMEA

The Process Failure Mode and Effects Analysis (PFMEA) [16] [17] is a widely
used method in quality and risk management that aims to conduct a detailed and
flexible analysis of inherent risks and failure possibilities within a process.
The goal is to reduce risks and costs while improving overall quality. The Fuzzy
PFMEA (FPFMEA) extends the original method by replacing the multiplication-
based Risk Priority Number (RPN) calculation with a fuzzy inference-based RPN
determination. The introduction of fuzzy logic in PFMEA execution allows for the
consideration of subjective risks and uncertain-ties in the analysis, as perceived by
the individuals conducting it. Typically, FMEA is carried out in teams, leveraging
the expertise of team members. In almost all steps, field experience and
knowledge are crucial requirements for achieving final success. When analyzing a
software development process, specialists involved in architecture design,
implementation, and testing should always be part of the team.

The flow of FPFMEA is presented in Figure 1, with detailed steps described
below.

Figure 1

Flow of FPFMEA

Steps of the Process: The analysis begins by determining the steps of the process
being investigated. This activity can be supported by creating a flowchart.

Potential Failure Modes: For each step, one or more failure possibilities that could
jeopardize the successful completion of the process are identified. Visual tools,
such as fishbone (Ishikawa) diagrams, can provide crucial support for organizing
ideas of team members.

Acta Polytechnica Hungarica Vol. 21, No. 10, 2024

 – 305 –

Potential Effects: Each failure mode can influence the process or its outcome in
different ways that have to be identified during this step of the analysis. In several
cases, effects can be categorized as internal (e.g., performance loss, software
downtime, data loss) and external (e.g., customer dissatisfaction, loss of
reputation, legal consequences).

Causes of Failure: Identifying the underlying reasons or mechanisms leading to a
specific failure mode is one of the most critical steps of an FMEA. This
identification allows the team to address root causes and implement effective
corrective actions. This activity can also be supported by a fishbone diagram.

Current Control/Preventive Actions: Documenting actions and measures that
counteract the possibility of a given failure mode occurring in the current process
form.

Evaluation of Risks Associated with Identified Failure Modes: This activity
includes evaluating severity (S), occurrence (O), and detection (D), each rated on
a scale from 1 to 10. Severity indicates how serious the risk associated with the
potential failure is. It is strongly related to the effects of the failure. Occurrence
shows how often a given failure mode is expected to occur. Detection expresses
how likely will the failure slip through the current control. The evaluation of the
three aspects is usually supported by rating catalogs defined by standards,
textbooks, or internal guides of the company. In the case of FPFMEA a fuzzy
partition is defined for each of them (e.g. see Figure 3 and Table 1), which allows
the team to think in overlapping categories expressed by fuzzy sets. In this case,
the rating guides (e.g. Tables 2, 3, and 4) explain the meaning of these categories.

The evaluations (S, O, and D) given by the team are fuzzified in their respective
partition, followed by a Mamdani-type fuzzy inference. This inference is based on
IF-THEN type fuzzy rules, where the antecedent parts are fuzzy sets from the
Severity, Occurrence, and Detection partitions. The output fuzzy set is defuzzified
using an arbi-trary defuzzification method, resulting in a value between 1 and
1000. This value is called Risk Priority Number (RPN) and represents the risk
associated with the given cause-failure mode-effect tuple.

Recommended Preventive and Control Actions: All risks that have an RPN value
high-er than a threshold are addressed by the team to find effective measures
either to prevent their happening or to ensure that they will be recognized in time.
All problems cannot be solved instantly therefore the team prioritizes and
addresses problems in decreasing order of RPNs. For each recommended action, a
responsible person and a deadline are defined.

Re-evaluation and Continuous Analysis: After the implementation deadline, the
team re-evaluates cause-failure mode-effect combinations, focusing on the actions
taken and their effect on the RPN value. New actions are prescribed if necessary.
The first round of analysis occurs during the planning phase of the process before
its actual implementation. However, FMEA is a regular review following process

Zs. Cs. Johanyák et al. Fuzzy FMEA-based Risk Evaluation of Student Software Projects

 – 306 –

implementation, and in any round, new failure modes, causes, or effects may be
identified (see dashed line in Figure 1). Continuous improvement and periodic
reviews may be always necessary to ensure ongoing effectiveness.

Figure 2

Fuzzy inference based RPN determination

4 Analysis in Practice

Students majoring in computer engineering are required to solve a complex prob-
lem in the sixth semester of their studies in a so-called project task. It allows them
to synthesize the knowledge acquired as a result of several courses as well as to
deepen their practical skills by using a comprehensive approach to problem
solving. In a project assignment, four or five students work together as a team
under the supervision of an instructor. Their task usually includes research,
planning, and execution steps.

In the case of software projects, a preliminary risk assessment can significantly
lower the probability of unsuccessful completion of the course and contribute to a
higher quality final product. This section presents the results of a fuzzy FMEA-
based risk evaluation started right at the beginning of the project work and
maintained throughout the project. The analysis was elaborated by the team
members and the instructor together. The task was to develop a library containing
the implementation of the optimization algorithms: Newton's method, Bees
Algorithm, Harmony Search, and Bacterial Memetic Algorithm. The target
platform was .NET framework, while the expected tools were C# language and
Visual Studio. The library had to be implemented as a class library, which can
then be easily used by any application requiring optimization. All the desired
methods are used to do optimization over continuous variables using an iterative
approach.

As a preparatory step, we defined fuzzy partitions for all three aspects of the anal-
ysis (see Table 3 Figure 3) as well as for the RPN (see Figure 4 Table 5). To help
the team carry out the analysis for each fuzzy set of the linguistic variables S, O,

Acta Polytechnica Hungarica Vol. 21, No. 10, 2024

 – 307 –

and D we also defined a short explanation and an example for each of them (see
Tables 2, 3, and 4). A fuzzy rule base was also defined to support the RPN
determination. Three example rules are shown below, while the rest of the rule
base is available on GitHub through the link given in the Supplementary Materials
section. The fuzzy system uses Mamdani type inference. Several programming
instructors and a group of students who successfully completed the project work
course before took pat in the validation of the rule base and the fuzzy model. Their
feedback was incorporated into the final version.

Different defuzzification types were tried in course of the development of the
fuzzy model. Eventually the centroid type provided the results that were
conforming to our expectation and the demands of the people participating in the
validation of the system.

If (S  is  VL) and (O  is  VL) and (D  is  VL) then (RPN  is  VL)

If (S  is  VH) and (O  is  VH) and (D  is  M) then (RPN  is  VH)

If (S  is  VH) and (O  is  VH) and (D  is  VH) then (RPN  is  VH)

Table 1
Linguistic values and fuzzy membership function parameters for the three aspects of FMEA

Linguistic values Severity (S) / Occurrence (O) /
Detection (D) parameters

Very low (VL) (1.00, 1.00, 3.25)
Low (L) (1.00, 3.25, 5.50)
Medium (M) (3.25, 5.50, 7.75)
High (H) (5.50, 7.75, 10.00)
Very High (VH) (7.75, 10.00, 10.00)

Figure 3

Membership functions for the three aspects (S, O, D) of FMEA

Zs. Cs. Johanyák et al. Fuzzy FMEA-based Risk Evaluation of Student Software Projects

 – 308 –

Table 2
Rating guide for Severity with example cases related to the failure “poor communication”

Linguistic values Explanation and example
Very low (VL) A minor failure in the software process that does not impact the

project timeline or meeting the deadline. For example, there is a
slight misunderstanding about the preferred naming convention for
variables or functions.

Low (L) A failure that has less impact on the performance of the team. For
example, team members have different interpretations of the
algorithmic steps or parameter settings.

Medium (M) Regular communication breakdowns leading to delays in task
completion, occasional rework, and some impact on team morale.
For example, a miscommunication that leads to significant
deviations from the intended behavior or performance of the
optimization algorithms.

High (H) A failure that has a significant impact on the software project. It
causes serious problems, but they can be solved. For example,
team members misunderstand the security requirements or fail to
address a crucial performance constraint.

Very High (VH) Very serious failures that are critical for the software project. It has
very severe consequences. For example, team members fail to
communicate essential requirements, dependencies, or deadlines,
resulting in a complete mismatch between expectations and
deliverables.

Table 3
Rating guide for Occurence with example cases related to the failure “poor communication”

Linguistic value Explanation and example
Very low (VL) The likelihood of the occurrence of the failure is very low. For

example, all team members are at the same physical location and
they have a history of effective communication and good
collaboration.

Low (L) Rare or temporary failures. For example, team members are in
different time zones but have regular virtual meetings, and they
use communication tools effectively. Occasional challenges are
possible.

Medium (M) The failure has a moderate chance to occur. For example, the team
members are at different locations and they use asynchronous
communication tools.

High (H) There are significant factors or conditions that increase the chances
of failure. For example, team members have different
communication preferences and their schedule does not allow even
virtual meetings.

Very High (VH) There are strong indicators or conditions that make failure highly
probable or imminent. For example, team members are at different
locations and do not have any experience in working together or
working in a team.

Acta Polytechnica Hungarica Vol. 21, No. 10, 2024

 – 309 –

Table 4
Rating guide for Detection with example cases related to the failure “poor communication”

Linguistic values Explanation and example
Very low (VL) Very easily recognizable failure or risk. It is sure that it will be

detected by the current control measures. For example, the team
is well coordinated and automated task management and
communication tracking tools are used.

Low (L) The detection of the failure is highly likely by the current
monitoring measures. For example, updates are consistently
communicated and the team uses a centralized communication
system.

Medium (M) The detection of the failure is moderately likely using the current
detection methods. For example, there are regular team meetings
but no logs are kept.

High (H) The failure is hard to detect, it can easily escape the current
control measures. For example, inconsistent reporting methods
are used across teams or the project documentation is not
consistently updated.

Very High (VH) It is almost impossible to detect immediately the failure. For
example, team members work in different time zones, and there
is no established protocol for asynchronous communication.
Thus, misunderstandings in project requirements might stay
unnoticed for a long time.

Table5
Linguistic values and fuzzy membership function parameters for the risk priority evaluation

Linguistic values Risk Priority (RPN) set parameters
Very Low (VL) (1.00, 1.00, 167.50)
Low (L) (1.00, 167.50, 334.00)
Medium Low(ML) (167.50, 334.00, 500.50)
Medium (M) (334.00, 500.50, 667.00)
Medium High (MH) (500.50, 667.00, 833.5,)
High (H) (667.00, 833.50, 1000.00)
Very High (VH) (833.50, 1000.00, 1000.00)

Thus, the student team guided by an instructor could start their work with plan-
ning the steps of the development process (Figure 5). It starts with the designing
of the Application Programming Interface (API) of the library followed by the
development of implementation of each algorithm. After choosing the current
algorithm the team has to study the theoretical description, do the implementation,
and test it. The latter two steps could involve some repetitions if the results of the
tests revealed the necessity of a modification in the implementation. Next, the
module has to be integrated in the library followed by integration tests that could
also result in some modification in the implementation. Having the integration
process successfully finished the team can choose the next optimization method to

Zs. Cs. Johanyák et al. Fuzzy FMEA-based Risk Evaluation of Student Software Projects

 – 310 –

be implemented. The above presented steps can include one or more substeps as
well (Table 6).

Figure 4

Membership functions for the risk priority evaluation

Figure 5

Flow of the optimization library development

In the case of each substep of the above presented flow the team carefully investi-
gated all the possible failure modes that could threat the successful completion of
the project. After evaluating the S, O, and D aspects the failure-effect-cause tuples
were ordered in decreasing order of their RPN values followed by the definition of
counter measures aiming the mitigation of their risk. The RPN values of the
discovered risks in decreasing order are presented in the bar chart in Figure 6.
Under each bar the number indicates to which failure-effect-cause tuple it belongs.
The first ten rows of the FMEA table containing the first ten most critical risks are
presented in Table 7. The rest of the analysis is available on GitHub through the
link given in the Supplementary Materials section.

Table 6
Substeps of the development process

Main step Substep
Communication Communication
Teamwork Teamwork
Design API Study existing data structures

Acta Polytechnica Hungarica Vol. 21, No. 10, 2024

 – 311 –

 Create API
Study algorithm description Study algorithm description
Implement algorithm Search for existing implementation
 Data structure design
 Adapt an existing sample solution
 Implement algorithm
 Chose default values for hyperparamters
 Performance optimization
 Documentation
Unit test Unit test
Integrate into library Compatibility check
 Integration with the visual interface
Integration test Integration test

After carrying out the recommended actions each failure-effect-cause tuple was
re-evaluated and a significant decrease of the RPN values could be noticed.
The results obtained in the case of the ten most significant risks are presented in
Table 8. The rest of the results of the re-evaluation is available on GitHub through
the link given in the Supplementary Materials section. The bar chart of the whole
list of re-evaluated RPN values are shown in Figure 6.

Figure 6

The RPN values of the risks in decreasing order

Zs. Cs. Johanyák et al. Fuzzy FMEA-based Risk Evaluation of Student Software Projects

 – 312 –

Table 7
The ten most critical risks, their evaluation, and the recommended actions

No Substep Potential failure mode Potential effect of
failure

Potential cause of
failure

Control,
preventio

S O D RPN Recommended action

19 Unit test The test plan does not
give full code coverage

Implementation not tested
properly

Missing test cases - 8 7 7 773.00 Usage of automatic code
coverage evaluation tools.

14 Chose default values for
hyperparamters

Sub-optimal values Reduced efficiency of the
algorithm

Lack of attention or lack of
knowledge

- 8 3 8 666.93 Hyper-paramter review
during team meetings

1 Communication Poor communication Team members
misunderstand the
security requirements

Insufficient security
related knowledge

- 8 3 7 577.6 Dedicate meeting for
discussing security
requirements

6 Study algorithm
description

Incorrect interpretation Incorrect implementation Lack of basic
theoretical knowledge

- 5 4 8 561.06 Discussion of the algorithm
during team meatings

17 Documentation Poor documentation Increased likelihood of
introducing errors during
updates

Incomplete or unclear
comments in the code

- 4 6 6 546.73 Regular code review

11 Implement algorithm Lack of error/exception
handling

Unhandled exceptions
leading to program
crashes or unexpected
behavior

Overlooking potential
failure points

- 7 3 6 520.68 Emphasize on team meetings
the importance of error
handling mechanisms

8 Search for existing
implementation

The sample solution is
not correct

Incorrect implementation The developer of the
sample solution made a
wrong implementation

Unit test 9 2 5 500.50 Code review and test on
sample data

21 Integration with the visual
interface

Integration not possible The visual interface of the
library lacks the
implementation of the
algorithm

Inadequate background
knowledge

- 9 5 2 500.50 Consultation, request for help

18 Documentation Poor documentation Increased likelihood of
introducing errors during
updates

Neglecting documentation
during development

- 4 5 5 454.27 Maintain up-to-date
documentation.
Conduct code reviews to
ensure clarity

2 Teamwork Ineffective collaboration Duplication of efforts Poorly defined
responsibilities

- 5 3 5 425.34 Define roles and
responsibilities. Conduct
regular team meetings and
code reviews.

Current status

Figure 7

The RPN values of the risks after the re-evaluation

Table 8
Re-evaluation of the most critical risks after taking actions

Action results
No Potential failure mode Action taken S O D RPN
19 The test plan does not

give full code coverage
Usage of automatic code
coverage evaluation tools.

4 2 1 140.03

14 Sub-optimal values Hyper-paramter review 7 1 1 167.57

Acta Polytechnica Hungarica Vol. 21, No. 10, 2024

 – 313 –

Action results
No Potential failure mode Action taken S O D RPN

during team meetings
1 Poor communication Dedicated meeting for

discussing security
requirements

8 1 2 243.31

6 Incorrect interpretation Algorithm discussed 5 1 2 161.62
17 Poor documentation Regular code review 4 3 1 165.8
11 Lack of error/exception

handling
Emphasize on team meetings
the importance of error
handling mechanisms. Create
unit tests for stress testing.

7 2 2 323.14

8 The sample solution is
not correct

Code review and test on
sample data

3 2 1 140.03

21 Integration not possible Consultation, request for help 5 2 2 237.52
18 Poor documentation Maintain up-to-date

documentation.
Conduct code reviews to
ensure clarity

4 2 1 140.03

2 Ineffective
collaboration

Define roles and
responsibilities. Conduct
regular team meetings and
code reviews.

5 1 1 162.48

Conclusions

The preliminary risk assessment presented in this paper yielded positive results.
The team identified important risk factors and defined countermeasures that
mitigated the risks associated with the cause-failure-effect tuples. For instance, the
use of automatic code coverage evaluation tools reduced the RPN value by 82% in
cases where the unit tests failed to provide full code coverage. In addition,
introducing hyper-parameter reviews during team meetings helped avoid sub-
optimal values and reduced the related RPN value by 75%. The team also made
significant efforts to improve inter-team communication and included regular code
reviews, which helped alleviate multiple problems and ensure correct
implementation of optimization algorithms.

Although there are still some topics where the RPN reduction could be considered
moderate, including the analysis as the first step of the project work led to clear
improvements in the approach and attitude of students towards software
development and teamwork. It also helped them to synthesize and apply their
theoretical and practical knowledge and experiences acquired during previous
courses and individual projects.

After the successful execution of the FPFMEA for a student team work software
project one year later in the case of half of the student teams similar analyses were

Zs. Cs. Johanyák et al. Fuzzy FMEA-based Risk Evaluation of Student Software Projects

 – 314 –

carried out. At the end of the semester these teams managed to get in average
about 19% higher evaluation (points) for their projects.

Further research will focus on improvement of the fuzzy model by considering al-
ternative inference and model building techniques like the ones presented in [18],
[19], [20], and [21].

Supplementary Materials

The definition of the fuzzy system using Matlab's Fuzzy Logic Toolbox's FIS
format as well as the Excel file containing the FMEA table and the charts with the
RPN values can be downloaded at:
https://github.com/jzscsaba/FFMEARiskEvalStudSwtProj

References

[1] C. Farré, X. Franch, M. Oriol, and A. Volkova, “Supporting Students in
Team-Based Software Development Projects: An Exploratory Study,” in
Research Challenges in Information Science: Information Science and the
Connected World, Vol. 476, S. Nurcan, A. L. Opdahl, H. Mouratidis, and
A. Tsohou, Eds., in Lecture Notes in Business Information Processing, Vol.
476, Cham: Springer Nature Switzerland, 2023, pp. 568-576, doi:
10.1007/978-3-031-33080-3_39

[2] S. Koolmanojwong and B. Boehm, “A look at software engineering risks in
a team project course,” in 2013 26th International Conference on Software
Engineering Education and Training (CSEE&T), San Francisco, CA, USA:
IEEE, May 2013, pp. 21-30, doi: 10.1109/CSEET.2013.6595233

[3] V. R. C. Thota, N. Niu, W. Wang, and C. Purdy, “Students’ Perceptions of
Software Risks,” in 2017 ASEE Annual Conference & Exposition
Proceedings, Columbus, Ohio: ASEE Conferences, Jun. 2017, p. 28871,
doi: 10.18260/1-2--28871

[4] A. Boldizsár, E. Török, and A. Pásztor, “Supplier Qualification Using
FMEA in a Meat Company,” Periodica Polytechnica Transportation
Engineering, Vol. 51, No. 4, pp. 323-328, 2023, Accessed: Dec. 28, 2023,
[Online] Available: https://pp.bme.hu/tr/article/view/22548

[5] I. Khuankrue, F. Kumeno, Y. Ohashi, and Y. Tsujimura, “Applying Fuzzy
Rule-Based System on FMEA to Assess the Risks on Project-Based
Software Engineering Education,” JSEA, Vol. 10, No. 07, pp. 591-604,
2017, doi: 10.4236/jsea.2017.107032

[6] S. Gáspár, Z. Musinszki, I. Z. Hágen, Á. Barta, J. Bárczi, and G.
Thalmeiner, “Developing a Controlling Model for Analyzing the
Subjectivity of Enterprise Sustainability and Expert Group Judgments
Using Fuzzy Triangular Membership Functions,” Sustainability, Vol. 15,
No. 10, p. 7981, May 2023, doi: 10.3390/su15107981

Acta Polytechnica Hungarica Vol. 21, No. 10, 2024

 – 315 –

[7] J. Vascak, P. Kovacik, K. Hirota, and P. Sincak, “Performance-based
adaptive fuzzy control of aircrafts,” in 10th IEEE International Conference
on Fuzzy Systems (Cat. No.01CH37297), Melbourne, Vic., Australia: IEEE,
2001, pp. 761-764. doi: 10.1109/FUZZ.2001.1009066

[8] R. Karmakar, S. K. Mazumder, M. B. Hossain, C. B. Illes, and A. Garai,
“Sustainable Green Economy for a Supply Chain with Remanufacturing by
Both the Supplier and Manufacturer in a Varying Market,” Logistics, Vol.
7, No. 3, p. 37, Jul. 2023, doi: 10.3390/logistics7030037

[9] O. M. Testik and E. T. Unlu, “Fuzzy FMEA in risk assessment for test and
calibration laboratories,” Quality & Reliability Eng, Vol. 39, No. 2, pp.
575-589, Mar. 2023, doi: 10.1002/qre.3198

[10] E. Kadena, S. Koçak, K. Takács-György, and A. Keszthelyi, “FMEA in
Smartphones: A Fuzzy Approach,” Mathematics, Vol. 10, No. 3, p. 513,
Feb. 2022, doi: 10.3390/math10030513

[11] B. Erbay and C. Özkan, “Fuzzy FMEA Application Combined with Fuzzy
Cognitive Maps to Manage the Risks of a Software Project,” European
Journal of Engineering and Formal Sciences, Vol. 2, No. 2, p. 7, Jun. 2018,
doi: 10.26417/ejef.v2i2.p7-22

[12] C. Arslan Kazan, H. Koruca, and B. Karatop, “Cost Optmization with
Internet Supported Fmea and Fuzzy Fmea Analysis,” Mehmet Akif Ersoy
Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, Vol. 10, No. 2, pp.
950-970, Aug. 2023, doi: 10.30798/makuiibf.1097590

[13] T. Ahtee and T. Poranen, “Risks in Students’ Software Projects,” in 2009
22nd Conference on Software Engineering Education and Training,
Hyderabad, India: IEEE, 2009, pp. 154-157. doi: 10.1109/CSEET.2009.31

[14] D. Kirk, A. Luxton-Reilly, and E. Tempero, “Risks in Student Projects,” in
Australasian Computing Education Conference, Virtual Event Australia:
ACM, Feb. 2022, pp. 143-152. doi: 10.1145/3511861.3511877

[15] M. A. Ibraigheeth and S. Abdullah, “Fuzzy Logic Driven Expert System for
the Assessment of Software Projects Risk,” ijacsa, Vol. 10, No. 2, 2019,
doi: 10.14569/IJACSA.2019.0100220

[16] A. Koncz, Z. C. Johanyák, and L. Pokorádi, “Fuzzy approaches in failure
mode and effect analysis,” Int. J. Artif. Intell., Vol. 19, No. 1, pp. 56-76,
2021, Accessed: Dec. 28, 2023 [Online] Available:
https://www.aut.upt.ro/~rprecup/IJAI_82.pdf

[17] L. Pokorádi, S. Koçak, and E. Tóth-Laufer, “Fuzzy failure modes and
effects analysis using summative defuzzification methods,” Acta
Polytechnica Hungarica, Vol. 18, No. 9, pp. 111-126, 2021, Accessed:
Dec. 28, 2023 [Online] Available: http://acta.uni-
obuda.hu/Pokoradi_Kocak_Toth-Laufer_116.pdf

Zs. Cs. Johanyák et al. Fuzzy FMEA-based Risk Evaluation of Student Software Projects

 – 316 –

[18] I. A. Zamfirache, R.-E. Precup, R.-C. Roman, and E. M. Petriu,
“Reinforcement Learning-based control using Q-learning and gravitational
search algorithm with experimental validation on a nonlinear servo
system,” Information Sciences, Vol. 583, pp. 99-120, Jan. 2022, doi:
10.1016/j.ins.2021.10.070

[19] T. Tompa, S. Kovacs, D. Vincze, and M. Niitsuma, “Demonstration of
expert knowledge injection in Fuzzy Rule Interpolation based Q-learning,”
in 2021 IEEE/SICE International Symposium on System Integration (SII),
Iwaki, Fukushima, Japan: IEEE, Jan. 2021, pp. 843-844, doi:
10.1109/IEEECONF49454.2021.9382734

[20] S. Blazic, D. Dovzan, and I. Skrjanc, “Cloud-based identification of an
evolving system with supervisory mechanisms,” in 2014 IEEE
International Symposium on Intelligent Control (ISIC), Juan Les Pins,
France: IEEE, Oct. 2014, pp. 1906-1911, doi: 10.1109/ISIC.2014.6967642

[21] Z. C. Johanyák, “Fuzzy rule base identification using an incremental
approach,” Gradus, Vol. 8, No. 2, pp. 129-136, 2021, doi:
10.47833/2021.2.CSV.004

	1 Introduction
	2 Related Works
	3 Fuzzy FMEA
	4 Analysis in Practice

