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Abstract: Uninorms and nullnorms are important aggregation functions that exhibit bipolar 

behavior. However, their lack of continuity, particularly for uninorms, presents challenges 

in practical applications. Since associativity is often not essential, especially when 

aggregating only two values, we propose two new classes of functions: unifunctions and 

nullfunctions. These are inspired by overlap and grouping functions and aim to retain the 

structural advantages of uninorms and nullnorms while ensuring continuity. This paper 

introduces these new classes, explores their fundamental properties, and demonstrates their 

role in solving generalized Frank’s equations under relaxed axioms. 
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1 Introduction and Motivation 

Uninorms [23] and nullnorms [4] are intensively studied classes of associative 

binary aggregation functions because they are applied in various fields of 

application such as neural networks [1, 5, 14], decision making [20, 21, 22], bipolar 

aggregation [9, 11, 15, 24] and many others. They both generalize the concepts of 

t-norms and t-conorms. 

Since associativity is superfluous in many cases, Bustince et al. propose overlap [2] 

and grouping functions [3], focusing on continuity instead of associativity, which is 

often desired by the continuous nature of the model problem. We want to extend 

this approach to uninorms and nullnorms. Our aim is to define and study a new class 

of aggregation functions that generalize overlap and grouping functions in a similar 

way as uninorms and nullnorms generalize overlap and grouping functions. 
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Bipolar aggregation is based on the psychological evidence, which shows that 

humans judge their decision upon positive and negative aspects of the decision. 

Therefore, several approaches of bipolar aggregation from mathematical point of 

view were proposed to model such human preference. For a more exhaustive 

overview, see [9]. 

Both uninorms and nullnorms exhibit some kind of bipolar behavior, which is in 

fact somehow complementary. On the one hand nullnorms tend to aggregate inputs 

into the middle of the domain and on the other hand uninorms do it to the 

boundaries. The neutral element (annihilator) of a uninorm (nullnorm) divides the 

square of the unit interval into four subsets, where the behavior is different. In the 

case of uninorms, aggregation of two negative or positive incomes results in a more 

negative or positive outcome. Such structure supports the human’s intuitive 

preference. If positive and negative outcome is aggregated, then uninorm is able to 

capture human preference due to its averaging behavior on the respective domain. 

Therefore, uninorms are interesting in the domain of bipolar aggregation [24], 

where negative and positive inputs can appear and where the reluctance to negative 

and the preference for positive experience appear. 

However, we know from [7] that no uninorm is continuous on the whole domain. 

This led to a study of continuity of uninorms in [6, 12, 18]. In [19] it was shown 

that the points of discontinuity of a uninorm with continuous underlying functions 

U are covered by a characterizing set-valued function of U. From this paper, it also 

follows that every uninorm is discontinuous on the set [0, 𝑒] ⨯ [𝑒, 1]. In bipolar 

decision making, this represents the situation where one of the inputs is negative 

and the other is positive. In applications, the discontinuity of U does not allow a 

gradual change of the decision depending on the inputs. This is in contrary to 

situations where small changes in preference do not lead to sudden changes in the 

decision. Thus, such model is often limited due to these discontinuities of uninorms 

[23] and unintuitive behavior from the preference point of view [24]. Moreover, 

discontinuity brings instability of computation and other problematic issues. 

Therefore, continuity may appear to be a more important property than associativity, 

especially if we aggregate only two elements. In order to be able to capture 

continuous change of preference depending on the values and preserve the most of 

properties of uninorms and nullnorms for which they are used in these situations as 

much as possible, we will propose new concepts. Note that overlap functions and 

grouping functions are distinct aggregation functions to t-norms and t-conorms, 

respectively, though with significant overlap between these classes and similar 

motivation. Therefore, we see these classes rather as a parallel approach to 

aggregation than a generalization, and hence we want to extend overlap and 

grouping functions in a similar manner as uninorms (nullnorms) did to t-norms and 

t-conorms. We expect that unifunctions (and nullfunctions), which we propose as a 

generalization of overlap and grouping functions, may be useful to overcome 

problematic issues of uninorms that cannot be continuous on the whole unit square. 

We have named these functions to emphasize the deep connection of the newly 
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proposed unifunctions and nullfunctions to uninorms and nullnorms on the one 

hand, and to overlap and grouping functions on the other hand. 

2 Preliminaries 

T-norms and t-conorms are widely used in fuzzy logic theory as conjunctions and 

disjunctions, respectively. Since continuity is important in both computational 

stability and modeling gradual transition, the class of continuous t-norms and t-

conorms is undoubtedly the most studied and used since the inception of the 

concept. 

Definition 1 [13] 
A binary function 𝑇: [0,1]2 → [0,1] (𝑆: [0,1]2 → [0,1]) is called a t-norm (t-

conorm) if it is associative, commutative, non-decreasing and it possesses the 

neutral element 1 (0). 
In some fields, the associativity of t-norms can appear as too restrictive and an 

unnecessary property. To address these phenomena, Bustince et al. [2, 3] proposed 

different classes of continuous binary aggregation functions, which partially cover 

the class of continuous t-norms and continuous t-conorms, respectively. 

Definition 2 [2]   
A mapping 𝑂: [0,1]2 → [0,1] is an overlap function if it satisfies the following 

conditions: 

1. 𝑂 is symmetric. 

2. 𝑂(x, y) = 0 if and only if xy = 0. 

3. 𝑂(x, y) = 1 if and only if xy = 1. 

4. 𝑂 is non-decreasing. 

5. 𝑂 is continuous. 

Definition 3 [3] 
A mapping 𝐺: [0,1]2 → [0,1] is a grouping function if it satisfies the following 

conditions: 

1. 𝐺 is symmetric. 

2. 𝐺(𝑥, 𝑦) = 0 if and only if x = y = 0. 

3. 𝐺(𝑥, 𝑦) = 1 if and only if x = 1 or y = 1. 

4. 𝐺 is non-decreasing. 

5. 𝐺 is continuous. 
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Another generalization of t-norms and t-conorms are uninorms, which were 

proposed by Yager and Rybalov [23]. 

Definition 4 [23] 
A binary function 𝑈: [0,1]2 → [0,1] is called a uninorm if 

1. 𝑈 is associative. 

2. 𝑈 is commutative. 

3. 𝑈 is non-decreasing. 

4. 𝑈 possesses a neutral element e ∈ [0,1]. 

There exists a standard classification of aggregation functions into four families.  

A binary aggregation function 𝐴: [0,1]2 → [0,1] is called (see [10]): 

Conjunctive if 𝑨(𝐱, ) ≤ 𝐦𝐢𝐧(𝒙, 𝒚), 

Disjunctive if 𝑨(𝒙, 𝒚) ≥ 𝐦𝐚𝐱(𝒙, 𝒚), 

Averaging if 𝐦𝐢𝐧(𝐱, 𝐲) ≤ 𝑨(𝐱, 𝐲) ≤ 𝐦𝐚𝐱(𝐱, 𝐲), 

Mixed if 𝑨 is in none of the above four families. 

The structure of a uninorm shows that it has conjunctive behavior on the square 

[0, 𝑒]2, disjunctive on [𝑒, 1]2 and averaging otherwise. For the sake of simplicity in 

the following, we define the set 𝐴(𝑥) = [0, 𝑥] × [𝑥, 1] ∪ [𝑥, 1] × [0, 𝑥] for 𝑥 ∈
[0,1]. 

A uninorm 𝑈 restricted to [0, 𝑒]2 is a linear transformation of a t-norm 𝑇𝑈 and 

restricted to [𝑒, 1]2 is a linear transformation of a t-conorm 𝑆𝑈, which are called the 

underlying t-norm and t-conorm, respectively, or jointly the underlying functions of 

𝑈. Note that no uninorm is continuous on the whole unit square [7]. 

Other important class of associative aggregation functions are t-operators [16] and 

nullnorms [4], which as was later shown, coincide [17]. 

Definition 5 [4] 
A nullnorm 𝑉: [0,1]2 → [0,1] is a commutative, associative and non-decreasing 

binary operator with the annihilator 𝑎 ∈ [0,1] that satisfies 

1. 𝑉(𝑥, 0) = 𝑥, for 𝑥 ∈ [0, 𝑎]. 

2. 𝑉(𝑥, 1) = 𝑥 for 𝑥 ∈ [𝑎, 1]. 

Remark 6 
For completeness-sake we also provide the definition of t-operators (see [16]): 

A function 𝑉: [0,1]2 → [0,1] is said to be a t-operator if it is commutative, 

associative, non-decreasing and if 

1. 𝑉(0,0) = 0 and 𝑉(1,1) = 1, 

2. functions 𝑓(𝑥) = 𝑉(0, 𝑥) and 𝑔(𝑥) = 𝑉(1, 𝑥) are continuous. 
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The structure of nullnorms is similar to that of uninorms, i.e., it is based on 

underlying functions. A nullnorm restricted to [0, 𝑒]2 is a linear transform of a t-

conorm (i.e., disjunctive), restricted to [𝑒, 1]2 is a linear transform of a t-norm (i.e., 

conjunctive) and constant on 𝐴(𝑎). 

In what follows we will need also the 1-Lipschitz property which in applications 

often occur. 

Definition 7 
Let 𝑓: [0,1] → [0,1] be a unary function. 𝑓 is called 1-Lipschitz if  

|𝑓(𝑥) − 𝑓(𝑦)| ≤ |𝑥 − 𝑦|  

holds for all (𝑥, 𝑦) ∈ [0,1]2. 

We say that a binary function 𝐹: [0,1]2 → [0,1] is 1-Lipschitz if it is 1-Lipschitz in 

both of its coordinates. 

3 Unifunctions and Nullfunctions 

In this section, we will propose and discuss a modification of uninorms inspired by 

the notions of overlap and grouping functions (Definitions 2 and 3), to overcome 

the discontinuity limitation of uninorms, which were mentioned in the previous 

section. 
Definition 8 
Let 𝑒 ∈ [0,1]. A binary function 𝑈𝐹𝑒: [0,1]

2 → [0,1] is called a unifunction if the 

following conditions hold. 

1. 𝑈𝐹𝑒 is non-decreasing. 

2. 𝑈𝐹𝑒 is symmetric. 

3. For (𝑥, 𝑦) ∈ [0, 𝑒]2, 𝑈𝐹𝑒(𝑥, 𝑦) = 0 if and only if 𝑥 = 0 or 𝑦 = 0. 

4. For (𝑥, 𝑦) ∈ [𝑒, 1]2, 𝑈𝐹𝑒(𝑥, 𝑦) = 1 if and only if 𝑥 = 1 or 𝑦 = 1. 

5. 𝑈𝐹𝑒(𝑥, 𝑦) = 𝑒 then 𝑥 < 𝑒 < 𝑦 or 𝑦 < 𝑒 < 𝑥 or 𝑥 = 𝑦 = 𝑒. 

6. 𝑈𝐹𝑒 is continuous. 

In [4], the authors studied whether there exists a solution to the well-known Frank’s 

equation [8], if one of the functions in that equation is a uninorm, and this problem 

led to introducing nullnorms. However, they showed that there is no pair of a 

uninorm 𝑈𝑒 and a nullnorm 𝑁𝑎 solving the Frank’s equation. Similarly to uninorms, 

nullnorms are a generalization of t-norms and t-conorms, which locate the 

annihilator to the interior domain rather than to the end-points of the interval. 

Following the steps of such an approach we introduce a modification of nullnorms 

in the next definition. 
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Definition 9 
Let 𝑎 ∈ [0,1]. A binary function 𝑁𝐹𝑎: [0,1]

2 → [0,1] is called a nullfunction if the 

following conditions hold. 

1. 𝑁𝐹𝑎 is non-decreasing. 

2. 𝑁𝐹𝑎 is symmetric. 

3. 𝑎 is the annihilator of 𝑁𝐹𝑎. 

4. 𝑁𝐹𝑎(𝑥, 𝑦) ≠ 𝑎 if (𝑥, 𝑦) ∉ 𝐴(𝑎). 

5. 𝑁𝐹𝑎(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦 = 0. 

6. 𝑁𝐹𝑎(𝑥, 𝑦) = 1 if and only if 𝑥 = 𝑦 = 1. 

7. 𝑁𝐹𝑎 is continuous. 

Remark 10 
Observe that if 𝑒 = 0 (or 𝑎 = 1) then the corresponding unifunction 𝑈𝐹0 

(nullfunction 𝑁𝐹1) reduces to a grouping function, similarly if 𝑒 = 1 (or 𝑎 = 0) 

then the corresponding unifunction 𝑈𝐹1 (nullfunction 𝑁𝐹0) degenerates into an 

overlap function. 

The basic structure of unifunctions and nullfunctions is similar to the structure of 

uninorms and nullnorms, respectively. 

Proposition 11 
Let 𝑈𝐹𝑒; [0,1]

2 → [0,1] be a unifunction then the following statements hold. 

1. There exists an overlap function 𝑂: [0,1]2 → [0,1] such that 𝑈𝐹𝑒(𝑥, 𝑦) =

𝑒𝑂(
𝑥

𝑒
,
𝑦

𝑒
) for 𝑥, 𝑦 ∈ [0, 𝑒]2. 

2. There exists a grouping function 𝐺: [0,1]2 → [0,1] such that 𝑈𝐹𝑒(𝑥, 𝑦) =

𝑒 + (1 − 𝑒)𝐺(
𝑥−𝑒

1−𝑒
,
𝑦−𝑒

1−𝑒
) for 𝑥, 𝑦 ∈ [𝑒, 1]2. 

3. 𝑈𝐹𝑒(𝑥, 𝑦) ∈ [𝑚𝑖𝑛(𝑈𝐹𝑒(𝑥, 𝑒), 𝑈𝐹𝑒(𝑦, 𝑒)),𝑚𝑎𝑥(𝑈𝐹𝑒(𝑥, 𝑒), 𝑈𝐹𝑒(𝑦, 𝑒))] for 

pairs (𝑥, 𝑦) ∈ 𝐴(𝑒). 

PROOF:  

1. Since 𝑓(𝑥) =
𝑥

𝑒
 is a continuous increasing bijection from [0,1] to [0, 𝑒], 

there are only two items to prove, namely that 𝑈𝐹𝑒(𝑥, 𝑦) = 𝑒 for (𝑥, 𝑦) ∈
[0, 𝑒]2 if and only if 𝑥 = 𝑦 = 𝑒. This follows from item 5 of Definition 8. 

The other item is that 𝑈𝐹𝑒(𝑥, 𝑦) = 0 for (𝑥, 𝑦) ∈ [0, 𝑒]2 if and only if 𝑥 =
0 or 𝑦 = 0, but that follows from item 3 of Definition 8. Hence, 𝑈𝐹𝑒 

restricted to [0, 𝑒]2 is an overlap function. 

2. The proof is analogous to that of the previous item. 

3. If 𝑥 ≤ 𝑒 ≤ 𝑦 then 𝑈𝐹𝑒(𝑥, 𝑒) ≤ 𝑈𝐹𝑒(𝑥, 𝑦) ≤ 𝑈𝐹𝑒(𝑦, 𝑒) and similarly vice 

versa.                     □ 
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Proposition 12 
Let 𝑁𝐹𝑎; [0,1]

2 → [0,1] be a nullfunction then the following statements hold. 

1. There exists a grouping function 𝐺: [0,1]2 → [0,1] such that 𝑁𝐹𝑎(𝑥, 𝑦) =

𝑎𝐺(
𝑥

𝑎
,
𝑦

𝑎
) for 𝑥, 𝑦 ∈ [0, 𝑎]2. 

2. There exists an overlap function 𝑂: [0,1]2 → [0,1] such that 𝑁𝐹𝑎(𝑥, 𝑦) =

𝑎 + (1 − 𝑎)𝑂(
𝑥−𝑎

1−𝑎
,
𝑦−𝑎

1−𝑎
) for 𝑥, 𝑦 ∈ [𝑎, 1]2. 

3. 𝑁𝐹𝑎(𝑥, 𝑦) = 𝑎 for all (𝑥, 𝑦) ∈ 𝐴(𝑎). 

We omit to prove this assertion since the proof is similar to that of Proposition 11. 

We will refer to respective overlap and grouping function from Propositions 11 and 

12 as underlying overlap and grouping function or jointly as underlying functions. 

Similarly to uninorms, we propose some important subclasses of unifunctions and 

nullfunctions. 

Definition 13 
Let 𝑈𝐹𝑒: [0,1]

2 → [0,1] be a unifunction then 

1. 𝑈𝐹𝑒 is called a strong unifunction, if 𝑒 is its neutral element, i.e., if 

𝑈𝐹𝑒(𝑒, 𝑥) = 𝑈𝐹𝑒(𝑥, 𝑒) = 𝑥 for all 𝑥 ∈ [0,1]. 

2. 𝑈𝐹𝑒 is called a conjunctive unifunction if 𝑈𝐹𝑒(0,1) = 0. 

3. 𝑈𝐹𝑒 is called a disjunctive unifunction if 𝑈𝐹𝑒(0,1) = 1. 

4. 𝑈𝐹𝑒 is called an idempotent unifunctions if 𝑈𝐹𝑒(𝑥, 𝑥) = 𝑥 for all 𝑥 ∈ [0,1]. 

Definition 14 
Let 𝑁𝐹𝑎: [0,1]

2 → [0,1] be a nullfunction then 

1. 𝑁𝐹𝑎 is called strong, if 𝑁𝐹𝑎(0, 𝑥) = 𝑥 for all 𝑥 ∈ [0, 𝑎] and 𝑁𝐹𝑎(1, 𝑥) =
𝑥 for all 𝑥 ∈ [𝑎, 1]. 

2. 𝑁𝐹𝑎 is called idempotent, if 𝑁𝐹𝑎(𝑥, 𝑥) = 𝑥 for all 𝑥 ∈ [0,1]. 

Now we will focus on properties of unifunctions. Note that the following statements 

hold. 

Proposition 15 
Let 𝑈𝐹𝑒: [0,1]

2 → [0,1] be a unifunction. Then it is strong if and only if the following 

properties hold. 

1. 𝑚𝑖𝑛(𝑥, 𝑦) ≤ 𝑈𝐹𝑒(𝑥, 𝑦) ≤ 𝑚𝑎𝑥(𝑥, 𝑦) for all (𝑥, 𝑦) ∈ 𝐴(𝑒). 

2. 𝑈𝐹𝑒 is conjunctive on [0, 𝑒]2, i.e., 𝑈𝐹𝑒(𝑥, 𝑦) ≤ 𝑚𝑖𝑛(𝑥, 𝑦). 

3. 𝑈𝐹𝑒 is disjunctive on [𝑒, 1]2, i.e., 𝑈𝐹𝑒(𝑥, 𝑦) ≥ 𝑚𝑎𝑥(𝑥, 𝑦). 

PROOF:  Let 𝑈𝐹𝑒 be a strong unifunction then 
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1. for (𝑥, 𝑦) ∈ [0, 𝑒]2, 𝑈𝐹𝑒(𝑥, 𝑦) ≤ 𝑈𝐹𝑒(𝑥, 𝑒) = 𝑥 and 𝑈𝐹𝑒(𝑥, 𝑦) ≤
𝑈𝐹𝑒(𝑒, 𝑦) = 𝑦, i.e., 𝑈𝐹𝑒(𝑥, 𝑦) ≤ min(𝑥, 𝑦). 

2. for (𝑥, 𝑦) ∈ [𝑒, 1]2, 𝑈𝐹𝑒(𝑥, 𝑦) ≥ 𝑈𝐹𝑒(𝑥, 𝑒) = 𝑥 and 𝑈𝐹𝑒(𝑥, 𝑦) ≥
𝑈𝐹𝑒(𝑒, 𝑦) = 𝑦, i.e., 𝑈𝐹𝑒(𝑥, 𝑦) ≥ max(𝑥, 𝑦). 

3. for 𝑥 ≤ 𝑒 ≤ 𝑦 we obtain 𝑥 = 𝑈𝐹𝑒(𝑥, 𝑒) ≤ 𝑈𝐹𝑒(𝑥, 𝑦) ≤ 𝑈𝐹𝑒(𝑒, 𝑦) = 𝑦 and 

similarly we can show that 𝑥 ≤ 𝑈𝐹𝑒(𝑦, 𝑥) ≤ 𝑦. 

Let 𝑈𝐹𝑒 be a unifunction such that items 1.-3. hold. If for 𝑥 < 𝑒, 𝑈𝐹𝑒(𝑥, 𝑒) < 𝑥 then 

this violates item 3 and 𝑈𝐹𝑒(𝑥, 𝑒) > 𝑥 violates item 1. Similarly, if 𝑥 > 𝑒 then, 

𝑈𝐹𝑒(𝑥, 𝑒) < 𝑥 violates item 2 and 𝑈𝐹𝑒(𝑥, 𝑒) > 𝑥 violates item 3. Hence, 𝑈𝐹𝑒 is a 

strong unifunction. 

□ 

Proposition 16 

Let 𝑒 ∈ ]0,1[ then 

1. no unifunction 𝑈𝐹𝑒 is a conjunctive aggregation function. 

2. no unifunction 𝑈𝐹𝑒 is a disjunctive aggregation function. 

3. unifunction 𝑈𝐹𝑒 is an averaging aggregation function if and only if both 

its underlying functions are idempotent. 

PROOF:  Let 𝑈𝐹𝑒 be any unifunction. 

1. Choose 𝑥 ∈ ]𝑒, 1[ then 𝑈𝐹𝑒(𝑥, 1) = 1 > 𝑥, which implies that 𝑈𝐹𝑒 is not 

conjunctive. 

2. Choose 𝑥 ∈ ]0, 𝑒[ then 𝑈𝐹𝑒(𝑥, 0) = 0 < 𝑥, which implies that 𝑈𝐹𝑒 is not 

disjunctive. 

3. Let 𝑥, 𝑦 ∈ [0,1] and 𝑥 ≤ 𝑦 then 𝑥 = 𝑈𝐹𝑒(𝑥, 𝑥) ≤ 𝑈𝐹𝑒(𝑥, 𝑦) ≤
𝑈𝐹𝑒(𝑦, 𝑦) = 𝑦, and since 𝑈𝐹𝑒 is symmetric we see that 𝑈𝐹𝑒 is averaging. 

Vice versa, 𝑥 ≤ 𝑈𝐹𝑒(𝑥, 𝑥) ≤ 𝑥 implies that 𝑈𝐹𝑒 is an idempotent 

unifunction and hence both its underlying functions are idempotent. 

□ 
Proposition 17 
Let 𝑎 ∈ ]0,1[ then 

1. no nullfunction 𝑁𝐹𝑎 is a conjunctive aggregation function. 

2. no nullfunction 𝑁𝐹𝑎 is a disjunctive aggregation function. 

3. a nullfunction 𝑁𝐹𝑎 is an averaging aggregation function if and only if both 

of its underlying functions are idempotent. 

The proof of Proposition 17 is similar to that of Proposition 16. For this reason, it 

is omitted. 
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Proposition 18 
Let 𝑒 ∈ ]0,1[. Then, unifunction 𝑈𝐹𝑒 possesses an annihilator 𝑎 if and only if 𝑈𝐹𝑒 

is a conjunctive or a disjunctive unifunction. 

PROOF:  Clearly for a conjunctive unifunction 𝑈𝐹𝑒 0 is an annihilator since 0 =
𝑈𝐹𝑒(0,0) ≤ 𝑈𝐹𝑒(0, 𝑥) = 𝑈𝐹𝑒(𝑥, 0) ≤ 𝑈𝐹𝑒(1,0). Similarly we can show that 1 is an 

annihilator of a disjunctive unifunction 𝑈𝐹𝑒 . 

Assume that 𝑎 is the annihilator of 𝑈𝐹𝑒. If 𝑎 ∈ [0, 𝑒] then 𝑎 = 𝑈𝐹𝑒(0, 𝑎) = 0, which 

implies 𝑎 = 0 and since it is the annihilator of 𝑈𝐹𝑒 we see that 𝑈𝐹𝑒(0,1) = 0, i.e., 

𝑈𝐹𝑒 is a conjunctive unifunction. In the same way we can show that if 𝑎 ∈ [𝑒, 1] 
then 𝑈𝐹𝑒 is a disjunctive unifunction. 

□ 

Theorem 19 

Let 𝑒 ∈ ]0,1[. Then, there is no associative unifunction 𝑈𝐹𝑒. 
PROOF:  Let 𝑒 ∈ ]0,1[. Assume 𝑈𝐹𝑒 is associative. Then, from Proposition 11 we 

obtain that 𝑈𝐹𝑒 restricted to [0, 𝑒]2 is isomorphic to some associative overlap 

function. Since each associative overlap function is a continuous t-norm (see [2]), 

we get 𝑈𝐹𝑒(𝑥, 𝑒) = 𝑈𝐹(𝑒, 𝑥) = 𝑥 for 𝑥 ≤ 𝑒. Similarly, using the duality between 

overlap and grouping functions and t-norms and t-conorms, we can show that 

𝑈𝐹𝑒(𝑦, 𝑒) = 𝑈𝐹𝑒(𝑒, 𝑦) = 𝑦 for 𝑦 ≥ 𝑒. However, this implies that 𝑒 is the neutral 

element of 𝑈𝐹𝑒, which is non-decreasing and associative, hence it is a uninorm. 

Since there exists no proper uninorm that is continuous, we get a contradiction.  

□ 

Theorem 20 
Let 𝑎 ∈ [0,1]. Then, a nullfunction 𝑁𝐹𝑎: [0,1]

2 → [0,1] is associative if and only if 

𝑁𝐹𝑎 is a continuous nullnorm with its annihilator 𝑎, such that its underlying t-norm 

has no 0-divisor and its underlying t-conorm has no 1-divisor. 

PROOF:  Since 𝑁𝐹𝑎 is continuous, the sections 𝑁𝐹𝑎(0,⋅), 𝑁𝐹𝑎(1,⋅) are also 

continuous functions. From the associativity and the non-decreasing nature of 𝑁𝐹𝑎 

we see that 𝑁𝐹𝑎 is a t-operator, i.e., a nullnorm. Then both underlying functions of 

the nullnorm 𝑁𝐹𝑎 are continuous since 𝑁𝐹𝑎 is a nullfunction. Moreover from 

𝑁𝐹𝑎(𝑥, 𝑦) ≠ 𝑎 for (𝑥, 𝑦) ∈ [0, 𝑎[2 follows that its underlying t-conorm has no 1-

divisor and 𝑁𝐹𝑎(𝑥, 𝑦) ≠ 𝑎 for ]𝑎, 1]2 implies that its underlying t-norm has no 0-

divisor. 

The reverse statement is obvious. 

□ 

In the following we will show how to construct a nullfunction and a unifunction 

based on the given underlying functions. For the sake of simplicity, we will assume 
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that underlying overlap and underlying grouping functions are immediately defined 

on the respective subintervals. 

Theorem 21 
Let 𝑎 ∈ [0,1], 𝐺: [0, 𝑎]2 → [0, 𝑎] be a grouping function and 𝑂: [𝑎, 1]2 → [𝑎, 1] be 

an overlap function. Then 𝑁𝐹𝑎: [0,1]
2 → [0,1] is the nullfunction with the 

underlying functions 𝐺 and 𝑂 if and only if 

𝑁𝐹𝑎(𝑥, 𝑦) = {
𝐺(𝑥, 𝑦) if (𝑥, 𝑦) ∈ [0, 𝑎]2,

𝑂(𝑥, 𝑦) if (𝑥, 𝑦) ∈ [𝑎, 1]2,
𝑎 otherwise.

 (1) 

We skip the proof of Theorem 21 since it is obvious. 

For unifunctions the situation is much more complicated, but similarly as for 

uninorms we propose a construction method based on an additive generator. 

Theorem 22 
Let 𝑒 ∈ ]0,1[, 𝑂: [0, 𝑒]2 → [0, 𝑒] be an overlap function and 𝐺: [𝑒, 1]2 → [𝑒, 1] be a 

grouping function. Moreover, let 𝑓: [0,1] → [−∞,∞] be a continuous increasing 

function such that 𝑓(𝑒) = 0 and 𝑓(0) ≠ −∞ or 𝑓(1) ≠ ∞. Define 𝑔(𝑥) = 𝐺(𝑥, 𝑒) 
and 𝑜(𝑥) = 𝑂(𝑥, 𝑒) for 𝑥 ∈ [0,1]. Then, 𝑈𝐹𝑒 given by 

𝑈𝐹𝑒(𝑥, 𝑦) =

{
 
 

 
 𝑂(𝑥, 𝑦) if (𝑥, 𝑦) ∈ [0, 𝑒]2,

𝐺(𝑥, 𝑦) if (𝑥, 𝑦) ∈ [𝑒, 1]2,

𝑓−1(𝑓(𝑜(𝑥) + 𝑓(𝑔(𝑦))) if (𝑥, 𝑦) ∈ [0, 𝑒[ × ]𝑒, 1],

𝑓−1(𝑓(𝑜(𝑦) + 𝑓(𝑔(𝑥))) if (𝑥, 𝑦) ∈ ]𝑒, 1] × [0, 𝑒[.

 (2) 

is a unifunction with underlying functions 𝑂 and 𝐺, respectively. 

PROOF:  We will check all properties of unifunctions item by item (see Definition 

8). 

1. We will only show that 𝑈𝐹𝑒(𝑥0,⋅) is non-decreasing for 𝑥0 ≤ 𝑒, otherwise 

the proof is analogous. For 𝑦1 < 𝑦2 ≤ 𝑒 the result obviously holds since 𝑂 

is non-decreasing. Similarly for 𝑒 < 𝑦1 < 𝑦2 we obtain the desired result 

since 𝑓 and thus 𝑓−1 is increasing bijection. Moreover, 𝑔 as defined is a 

non-decreasing function. Therefore, 𝑓−1(𝑓(𝑜(𝑥0) + 𝑓(𝑔(⋅))) is a non-

decreasing function on ]𝑒, 1[. Now, only the case when 𝑦1 ≤ 𝑒 < 𝑦2 is 

necessary to check. In this case, 

𝑓−1(𝑓(𝑜(𝑥0) + 𝑓(𝑔(𝑦2))) ≥ 𝑓−1(𝑓(𝑜(𝑥0) + 𝑓(𝑔(𝑒))) = 𝑓
−1(𝑓(𝑜(𝑥0) + 𝑓(𝑒)) 

= 𝑓−1(𝑓(𝑜(𝑥0) + 0) = 𝑓
−1(𝑓(𝑜(𝑥0)) = 𝑜(𝑥0) ≥ 𝑂(𝑥0, 𝑦1). 

2. 𝑈𝐹𝑒 is symmetric by Definition 8. 

3. Follows from the structure of 𝑂. 

4. Follows from the structure of 𝐺. 
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5. Follows from the structure of 𝑂 and 𝐺. 

6. We need only to check continuity on the neighbourhood of (𝑥, 𝑒) and 

(𝑒, 𝑥) for 𝑥 ∈ [0,1]. We will check only the first case for 𝑥 ∈ [0, 𝑒] since 

otherwise we would proceed analogously. Observe that 𝑂 is continuous on 

[0, 𝑒]2 and 𝑓−1(𝑓(𝑜(⋅) + 𝑓(𝑔(⋅))) is continuous on [0, 𝑒] × [𝑒, 1], 
because it is a combination of continuous functions. Therefore, if 

𝑂(𝑥, 𝑒) = 𝑓−1(𝑓(𝑜(𝑥) + 𝑓(𝑔(𝑒))) then the continuity of 𝑈𝐹𝑒 is satisfied. 

Now, 

𝑓−1(𝑓(𝑜(𝑥) + 𝑓(𝑔(𝑒))) = 𝑓−1(𝑓(𝑜(𝑥) + 𝑓(𝑒)) = 𝑓−1(𝑓(𝑜(𝑥) + 0) = 𝑜(𝑥)
= 𝑂(𝑥, 𝑒), 

  which concludes the proof. 

□ 

Remark 23 

1. When 𝑓(0), 𝑓(1) ∈ ℝ then 0 < 𝑈𝐹𝑒(0,1) = 𝑈𝐹𝑒(1,0) < 1. 

2. When 𝑓(0) = −∞ then 𝑈𝐹𝑒(0,1) = 𝑈𝐹𝑒(1,0) = 0, i.e., 𝑓 generates a 

conjunctive unifunction. 

3. When 𝑓(1) = ∞ then 𝑈𝐹𝑒(0,1) = 𝑈𝐹𝑒(1,0) = 1, i.e., 𝑓 generates a 

disjunctive unifunction. 

4. Observe that if both 𝑓(0) = −∞ and 𝑓(1) = ∞ then the continuity of 𝑈𝐹𝑒 

is violated and therefore in that case 𝑈𝐹𝑒 is not a unifunction. 

Example 24 

Consider an overlap function 𝑂 on [0,
1

2
]2 given by 𝑂(𝑥, 𝑦) = √𝑥𝑦 and a grouping 

function 𝐺 on [
1

2
, 1]2 given by 𝐺(𝑥, 𝑦) = 𝑚𝑎𝑥(𝑥, 𝑦). Then for any additive 

generator 𝑓 fulfilling the condition of Theorem 22, the generated unifunction is an 

idempotent unifunction with underlying functions 𝑂 and 𝐺. 

1. If 𝑓(𝑥) = 𝑥 − 𝑒 then 𝑈𝐹1
2

1 =

{
 
 
 

 
 
 √𝑥𝑦 if (𝑥, 𝑦) ∈ [0,

1

2
]2,

𝑚𝑎𝑥(𝑥, 𝑦) if (𝑥, 𝑦) ∈ [
1

2
, 1]2,

√
𝑥

2
+ 𝑦 −

1

2
if (𝑥, 𝑦) ∈ [0,

1

2
] × [

1

2
, 1]

𝑥 + √
𝑦

2
−

1

2
if (𝑥, 𝑦) ∈ [0,

1

2
] × [

1

2
, 1].

 

2. If 𝑓(𝑥) = 𝑙𝑛(2𝑥) then 𝑈𝐹1
2

2 =

{
 
 

 
 √𝑥𝑦 if (𝑥, 𝑦) ∈ [0,

1

2
]2,

𝑚𝑎𝑥(𝑥, 𝑦) if (𝑥, 𝑦) ∈ [
1

2
, 1]2,

𝑦√2𝑥 if (𝑥, 𝑦) ∈ [0,
1

2
] × [

1

2
, 1]

𝑥√2𝑦 if (𝑥, 𝑦) ∈ [0,
1

2
] × [

1

2
, 1].
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Figure 1 

Visualization of Example 24. Unifunction 𝑈𝐹1
2

1 n the left side and unifunction 𝑈𝐹1
2

2 on the right side. 

4 Generalized Frank’s Equation and 1-Lipschitz 

Property 

In this section we want to study whether some pairs of unifunctions and 

nullfunctions solve the Frank’s equation [8]. Original Frank’s equation shows the 

connection between a subclass of t-norms and t-conorms. Initial motivation for 

defining nullnorms was the aim to solve generalized Frank’s equation for uninorms 

[4]. Due to that no uninorm is continuous (and thus 1-Lipschitz), there was no such 

connection between these two classes established. We will show that for certain 

types of unifunctions and nullfunctions such connection does exist. Consider the 

generalized Frank’s equation for unifunction and nullfunctions given by 

𝑈𝐹𝑒(𝑥, 𝑦) + 𝑁𝐹𝑎(𝑥, 𝑦) = 𝑥 + 𝑦 (3) 

for any (𝑥, 𝑦) ∈ [0,1]2. 

Proposition 25 

Let 𝑎, 𝑒 ∈ [0,1]. If a pair of a unifunction 𝑈𝐹𝑒 and a nullfunction 𝑁𝐹𝑎 is a solution 

to equation (3) then, both functions are 1-Lipschitz and 𝑎 = 𝑒. 
PROOF:  First of all, we will show that 𝑎 = 𝑒. Equation (3) and the fact that 𝑎 is 

the annihilator of 𝑁𝐹𝑎 imply 

𝑁𝐹𝑎(𝑎, 𝑒) + 𝑈𝐹𝑒(𝑎, 𝑒) = 𝑎 + 𝑈𝐹𝑒(𝑎, 𝑒) = 𝑎 + 𝑒, 

and thus 𝑈𝐹𝑒(𝑎, 𝑒) = 𝑒. By Definition 8 we get that 𝑒 = 𝑎. Really, if 𝑎 < 𝑒 we get 

𝑈𝐹𝑒(𝑎, 𝑒) < 𝑒 and if 𝑎 > 𝑒 then 𝑈𝐹𝑒(𝑎, 𝑒) > 𝑒, and in both cases equation (3) is 

violated. 

The fact that both, 𝑈𝐹𝑒 and 𝑁𝐹𝑎 are 1-Lipschitz is due to the fact that the function 

at the right-hand-side of equation (3) is 1-Lipschitz and that 𝑈𝐹𝑒(𝑥, 𝑦) ≥ 0 and 

𝑁𝐹𝑎(𝑥, 𝑦) ≥ 0 for all (𝑥, 𝑦) ∈ [0,1]2.      □ 
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Together with the results in [2], where 1-Lipschitz overlap functions were 

characterized, we can characterize all 1-Lipschitz unifunctions and 1-Lipschitz 

nullfunctions. 

Proposition 26 
Let 𝑁𝐹𝑎: [0,1]

2 → [0,1] be a nullfunction, then it is 1-Lipschitz if and only if both 

its underlying functions are 1-Lipschitz. 
PROOF:  The necessity is obvious. Hence, we prove only sufficiency. Choose 
(𝑥1, 𝑦1) ∈ [0, 𝑎]

2 and (𝑥2, 𝑦2) ∈ [𝑎, 1]
2. Then 

𝑁𝐹𝑎(𝑥2, 𝑦2) − 𝑁𝐹𝑎(𝑥1, 𝑦1) = 𝑁𝐹𝑎(𝑥2, 𝑦2) − 𝑎 + 𝑎 − 𝑁𝐹𝑎(𝑥1, 𝑦1) =

𝑁𝐹𝑎(𝑥2, 𝑦2) − 𝑁𝐹𝑎(𝑥2, 𝑎) + 𝑁𝐹(𝑎, 𝑦1) − 𝑁𝐹(𝑥1, 𝑦1) ≤
𝑘|𝑦2 − 𝑎| + 𝑘|𝑎 − 𝑥1| ≤ 𝑘|𝑦2 − 𝑦1| + 𝑘|𝑥2 − 𝑥1|.

 

All the other cases can be shown analogously.  
□ 

Theorem 27 
Let 𝑈𝐹𝑒: [0,1]

2 → [0,1] be a 1-Lipschitz binary function then it has the following 

form. 

 𝑈𝐹𝑒(𝑥, 𝑦) = {

𝑒 𝑂(
𝑥

𝑒
,
𝑦

𝑒
) if (𝑥, 𝑦) ∈ [0, 𝑒]2

𝑒 + (1 − 𝑒) 𝐺(
𝑥−𝑒

1−𝑒
,
𝑦−𝑒

1−𝑒
) if (𝑥, 𝑦) ∈ [𝑒, 1]2

𝑥 + 𝑦 − 𝑒 otherwise,

 (3) 

 where 𝑂 and 𝐺 is a 1-Lipschitz overlap and grouping function, respectively. 

PROOF:  Clearly 𝑂 and 𝐺 have to be 1-Lipschitz in order to preserve the 1-Lipschitz 

property on [0, 𝑒]2 and [𝑒, 1]2, respectively. We will show that 𝑈𝐹𝑒 has a neutral 

element 𝑒. Choose 𝑥 ≤ 𝑒 ≤ 𝑦 then on the one hand 

𝑈𝐹𝑒(𝑒, 𝑦) − 𝑈𝐹𝑒(𝑒, 𝑒) = 𝑈𝐹𝑒(𝑒, 𝑦) − 𝑒 ≤ |𝑦 − 𝑒|, 

i.e., 𝑈𝐹𝑒(𝑒, 𝑦) ≤ 𝑦 and on the other hand 

𝑈𝐹𝑒(𝑒, 1) − 𝑈𝐹𝑒(𝑒, 𝑦) = 1 − 𝑈𝐹𝑒(𝑒, 𝑦) ≤ |1 − 𝑦|, 

i.e., 𝑈𝐹𝑒(𝑒, 𝑦) ≥ 𝑦. Hence, 𝑈𝐹𝑒(𝑒, 𝑦) = 𝑦. Similarly, we can show that 𝑈𝐹𝑒(𝑥, 𝑒) =
𝑥. 

For 𝑈𝐹𝑒(𝑥, 𝑦) we show that 

𝑈𝐹𝑒(𝑥, 𝑦) − 𝑈𝐹𝑒(𝑥, 𝑒) = 𝑈𝐹𝑒(𝑥, 𝑦) − 𝑥 ≤ 𝑦 − 𝑒
𝑈𝐹𝑒(𝑥, 𝑦) ≤ 𝑥 + 𝑦 − 𝑒

 

and 

𝑈𝐹𝑒(𝑒, 𝑦) − 𝑈𝐹𝑒(𝑥, 𝑦) = 𝑦 − 𝑈𝐹𝑒(𝑥, 𝑦) ≤ 𝑒 − 𝑥
𝑈𝐹𝑒(𝑥, 𝑦) ≥ 𝑥 + 𝑦 − 𝑒.
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So, 𝑈𝐹𝑒(𝑥, 𝑦) = 𝑥 + 𝑦 − 𝑒 for (𝑥, 𝑦) ∈ 𝐴(𝑒).                  

□ 

Observe that this solution exists for strong unifunctions with 1-Lipschitz underlying 

functions and with an additive generator 𝑓(𝑥) = 𝑥 − 𝑒. 

 

 
Figure 2 

From left to right - unifunction 𝑈𝐹1
2
, nullfunction 𝑁𝐹1

2
 in the top row and 𝐺𝑈𝐹1

2
 and 𝐺𝑁𝐹1

2
 are 

visualized in the bottom row 

Example 28 

1. Consider 

 𝑈𝐹𝑒(𝑥, 𝑦) = {

𝑚𝑖𝑛(𝑥, 𝑦) if (𝑥, 𝑦) ∈ [0, 𝑒]2,

𝑚𝑎𝑥(𝑥, 𝑦) if (𝑥, 𝑦) ∈ [𝑒, 1]2,
𝑥 + 𝑦 − 𝑒 otherwise,

 

 and  
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𝑁𝐹𝑒(𝑥, 𝑦) = {
𝑚𝑎𝑥(𝑥, 𝑦) if (𝑥, 𝑦) ∈ [0, 𝑒]2,

𝑚𝑖𝑛(𝑥, 𝑦) if (𝑥, 𝑦) ∈ [𝑒, 1]2,
𝑒 otherwise,

 

is a pair solving equation (3). Observe that 𝑈𝐹𝑒 is a strong unifunction and 

𝑁𝐹𝑒 is a nullfunction and an idempotent nullnorm, too. 

2. Consider the pair of functions given by 𝐺𝑈𝐹𝑒  =  𝑚𝑒𝑑(0, 𝑥 + 𝑦 − 𝑒, 1)  
and 𝐺𝑁𝐹𝑒  =  𝑚𝑒𝑑(𝑥 + 𝑦, 𝑒, 1 + 𝑒 − 𝑥 − 𝑦).  

This pair of functions solves equation (3), but in this case 𝐺𝑈𝐹𝑒 is not a 

unifunction and 𝐺𝑁𝐹𝑒 is not a nullfunction. These functions are non-

decreasing and continuous, even 1-Lipschitz. The reason why they are not 

a unifunction and nullfunction, respectively, is due to the underlying 

functions of 𝐺𝑈𝐹𝑒 and 𝐺𝑁𝐹𝑒 are neither overlap nor grouping functions. 

However, the underlying functions are pairs of Frank’s t-norm and t-

conorm solving equation (3). 

Conclusions 

In this paper, we introduced the notion of unifunction and nullfunction motivated 

by uninorms and nullnorms. These operators provide a useful framework for bipolar 

aggregation where continuity is essential and associativity is not required. 

Moreover, we presented some examples and showed possibility to construct them. 

The attention was then focused to solving the well-known Frank’s equation (3). 

Further, we investigated some basic properties of unifunctions and nullfunctions. 

Future research will focus on a deeper classification of these functions, investigation 

of multi-argument extensions, and their integration into fuzzy decision models. 

Moreover, practical applications in preference modeling and AI reasoning systems 

will be explored to validate their utility in real-world contexts. 
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