
Acta Polytechnica Hungarica Vol. 21, No. 8, 2024 

‒ 289 ‒ 

House Energy Management System, for 
balancing Electricity Costs and Residential 
Comfort, based on Deep Reinforcement 
Learning 

Aleksandra Kaplar1, Milan Vidaković1, Aleksandar Kaplar1, 
Jovana Vidaković2, Jelena Slivka1 

1 Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 
6, 21000 Novi Sad, Serbia, aleksandra.a@uns.ac.rs, minja@uns.ac.rs, 
aleksandar.kaplar@uns.ac.rs, slivkaje@uns.ac.rs  
2 Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 
Novi Sad, Serbia, jovana@dmi.uns.ac.rs  

Abstract: Smart homes are becoming increasingly popular for their potential to reduce 
electricity costs, through device optimization. Balancing residential comfort with electricity 
cost reduction presents significant challenges. To tackle this problem, we developed a House 
Energy Management System (HEMS) using Deep Reinforcement Learning (DRL) to reduce 
electricity costs, by orchestrating device usage, without compromising residential comfort. 
The HEMS was trained on a smart home simulation powered by the Typhoon HIL application 
and supplemented with real-world data, from the Mainflux IoT Platform. The simulation 
included HEMS-controllable and uncontrollable devices, a solar panel and the electricity 
grid. We modelled a reward function that balances electricity cost with the residents' comfort 
and used it to train two DRL models: Double Deep Q Network (DDQN) and Proximal Policy 
Optimization (PPO). Our findings show that PPO maintains thermal comfort and reduces 
electricity costs more effectively than does DDQN, particularly in the colder season. As the 
PPO models’ behavior is season-dependent, it can reduce residential effort by automatically 
adjusting device schedules in response to changing weather conditions. 

Keywords: Deep Reinforcement Learning; Double Deep Q Network; Proximal Policy 
Optimization; House Energy Management System; Smart Home 

1 Introduction 
The electricity consumed by a typical smart home residence reaches up to 40% of 
the total energy consumption worldwide [1]. Thus, reducing energy consumption in 
residences, could reduce residents' electricity costs and positively impact our 
ecosystem. Cost reduction can be achieved by integrating renewable energy sources 
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into smart homes, which are becoming increasingly common. Solar power, the 
fastest-growing renewable energy source, is frequently integrated into smart homes 
to reduce their energy consumption from the electric grid [2]. 

Unfortunately, integrating a home equipped with solar panels, into the electrical 
grid, is challenging. The primary issue is that solar panel electricity production 
highly depends on external weather conditions [3] and is highly variable. Such 
homes still need to be connected to the electric grid. The grid benefits from uniform 
electricity consumption throughout the day. However, typical daily consumption 
patterns exhibit peaks when people return from work [4], whereas solar energy 
production peaks in the warmest (highest solar irradiance) part of the day [5].  
The grid typically mitigates this mismatch with initiatives where electricity prices 
vary throughout the day [6]. 

Balancing the smart home’s daily electricity consumption from the grid can be 
managed by orchestrating the appropriate times for the house to rely on a grid or a 
solar panel as an energy source. We can achieve this by strategically scheduling 
shiftable devices – devices that do not need to operate immediately upon demand 
but whose operation can be deferred without compromising residents' comfort. 

The House Energy Management System (HEMS) is crucial for managing shiftable 
devices, as their manual scheduling is time-consuming and unintuitive [7]. HEMS 
should enable a self-sufficient environment for managing electricity costs and smart 
home devices according to residents’ demands [8]. By incorporating artificial 
intelligence, we can alleviate these burdens for residents and potentially discover 
innovative energy-saving strategies. This paper proposes the development of the 
HEMS that automates the orchestration of smart home devices, balancing electricity 
costs with residents’ comfort. We used Deep Reinforcement Learning (DRL), a 
combination of Reinforcement Learning (RL) and deep neural networks, to 
optimize HEMS decision-making. We experimented with two DRL models: Double 
Deep Q Network (DDQN) and Proximal Policy Optimization (PPO). 

The primary challenge in using DRL to train HEMS is the necessity of an 
appropriate training environment. Training a DRL model from scratch in an actual 
smart home is impractical due to the significant and unnecessary electricity costs 
incurred during the initial training stages. Consequently, many researchers opt to 
use simulated training environments [1] [9-11]. This paper proposes employing 
Typhoon HIL [12] and MainFlux [13] to simulate the smart home environment. Our 
simulation includes shiftable devices controlled by the HEMS (air conditioning, 
dishwasher, solar panel, and washing machine) and uncontrollable devices 
regulated by the residents (e.g., TV and lighting). The electricity prices are set to 
vary throughout the day to replicate real-world grid incentives. 

The architecture of our smart home simulation is divided into three components 
(Figure 1). The DRL model observes the smart home’s current state, including the 
status of its devices and residents’ comfort demands, and determines the action for 
the next 15-minute time step, specifically which devices should be operated. 
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Figure 1 

A simplified overview of our solution. Right to the left: The Mainflux IoT platform infuses our 
simulation with real-world outdoor data; the Typhoon HIL accurately simulates the electricity 
consumption of each device, with adjustments in solar panel electricity production and indoor 

temperature based on the infused outdoor data; The smart home module calculates rewards based on 
electricity costs and residential comfort, which includes considerations for desired device services and 
thermal comfort; HEMS actions are optimized through the training a DRL model. Two DRL models 

are evaluated: Proximal Policy Optimization (PPO) and Double Deep Q-Network (DDQN). 

Defining a reward function is essential for training a DRL model. In the context of 
our HEMS, the reward function must balance residential comfort with electricity 
costs. Following the approach in [14], we constructed a reward function that 
incorporates both these factors and extended it with a penalty factor. Our 
observations indicate that this reward enabled the DRL models to increase 
residential comfort while decreasing electricity costs. The contributions of our 
paper are as follows: 

(1) We propose using Typhoon HIL, a fast and highly accurate third-party 
software, to simulate a smart home, providing a training environment for 
DRL models. Typhoon HIL is a flexible and robust testing environment with 
a user-friendly interface, allowing the users to define and interact with 
environments and monitor the simulated systems [15-17]. Additionally, we 
integrate real-world external data into the Typhoon HIL simulation using 
MainFlux. 

(2) We propose a reward function for training DRL models that balances 
electricity costs with residential comfort. The residents can parametrize it 
according to their personalized requirements. This paper presents a case 
study – a hypothetical scenario of residents' comfort demands –
demonstrating that DRL models can be effectively trained using the 
proposed environment and reward. 

(3) We found that the PPO model trains faster than DDQN and outperforms 
DDQN regarding residential thermal comfort. 

(4) To the best of our knowledge, previous works used training sets that included 
several months of data to avoid possible oscillations in calculating the 
average reward during training. Solutions that used the entire year’s data 
experienced oscillations in the average reward calculations. We proposed 
dividing the training and testing data into seasons, allowing for more 
consistent average reward calculation during training and improving results. 
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2 Related Work 
Over the years, researchers have applied RL in smart homes to schedule the 
operation of devices and reduce electricity costs. Unlike traditional models that are 
trained on labelled data sets, RL models require an environment where they can test 
and evaluate possible actions [1]. 

2.1 Reinforcement Learning Model’s Training Environments 
Training an RL model in a real smart home from scratch is impractical. In the early 
stages of training, RL needs to explore a wide range of actions, many of which may 
not be beneficial, leading to significant and unnecessary electricity costs. However, 
real-world data is essential to train a realistic RL-based HEMS. Authors in [18] and 
[19] address this issue by collecting real-time data via sensors placed in an indoor 
environment. They use this data to develop models for environment simulations for 
RL model training. Many other authors also rely on real-world historical data, 
incorporating it into simulated environments they modelled. [9] [20-22]  

Another research direction involves building models that predict relevant factors 
such as indoor temperature, electricity price, and solar generation rather than using 
real-time data [9] [10] [23]. Once these prediction models are trained, their hour-
ahead predictions are used to train the RL model. 

While using historical and real-world data provides the most realistic scenario, it 
also has practical limitations for training RL models. It is essential to expose the RL 
model to various plausible scenarios. These scenarios might include extended 
absences of residents, changes in residential preferences or behavior, power 
shortages, weather changes, and more. Capturing these scenarios in historical data 
is not feasible, as it is impractical to disrupt residents' daily lives by enforcing 
unfavorable events. Moreover, historical data is often available for a limited number 
of smart home configurations. This lack of diverse data can become problematic as 
residential environments are often dynamic. New devices may be introduced to the 
smart home, and HEMS must be able to adapt. 

2.2 Deep Reinforcement Learning Models for HEMS 
In addition to the traditional RL Q-Learning model, other papers train Deep RL 
models for developing HEMS. The authors of [19] propose a HEMS solution to 
reduce electricity costs associated with indoor heating and domestic hot water 
temperatures while utilizing electricity production from solar panels. They define 
residential comfort through time constraints for device operation but do not account 
for variations in electricity prices throughout the day. 

Another DRL model that achieved promising results is Double Deep Q-Network 
(DDQN). Liu et al. [24] proposed HEMS based on the DDQN model, which was 
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trained to optimize electricity costs for smart home devices while considering 
constraints on operating times and varying electricity prices (i.e., tariff). Our paper 
also considers the tariffs and preferred operating times for individual devices. 
However, our residential comfort definition additionally includes thermal comfort. 

Forootani et al. [25] implemented a satisfaction-based HEMS that comprises 
multiple Deep Q-Network (DQN) models. Each DQN model corresponds to a 
specific device and is trained separately to minimize its electricity cost while 
considering the residential preferences for using that device. Additionally, their 
smart home setup includes an electric vehicle. In contrast, our HEMS is based on a 
single DRL model with a reward function that balances residential comfort with 
electricity costs through managing multiple smart home devices. 

In addition to the previously mentioned papers, which focused on DRL strategies 
based on value functions (estimations of expected cumulative rewards), another 
research direction involves DRL based on actor-critic algorithms. Actor-critic 
algorithms use two neural networks: the policy network that determines the optimal 
action, and the value network evaluates the action by estimating the value function. 

Huang et al. [26] implemented a combination of two models, Deep Q-Network 
(DQN) and Deep Deterministic Policy Gradient (DDPG) to orchestrate smart home 
devices, considering Heating, Ventilation, Air Conditioning (HVAC), renewables, 
and storage. They define the residential comfort in terms of thermal comfort and 
preferred operating times for individual devices. 

Li et al. [27] utilized PPO to model a smart home with three device types: critical, 
shiftable, and controllable. Critical devices have predetermined operating periods. 
Shiftable devices can adjust their operation time based on tariffs. Controllable 
devices can be flexible or regulated. The action set in our solution is similar to that 
of Li et al. [27]. Like them, we define binary control variables for shiftable devices 
(turning the device on or off). However, while Li et al. [27] focused exclusively on 
optimizing electricity costs, we also optimized residential comfort. 

Mbuwir et al. [28] introduced a hybrid approach that combined PPO with a rule-
based control system for electric vehicle charging. The reward function relied on 
the outcomes of both the PPO actions and rule-based real-time controllers. 

Sun et al. [29] defined a multi-agent1 DRL based on PPO. They minimized 
electricity costs on a large-scale HEMS. Their smart home environments included 
devices, energy storage systems, and renewable energy sources. They addressed the 
microgrid market problem, where actions taken by each smart home HEMS 
involved purchasing power from or selling power to the grid. 

 
1  Agents are autonomous entities that perceive the environment, take actions, and learn 

from their interactions. 
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In their study, Azuatalam et al. [30] utilized PPO to optimize HVAC control in a 
building. Their objective was to balance thermal comfort and electricity costs.  
The RL model was trained using historical data, including weather conditions and 
solar radiation. A penalty factor was incorporated to ensure thermal comfort, 
penalizing deviations from the thermal comfort range of 20℃ to 25℃. In addition 
to thermal comfort, our solution also optimizes the operation of other smart home 
devices. 

Zhang et al. [31] defined a multi-agent DRL approach employing PPO to optimize 
the airflow in an HVAC system, based on the observed state. Sensor data provided 
a more comprehensive insight into the observed state. This approach aimed to 
balance thermal comfort and electricity costs. 

Our work combines the approaches of Huang et al. [26], Liu et al. [24], and 
Forootani et al. [25]. We considered two DRL models for our HEMS: a DDQN 
model, as Liu et al. [24], and a PPO model, as used by Li et al. [27], Azuatalam et 
al. [30], and Zhang et al. [31]. Our smart home setup is similar to Huang et al. [26], 
featuring air conditioning, a solar panel, shiftable devices with preferred operation 
times managed by HEMS, and uncontrollable devices that run on demand. We 
developed a scale for residential comfort based on ideas from [10] and [23], aiming 
to balance objectives of residential comfort – which encompassed preferred 
operation times and thermal comfort – and electricity costs. Our solution uniquely 
considers both electricity consumption and residential comfort across various 
desired working ranges, such as the working hours for air conditioners. Unlike 
previous studies, we employed real-world historical data in our simulations with the 
Typhoon HIL simulation platform due to its generalized observation space. 
Typhoon HIL allows us to simulate various smart home configurations rather than 
being limited to a specific case scenario. This flexibility is crucial for generalizing 
our findings across different household types. 

3 Methodology and Implementation 
The Markov Decision Process (MDP) is a mathematical representation of RL. MDP 
defines a goal-oriented learning approach [32], making it an ideal solution for our 
optimization problem of scheduling device operations to balance electricity costs 
and residential comfort. The MDP framework encompasses three major decision-
making elements: environment, agent, and reward. 

3.1 Environment 
The environment used to train the DRL-based HEMS is a simulated smart home 
built using Typhoon HIL [12]. The environment is described in our previous works 
[33] [34]. The simulated smart home contains two device types: shiftable devices 
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controlled by HEMS and uncontrollable devices 𝐿𝐿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = {𝑑𝑑1} that must 
run on demand, regardless of external factors such as price tariffs. Shiftable devices 
include air conditioning, dishwasher, washing machine, and solar panel, 
𝐿𝐿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = {𝑑𝑑2,𝑑𝑑3,𝑑𝑑4,𝑑𝑑5}. HEMS can postpone or advance the operation of 
these devices to take advantage of the lower price tariffs or solar panel production. 
The residents define the preferred operation time for these devices, as detailed in 
Section 4. 

The energy consumption of a device is calculated as: 

 
𝐸𝐸𝑠𝑠(𝑡𝑡) =  𝑃𝑃𝑠𝑠 ∗ 𝐴𝐴𝑆𝑆𝑠𝑠 ∗ 𝑡𝑡 

(1) 

 

where 𝑠𝑠 represents the device,  𝑃𝑃𝑠𝑠 denotes the amount of power a device consumes 
when it is operating, and the action set 𝐴𝐴𝑆𝑆𝑠𝑠= [0, 1] is a binary value indicating 
whether the device is OFF or ON during timestep 𝑡𝑡. 

Each device has predefined inputs (actions HEMS may take at the start of the time 
step) and outputs (observation HEMS makes at the end of the timestep). When 
working, the devices differ in electrical consumption patterns,  corresponding to the 
available states and actions of the devices (Sections 3.2.2 and 3.2.3). Similar device-
specific constraints as in [26] are applied. 

3.2 HEMS 
Our goal is to schedule the operation of devices to balance electricity costs with 
residential comfort. To achieve this, in each time step, HEMS can choose to turn 
devices on or off. Running devices during low electricity price periods reduces costs 
but may compromise residential comfort if the desired service is not provided on 
time. HEMS may also choose to run devices even during high electricity price 
periods if the solar panel produces enough energy. When the HEMS turns on a 
device, Typhoon HIL simulates the device's electricity consumption over the 
subsequent time steps (as shown in the example presented in Figure 2) until the 
device completes its task HEMS chooses to turn it off. 

3.2.1 Reward 

The reward function is dependent on the environment. In video games such as [35], 
the reward function can take discrete values of 0 (the taken action did not change 
the state), 1 (the taken action led to a better state), and -1 (the taken action led to a 
worse state). The long-term goal is to maximize the cumulative reward [32]. 

We used the reward function from [33], which was previously adopted from [14]: 
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𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑 = ��� benefit𝑠𝑠(𝑡𝑡) ∙ E𝑠𝑠(𝑡𝑡)
𝑆𝑆

𝑠𝑠=1

� − 𝐶𝐶electricity(𝑡𝑡) ∙ 𝐸𝐸grid(𝑡𝑡)� (2) 

where: 

𝑺𝑺 = 𝑳𝑳𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖 + 𝑳𝑳𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖   is the number of smart home devices. 
 

𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒃𝒃𝒃𝒃𝒖𝒖𝒔𝒔  is the monetary benefit for having the device’s service during the 
time interval; the monetary benefits are calculated by the Typhoon framework 
according to residential demands listed in Table 1. 

𝑬𝑬𝒔𝒔  from equation (1), is the energy spent [kWh] for running the device during 
the time step. To ensure a more stable learning process, all electricity 
consumption values 𝐸𝐸𝑠𝑠 were normalized to the range [0, 1] 
 

𝑪𝑪𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒃𝒃𝒖𝒖𝒃𝒃𝒖𝒖𝒆𝒆  is the cost of electricity during the time step 
  

𝑬𝑬𝒈𝒈𝒖𝒖𝒃𝒃𝒈𝒈  is the energy provided by the grid the time interval [kWh] 
 

 
Figure 2 

An example of energy consumption of smart home devices. Uncontrollable devices’ consumption 
varies across different simulation days. Solar power production varies depending on the real-world 

outdoor weather conditions recorded for each day. Other devices’ consumption (dishwasher, washing 
machine, and AC) also varies daily, based on the decisions made by HEMS. 

The reward function depends on residential comfort, defined through the perceived 
monetary benefit of running the device during a certain time period. We used three 
levels of monetary benefit: 

High:  Residents would choose to run the device even if it is the peak 
 electricity price period. 
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Medium:  Residents allow that operating the device may be curtailed 
during this period. 

Don't care:  Residents do not care if the device operates during this period 

Monetary values corresponding to these benefit levels are adjustable simulation 
parameters listed in Section 4. 

When training DRL models using the reward function defined in Equation (2), we 
observed that it took many episodes for the reward to stabilize. The unstable reward 
during training led to inconsistencies in the optimal actions for the same state during 
the testing phase, indicating that different actions were deemed optimal for the same 
states. Inspired by [35], we combated this issue by adding a penalty factor at the end 
of an episode (day). The penalty was applied when the model failed to activate 
devices by the end of the day. Considering the penalty factor, the total reward is: 

𝑅𝑅� =  �𝑅𝑅−  𝑃𝑃𝑟𝑟𝑃𝑃𝑟𝑟𝑃𝑃𝑡𝑡𝑃𝑃                      
𝑅𝑅                                

 𝑖𝑖𝑖𝑖 the 𝑑𝑑𝑟𝑟𝑑𝑑𝑖𝑖𝑑𝑑𝑟𝑟 𝑟𝑟𝑟𝑟𝑠𝑠 𝑃𝑃𝑛𝑛𝑡𝑡 𝑟𝑟𝑑𝑑𝑡𝑡𝑖𝑖𝑑𝑑𝑟𝑟𝑡𝑡𝑟𝑟𝑑𝑑
𝑛𝑛𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑠𝑠𝑟𝑟

 

where the 𝑅𝑅�  denotes the modified reward, 𝑅𝑅 the original reward, and 𝑃𝑃𝑟𝑟𝑃𝑃𝑟𝑟𝑃𝑃𝑡𝑡𝑃𝑃 a 
negative penalty constant. The penalty encourages the model to consider turning on 
the device during the day, mitigating the issue of inconsistent optimal actions. 

3.2.2 State 

State representation is tightly coupled with the observed environment. For 
reference, in video games, a state may be defined as a single game frame [35]. In 
the HEMS context, the environment’s state is described through device outputs, the 
current electricity price, and the resident-defined monetary benefit of using the 
device in that time step. Thus, we model the state as a tuple of five discrete values: 

𝑠𝑠 = � 𝐵𝐵𝐴𝐴𝐴𝐴 ,𝐵𝐵𝑑𝑑𝑑𝑑𝑠𝑠ℎ𝑤𝑤𝑢𝑢𝑠𝑠ℎ𝑢𝑢𝑢𝑢 ,𝐵𝐵𝑤𝑤𝑢𝑢𝑠𝑠ℎ𝑑𝑑𝑢𝑢𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑊𝑊𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑝𝑝𝑚𝑚𝑖𝑖𝑖𝑖𝑝𝑝 ,𝑇𝑇� 

In the above equation, 𝐵𝐵𝑑𝑑𝑢𝑢𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢  denotes the resident-assigned monetary benefit of 
using the device in the observed time step and takes values "don’t care," "medium," 
and "high". 𝑊𝑊𝑑𝑑𝑢𝑢𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢  denotes whether the device is operating, taking values 0 (turned 
off) and 1 (turned on). 𝑇𝑇 denotes the electricity price in the observed timestep. 

3.2.3 Actions 

In each state, the DRL model chooses an action that may change the state of the 
environment. The DRL model aims to learn the optimal actions to take in the 
observed states. Optimal actions are those that maximize the cumulative reward. 

In the HEMS context, each device has associated actions. Our action set comprises 
six discrete values 𝑟𝑟𝑠𝑠𝑢𝑢𝑢𝑢 = [0, 5]. These values represent the following actions: 0 – 
turn on the air conditioner, 1 – turn off the air conditioner, 2 - turn on the dishwasher, 
3 - turn off the dishwasher, 4 – turn on the washing machine, and 5 – turn off the 
washing machine. Other smart home devices, such as uncontrollable devices and 
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the solar panel, are not controlled by the HEMS. Solar panel electricity production 
depends on the outdoor weather data, and the usage of uncontrollable devices is 
randomized throughout the day to simulate resident behavior. 

3.2.4 Training the HEMS 

The architecture of our solution is presented in Figure 1. The smart home 
environment is thoroughly described in [34]. This paper focuses on training and 
evaluating DDQN and PPO models in this environment. Figure 3 illustrates the 
training process of DDQN and PPO models. The model takes actions to “learn” the 
optimal action for the observed state. In return, the model receives a reward 
presented in Equation (2). 

 

The architecture of the environment. The DRL model is either PPO or DDQN. 

DQN leverages deep neural networks to learn optimal policies in environments 
where the number of states and actions is too large for traditional RL methods.  
The network predicts reward outcomes from specific actions within given states, 
helping the algorithm maximize cumulative rewards over time. Extending DQN, 
DDQN employs two neural networks to reduce action values overestimations - one 
selects actions while the other evaluates their predicted rewards. This dual-network 
approach enhances the stability and accuracy of training. Further details on DDQN 
can be found in papers [36] [37]. 

PPO is an advanced policy gradient algorithm distinct from value-based methods 
like DDQN. Unlike DDQN, which derive policy indirectly through value functions, 
PPO optimizes the policy directly. This direct method combined with the use of 
multiple data epochs per update, contribute to PPO’s robustness and efficiency, 
making it ideal for environments with high-dimensional action spaces. More 
comprehensive information on PPO is available in papers [38-41]. 

4 Simulation 
To evaluate our solution, we defined a case study with the following smart home 
simulation parameters: geographical location, specific time period, electricity price 
tariffs, and resident-defined monetary benefits, determining their preferences for 
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device operation times. These parameters can be adjusted to simulate a smart home 
with differently defined residential comfort in a different geographical location. 

We collected solar irradiation and temperature data for external weather conditions 
from the 1st to the 22nd of January, June, and October 2016. The data was collected 
for Berlin from Solcast [42] and divided into the training and test portions. 

The electricity price tariffs (𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑑𝑑𝑢𝑢𝑑𝑑𝑢𝑢𝑒𝑒) are representative of a typical German tariff 
scheme for small residential customers: the peak price is 0.4 euro/kWh lasting from 
5 AM to 1 PM, the shoulder price is 0.3 euro/kWh lasting from 1 PM to 12 PM, and 
the off-peak electrical price is 0.2 euro/kWh lasting from 12 AM to 5 AM. 

Resident-defined monetary benefit values (𝑏𝑏𝑟𝑟𝑃𝑃𝑟𝑟𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠) are based on the electricity 
price tariffs, as recommended in [14], and presented in Table 1. The high monetary 
benefit is set to be higher than the peak electricity price, implying that the device 
should be operated even during the peak electricity price period. The medium 
monetary benefit is selected to be between shoulder and peak electricity prices, 
implying that running the device may be curtailed during the peak pricing period. 

Table 1 
User-defined benefits [34] 

Device Hours Importance 
Energy 

consumption (Wh) 
Air conditioning 5 PM-8 AM (next day) High 0 – 1800 

8 AM-5 PM Do not care 
Dishwasher 6 AM-9AM Medium 0 – 690 

9 AM-11 AM High 
Rest of the day Do not care 

Solar Panel All day High Varies depending 
on real-world data 

Uncontrollable devices All day High 0 – 2034 
Washing Machine 1 PM-7 PM High 0 – 250 

Rest of the day Do not care 

The DRL models are implemented using Python 3.11 and TensorFlow 2.0 
framework on a desktop with 16GB RAM and an Intel i5 processor. DDQN model’s 
hyperparameters were set to: discount factor 0.99, episode length 96, epochs 600, 
exploration decay rate 5e-4, and learning rate 25e-4. PPO model’s hyperparameters 
were: clip parameter 0.2, discount factor 0.99, episode length 96, epochs 600, 
learning rate (policy network) 2e-5, and learning rate (value network) 1e-4. 

4.1 Performance of the DDQN and PPO Models 
Figure 4 shows the learning curve of the DDQN and PPO training process. In each 
training scenario, the reward increased over the training episodes for both models. 
The PPO model stabilized after less than 400 episodes, while the DDQN model took 
more than 10000 episodes to stabilize. Figures 4 (a) and (b) show that the average 
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DDQN reward is lower and oscillates more after convergence than the average PPO 
reward. Based on the graphs, PPO is expected to perform better on the test data. 

4.2 Testing Phase - Comparing the Models’ Performance 
To compare the trained models, we compared the reward they achieved on the test 
data (from the 22nd to the 29th of January, June, and October 2016). During the 
testing phase, DDQN and PPO models apply their version of the optimal action for 
the observed state. We analyzed total reward, device comfort, and thermal comfort.

 
a) Winter (1st to 22nd January 2016) 

4 Average rewards for Winter and Summer training periods 

Table 2 shows that PPO outperformed DDQN in terms of total reward in January 
and June and achieved the same total reward in October. In January, PPO saved 7 
euros per week in electricity costs at the expense of thermal comfort. In June, despite 
spending 2 euros more weekly than DDQN, PPO provided better thermal and device 
comfort. In October, DDQN outperformed PPO in thermal comfort at the cost of 
using 13 euros per week more in electricity cost. 

Table 2  
Total weekly cost, comfort, and reward for January, June, and October. Thermal comfort refers to the 

air conditioning device, while device comfort refers to the washing machine and dishwasher.  

 

Algorithm 

Total 
energy 

cost 
(euro) 

Total 
thermal 
comfort 
(euro) 

Total 
device 

comfort 
(euro) 

Total 
reward 
(euro) 

22nd – 29th January DDQN 159 195 55 91 

PPO 152 189 55 92 
22nd – 29th June DDQN 42 50 53 61 

PPO 44 55 55 66 
22nd – 29th October DDQN 142 175 57 90 

PPO 129 162 57 90 
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5 Discussion 
It is hard to directly compare our results to those presented in related work due to 
significant differences in training and testing settings, which can be summarized as 
follows:  

(1) Different periods are used for training and testing the models 
(2) Various types of smart home simulation setups are employed 
(3) Training objectives are defined differently 
(4) There are variations in the training setup 

5.1 Training and Testing Periods 
In [19], the testing extended from June to December, with the average reward 
beginning to decline by October. The reward was inversely proportional to 
electricity cost, which suggests that the decline can be attributed to outdoor weather 
conditions. During the winter months, frequent heating was necessary to maintain 
the resident comfort, leading to increased electricity costs and negatively impacting 
the reward [19]. Similarly, during the training phase, an issue was identified in June 
when analyzing temperature data; a drastic temperature variation was detected on a 
randomly selected day. Higher temperatures required more frequent cooling to 
maintain comfort [19], significantly affecting the model’s convergence. For 
comparison, when analyzing outdoor temperatures of any day in January, the 
temperatures were consistently low, and the daily variation was not as extreme as 
in June. We addressed these seasonal impacts by dividing the training and testing 
data by seasons, which resulted in a more stable training curve (Figure 4). 

The training set in studies [24] [26] [27] included data spanning one year. In [26], 
testing was conducted for one month immediately following the training period, 
while [24] tested the model over 50 subsequent days. The study [27] used a whole 
year of data for both training and testing. In contrast, the authors of [30] used only 
winter months. In [19], the training set included data from May to December, while 
testing was conducted on data from June to December of the following year. 
Authors in [1] trained and tested their approach using data from a single month, 
while the study [10] focused on a single day. In [30] and [31], the authors 
acknowledged the potential seasonal effect during training and testing and limited 
their dataset to January. In our study, we employed data from the first part of each 
month for training and the remainder for testing. This procedure was repeated using 
three distinct months to cover winter, summer, and autumn. 

Like the study [1], we avoided potential dependencies between consecutive days by 
randomly selecting days from the first 22 days of the month for 22000 training 
episodes. Authors of [26] also chose random training days with single-day episodes. 
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5.2 Smart Home Simulation Setups 
From the RL perspective, an effective simulation environment must offer both 
precision and speed. Typhoon HIL excels in both areas. It precisely models internal 
house temperatures based on external weather conditions and fine-grained 
variations in device electricity consumption patterns. Its ability to process data 
swiftly supports the rapid simulation of multiple training episodes, which is 
essential for efficient iterative learning and model optimization. 

In contrast, other solutions used MATLAB/Simulink [1] [11] [23] and historical 
data [1] [19] [24] [26] to simulate the smart home or an artificial neural network 
model to predict environment data [10] [23], rather than using real-world data or 
precise simulation models. Compared to MATLAB, Typhoon HIL facilitates real-
time control and monitoring of simulation parameters [43], which will be 
advantageous when integrating the model into a real smart home in the future. 

5.3 Training Objectives 
This study defined a reward function that balanced electricity costs with residential 
comfort, incorporating both thermal comfort and resident-defined preferred device 
operation times. In contrast, most studies considered only a part of this optimization 
goal. For example, the study [11] minimized electricity costs and assigned device 
priorities on a scale of 1 to 6, while the study [19] solely optimized thermal comfort. 

Like in our study, the settings in studies [11] and [23] allowed residents to specify 
the periods during which devices should operate. If the HEMS failed to provide the 
desired service, a dissatisfaction cost was included in the reward function. Our study 
provides a more flexible setup where the residents could assign monetary benefits 
for running the service during certain day periods.  

Study [1] focused on optimizing electricity costs and thermal comfort, disregarding 
other devices. They defined thermal comfort as maintaining a fixed temperature, 
whereas our study allows residents to specify periods when they are concerned 
about the house temperature and periods when they are not. Unlike our approach, 
the study [1], used a fixed electricity cost instead of tariffs. Study [19] considered 
thermal comfort and electricity costs but did not consider electricity tariffs. 

Like our study, studies [24] and [25] considered electricity costs, thermal and device 
comfort. However, these studies define reward functions differently. Study [24] 
optimized thermal and device comfort, transforming the device constraints into 
rewards by integrating weighting factors into the total reward. Like our simulation, 
they used a 15-minute time step. In contrast, their setting allowed selling the 
electricity back to the grid and using a house battery to save the produced electricity. 
Study [25] imposed dissatisfaction penalties, calculating thermal dissatisfaction as 
the difference between the indoor and the desired temperature and device 
dissatisfaction as the discrepancy between selected and actual device working time. 
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5.4 Performance Overview 
In our study, PPO converged faster and achieved a higher average reward than 
DDQN during training. Both DDQN and PPO were trained in the same smart home 
environment. Sun et al. [29] found that PPO achieved a higher average reward and 
converged faster than DQN. However, they used different environments for these 
models – DQN was trained in a discrete action space, while PPO was trained in a 
continuous action space, allowing an infinite number of possible actions. 

We acknowledge that the resident-defined preferences for device operation times 
and the electricity tariff greatly influence the results presented in our study. We 
performed a case study to evaluate whether DDQN or PPO are viable for training 
HEMS to control this flexible scenario. We acknowledge that manually defining 
monetary benefits can introduce bias and be laborious. As a part of our future work, 
we aim to develop a model that learns household-specific habits, thereby alleviating 
the burden of manual preference settings for residents. 

In [19], the indoor temperature was gathered from a homeowner to identify user 
preferences. The study [24] utilized an extensive real-world data set to simulate 
smart home devices. In contrast, our study offers the residents the flexibility to set 
desired temperature ranges and preferred operation times for the devices. Unlike 
[19], we considered electricity tariffs. Although we did not collect real-world data 
like [24] and [19], our approach allows homeowners to define the desired 
temperature for specific periods of the day. 

Several potential limitations exist when using DRL in smart home energy 
management. Firstly, training DRL models demands large amounts of high-quality 
data, which may not always be available consistently [44]. Real-time decision-
making may be challenging, as the computational demands of DRL could hinder its 
application in scenarios requiring immediate responses. 

DRL models can struggle and may require retraining when the environment 
changes, such as shifts in user behavior, and fluctuations in electricity prices and 
weather conditions that affect consumption patterns [45]. Moreover, DRL models 
are highly dependent on initial conditions and training data, with variations in these 
leading to different outcomes. This sensitivity can affect the model’s reliability and 
performance.  A possible solution for addressing variable electricity prices could be 
to implement a separate model trained to predict patterns of changes in electricity 
prices. The model’s predictions could then be incorporated into the RL model’s 
state. 

The scalability and complexity of the model also pose significant challenges as the 
number of devices and the complexity of tasks increase, potentially making the 
training process more computationally expensive and time-consuming [46]. 
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Finally, security, privacy, and ethical considerations may present an issue, 
especially regarding user autonomy and consent in data collection and use for 
training models [47]. 

Conclusions 

This paper addresses the challenge of orchestrating smart home devices, in order to 
balance residential comfort with electricity costs. We proposed employing DRL 
models (DDQN and PPO) to achieve this objective. These models were trained 
using a smart home simulation, implemented via the Typhoon HIL and Mainflux 
IoT platforms. Typhoon HIL served as a reliable toolchain for modelling smart 
homes that closely replicate real-world environments. Mainflux IoT supplied real-
world weather data to Typhoon HIL. This setup enabled accurate smart home 
simulations, thus, allowing the models to explore various device management 
strategies in a rapid manner. 

We compared the performance of trained DDQN and PPO models concerning 
thermal and device comfort and electricity costs across different seasons. While 
both algorithms successfully reduced electricity costs, PPO outperformed DDQN in 
terms of thermal comfort and electricity cost savings during the colder seasons. In 
the warmer seasons, PPO outperformed DDQN in terms of device comfort. 

Our future goal is to develop a self-sustaining energy management system, aiming 
to achieve a zero-energy consumption residence, that operates independently, like 
an off-grid system. This system will harness energy from various renewable energy 
sources, such as solar panels, wind, geothermal and will have the capability to store 
any surplus power in electric power banks, including batteries and electric vehicles. 
Additionally, owners could sell any excess power back to the distribution grid. 
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