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Abstract: Parameter estimation of aircraft aerodynamic coefficients from experimental 
flight data generated using dynamics of postulated equations of motion describing the 
aerodynamics model is presented. Since the dynamics are characterized by aerodynamic 
and control derivatives, then these parameters can be extracted from the flight data.  
The one shot least squares method based on the equation error is used to estimate the 
initial parameters. The response outputs of the model estimate form the basis that an 
update of the model parameters is sought through the use of inversing modelling, and the 
output error method. Model validation metrics based on statistical analysis of the 
parameter estimates are then used to evaluate the degree of model fit, and the predictive 
capability of the identified model. 
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1 Introduction 

For a specified model, system identification amounts to determining the model 
parameters θ , such that the model estimate response ŷ , matches adequately to 
the system response z . This process is commonly referred to as parameter 
estimation, such that the unknown model parameters are determined indirectly 
from the system’s measured data. In essence, a model estimate should sufficiently 
capture the underlying features and dependencies in the measured data, while also 
strife for simplicity. Therefore, simplified representations are realized from the 
complex nonlinear behaviours of the physical models through system 
identification. To assess the adequacy of the model parameter estimates, model 
validation is usually carried out. 

When system identification is applied to an aerial vehicle, the equations of motion 
governing an aircraft dynamic response are usually postulated, and an experiment 



S. Kimathi et al. An Extended Approach to UAV Parameter Estimation using Simulated Flight Data 

 – 292 – 

is designed to obtain measurements through excitation of the inputs to the system. 
Different types of excitation inputs exist for aerial vehicles including multistep 
inputs [1], frequency sweeps [2] [3], multisines [4] [5], and pilot controls. For 
other applications chirps and pseudorandom signals [6] can also be applied. 
However, if the input waveforms to the different input channels have a similar 
appearance, then it becomes impossible to determine which input moved in a 
certain manner to contribute to the change(s) in the aerodynamic forces and 
moments. Hence, any process that tries to assign values to the model parameters 
using such inputs might fail to extract the correct relationships [7]. Optimal inputs 
have been suggested and used in [8], however, since the objective is to identify the 
model parameters, designing optimal inputs usually involve a large computation 
time, and thus superfluous. It has been shown that designing orthogonal input 
waveforms improve system excitation, and results in uncorrelated inputs [2]. 

System identification of dynamic models from their response data is motivated by 
the ability to use the resulting models that mimic the behaviour of the system as 
closely as possible as a foundation for purposes of control synthesis or motion 
planning. Different types of response data have been used for system 
identification such as flight data in [9], computational fluid dynamics data in [10], 
wind tunnel data in [11], and simulation flight data in [12]. A candidate method 
including equation error [13], filter error [14], output error [15], or neural 
networks [16] is then applied to estimate aerodynamic model parameters from the 
response data. These methods seek to minimize the squared differences between 
the observations and predicted value. 

In this work, the equation error method is applied, and an extra update step is done 
based on the output errors from the computed responses through the use of inverse 
simulation, so as to improve the convergence of the model parameters. This is 
important especially when the aerodynamic force and moment reconstruction is 
desired such as during control reconfiguration [17]. 

This paper is structured as follows: Section 2 describes formulation of the 
aerodynamic model of an unmanned aerial vehicle (UAV). Section 3 presents 
some principles of system identification, and the test data used in the identification 
of the model parameters is discussed in Section 4. The estimation of the 
parameters from the test data is presented in Section 5, and thereafter the 
conclusion is given. 

2 UAV Aerodynamic Model Formulation 

Let’s denote ( ), , Tu v w  and ( ), , Tp q r  to represent the velocity and angular 
velocity components respectively in the body frame’s center of gravity. The force 
and moment equations of a UAV expressed in the body frame can then be 
expressed by (1-2). 
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, ,x y zF  and , ,x y zM  are composed of contribution from aerodynamics, thrust and 
gravity as expressed in (3-4). 
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where 21
2

q Vρ=  is the dynamic pressure, and the variables *, , , , ,S b c S Iρ  have 

their usual meaning according to aircraft literature [7] [18]. The force and moment 
equations become (5-6) after substituting (3-4) into (1-2). 
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The force equation (5) is transformed to wind axis, and expressed in terms of 
airspeed V , angle of attack α , and side slip angle β  to become (7).  
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where ( )cosCα α= , ( )cosCβ β= , ( )sinSα α= , ( )sinSβ β=  and ( )tan .Tβ β=  

WD D YC C C C Sβ β= − , 
WY Y DC C C C Sβ β= + , 1 pS rCα αΓ = − , 2 ( )T pC rSβ α αΓ = +  

and 1 2 3( , , )gW gW gW  are the gravity acceleration components in the wind axis 
frame. Equation (6) and (7) are the equations of motion and are developed with 
the assumption that an aircraft is a rigid body, and its thrust acts along the x-axis 
through the aircraft center of gravity. For quasi steady flow, the functional form of 
the non-dimensional force and moment aerodynamic coefficients are expressed as 

( ), , , , , sC C p q rα β δ∗ ∗=    , where , , , , ,D Y L l m n∗⇒ , and sδ  represent aircraft 
controls of aileron, elevator and rudder. The variables and parameters of the 
equation of motions (6-7) are listed in Table 1. 

Table 1 
 Summary of one-shot least squares parameters 

Coefficient Observation, Y Regressors, X Parameters, θ  

Drag DC  1,α  0 ,D DC C α  
Side-force YC  , , , ,a rp rβ δ δ 

 , , , ,
a rY Yp Yr Y YC C C C Cβ δ δ  

Lift LC  1, , , eqα δ  0 , , ,
eL L Lq LC C C Cα δ  

Rolling moment lC  , , , ,a rp rβ δ δ 
 , , , ,

a rl lp lr l lC C C C Cβ δ δ  
Pitching moment mC  1, , , eqα δ  0 , , ,

em m mq mC C C Cα δ  
Yawing moment nC  , , , ,a rp rβ δ δ 

 , , , ,
a rn np nr n nC C C C Cβ δ δ  

where ( ), , , ,
2 2 2a a a

b c bp q r p q r
V V V

 
=  
 

   . The structure for the identification model 

culminates to the solution of the unknown parameters jθ , 1, 2, pj n=   

representing the aerodynamic coefficients. Reorganizing (6-7) result into (8) 
where the right side of together with the relations in (7) are the observations, and 
the left side form the regressors for the parameter estimation process.  
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3 System Identification 

The objective when conducting flight tests for system identification, is to excite all 
the dynamic modes of an aircraft. In order to obtain to a good model estimate, the 
excitation to the system must be sufficient enough to stimulate the natural 
dynamic response in the aircraft motion. The excitation is normally fed in as an 
input into the input channels of the system. 

3.1 Input Design 

Orthogonal input waveforms are the desired excitation in this work. Multisines 
which are a sum of sinusoids with varying amplitudes, frequencies and phase 
angles are used. The frequencies for the multisines are normally chosen to cover a 
frequency band of interest, while the phase angles can be chosen arbitrarily [7].  
A multisine takes the form  

1

2 ( )( ) cos , 0,1,2, , 1
M

k k
k

kt iu i A i N
T

π φ
=

 = + = − 
 

∑   (9) 

where M  is the total number of available harmonically related frequencies, T  is 
the time length of the excitation, and kφ  are phase angles for each of the harmonic 

components. For Schroeder sweeps, kA P M= , and  

2
1 , 2,3,k k k M k Mφ φ π−= − =   (10) 

where P  is the total desired input power. Multisines using phase angles in (10) 
result in inputs with low relative peak factors, RPF. However, these inputs do not 
qualify as perturbation inputs, that is, that of starting and ending at zero [4].  
The initial phase angle(s) 1φ  can be adjusted accordingly, and thus satisfy the 
perturbation requirement. The process of designing orthogonal multisine inputs is: 

a) Assign an appropriate equal number of indices k  to each input from a set 
{1,2, }K M=  . Each frequency index can only be assigned to only one 

input. For instance, each input can consist of an integer in K  and 
multiples of that integer. 

b) The desired input power is then defined, ideally it should be constant for 
all the inputs. This is a generalization, but still sufficient to excite the 
aircraft dynamics. If need be, optimization of the frequency spectrum of 
inputs can be done. 

c) Generate the input ( )u i  for each of the m  excitation input, using (9). 

d) Using a one-dimensional search, find the phase shift to be added to each 
component such that each input ( )u i , appears as a perturbation input. 



S. Kimathi et al. An Extended Approach to UAV Parameter Estimation using Simulated Flight Data 

 – 296 – 

It is postulated in [4], that signals designed in this manner will be orthogonal in 
the time-domain regardless of the individual phase shifts. Hence, inputs composed 
of signals in this form will be decorrelated, and thus give accurate input control 
effectiveness on a system.  

3.2 Equation-Error Method 

Denote ( ) ( )y k x k θ=  as the linear hypothesis about the parameter dependence. 
The equation-error method based on least squares, LS is simple, powerful, and 
sufficiently captures the underlying dependencies in any observation data. 
Consider the following equation 

) 1( , ,( ) ( ) ,T Nz k x k k kθ ε == +   (11) 

where 2(1, , )
p

T
nθ θ θ=   represent the unknown parameters, z  represent the 

observation, and x  represent the independent variables also called regressors. ε is 
the uncorrelated error representing residuals. θ  is assumed constant over all N  
data samples. For the N  data points, (11) become Z Xθ= + Ε , where Z , Ε , 
and X  are 1N × , 1N ×  and pN n×  matrices respectively.  The least squares 

parameter estimates θ̂  of the true value θ  is given by: 
1ˆ ( ) .T TX X X Zθ −=  (12) 

For a complete derivation of (12), see [19]. Singular value decomposition or 
Cholesky factorization can be used to compute the term 1( )TX X − , and if it exists, 

then θ̂  will be unique. 

3.3 Output-Error Method 

Consider system dynamics described by ( , , )x f x u θ= , and ( , , )y g x u θ= . Since 
it is not possible to measure the system parameters θ , they can be estimated from 
the measurements ( )z k  of the model response outputs ( )y k  at discrete points 
k . The output equation is rewritten as: 

( ) ( ) ( )z k y k v k= +  (13) 

where ( )v k  are the output measurement errors with ( ) 0E v = , and 

( )TE vv = R . 

The output-error is a maximum likelihood method, and therefore for a given R , 
optimizing a negative log-likelihood cost function result in optimizing the 
function ( )J θ  that is subject to the model parameters using the covariance 

matrix estimate R̂ . 
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Taking the gradient and the second order gradient of the cost function ( )J θ , 
results to (15-16). 

( ) 1

1
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θ
θ θ

−

=

∂ ∂
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θ
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The higher orders of the partial derivatives in (16) are normally ignored [7] for 
practical reasons, resulting in a simplified Fisher information matrix, 

( )2
j iF J θ θ θ= ∂ ∂ . The maximum likelihood parameter estimator in its general 

form is the given as: 

1î iθ θ θ+ = − ∆  (17) 

where 1 ( )F kθ −∆ = S  and 1ˆ( )Cov Fθ −≥ . The relaxation technique is then applied 

such that the covariance R̂  is first computed, then the cost gradient and 
information matrix, and finally the parameter update is carried out using (17). 

3.4 Model Validation of Aircraft Parameter Estimates 

After parameters of a model have been estimated, an investigation of the 
parameter’s correctness and adequacy in the model estimate should be done. This 
can be achieved by checking the polarity of the estimates from a theoretical 
background. Moreover, a coefficient of determination (18) can give insights about 
the model estimates’ ability to predict the measured data, where a value 1 
represents a perfect fit to the data [7]. 

{ }
2

2 2
2

ˆ
[0,1] ,

T T

T

X z NzR R
z z Nz

θ −
= ∈

−
                                                                        (18) 

Different techniques are usually required to evaluate the adequacy of updated 
model parameters in a model estimate. The easiest way to compare two competing 
models is to measure how well each model performs reclassification. 
Reclassification for instance, may entail comparing the responses of the actual 
against the predicted outputs of the different models. 
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4 Flight Tests 

In system identification experiments, real flight data in most cases is not readily 
available or that, which is available does not include flight profiles necessary for 
system identification. In such scenarios, simulated flight data provide a good 
alternative [16]. A flight test was executed to generate test data from which a 
model estimate could be extracted. The excitation for the three input control 
signals ( , , )a e rδ δ δ  were designed using multisines where the parameters of (9-10) 
are given in Table 2. The ensuing signals are shown in Fig. 1. 

Table 2 
Multi-input design parameters 

Input k  RPF 

Aileron, aδ  3,6,12 1.2318 

Elevator, eδ  2,4,8 1.4451 

Rudder, rδ  5,10,15 1.2679 

Equations (6-7) were used to carry out numerical simulations in Matlab using the 
YAK-54 unmanned aircraft airframe physical properties as listed in [20].  
The input signals were applied simultaneously since this is a more efficient way 
for exciting the dynamic modes of a system instead of moving them separately 
[21]. 

Due to the nature of inputs signals which might be misconstrued as a disturbance 
in a feedback control system, and hence the dynamic response of the aircraft 
subdued, an open loop simulation configuration was used. The flight data from the 
numerical simulation is shown in Fig. 2. 
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Figure 1 

Excitation inputs to the system 
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Figure 2 

System identification data 

5 Parameter Estimation Results 

5.1  Initial Parameter Estimates 

To estimate the parameters of the aerodynamic model listed in Table 1, the 
equation error method discussed in Sec. 3.2 was used. The regressors were 
computed using (8) and the test data in Fig. 2. Table 3 and Table 4 show the force 
and moment parameter estimates respectively and their standard deviations.  
The coefficient of determination calculated using (18) was 89.23%, which 
represents the percentage proportion in the variation of the measured output that is 
explained by the identified model. 

Table 3 
Parameter estimates of the force coefficients 

Coeff. θ  
L̂Sθ  2ˆ( ) 10LSs θ −×  Coeff. θ  

L̂Sθ  2ˆ( ) 10LSs θ −×  

0DC  0.0526 0.0536 0.0019 0LC  0.1470 0.1453 0.0019 

DC α  -
0.0863 -0.0889 0.0080 LC α  4.5363 4.6505 0.2528 

YC β  -
0.3462 -0.4761 0.2276 LqC  5.1515 4.5196 0.8871 

YpC  0.0073 0.0164 0.2285 eLC δ  0.3762 0.5502 0.3054 

YrC  0.2372 0.1994 0.5526 rYC δ  0.1928 0.0784 0.2620 
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Table 4 
Parameter estimates for the moment coefficients 

Coeff. θ  
L̂Sθ  3ˆ( ) 10LSs θ −×  Coeff. θ  

L̂Sθ  3ˆ( ) 10LSs θ −×  

lC β  -0.0255 -
0.0232 0.0080 mqC  -8.5026 -

6.5773 2.11 

lpC  -0.3817 -
0.3403 0.0467 emC δ  -0.8778 -

0.7974 0.0755 

lrC  0.0504 0.0472 0.0406 nC β  0.0954 0.0942 0.0101 

alC δ  0.3490 0.3150 0.0377 npC  -0.0156 -
0.0157 0.0778 

rlC δ  0.0154 0.0140 0.0170 nrC  -0.1161 -
0.0913 0.0440 

0mC  -0.0018 -
0.0015 0.0002 anC δ  -0.0088 -

0.0083 0.0724 

mC α  -0.3701 -
0.3931 0.0066 rnC δ  -0.0996 -

0.0978 0.0173 

The model response outputs using the measured response control inputs and the 
estimated model parameters was compared with the measured response data.  
A plot of the forces and moments from the estimated model are given in Figs. 3 
and 4 respectively. 
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Figure 3 

Model fit to force coefficients 
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Figure 4 

Model fit to moment coefficients 

It can be seen that the moment plots have a perfect fit to the data. The forces plots 
show a good fit only in the normal force, ZC . A close inspection reveals that a big 
portion of the difference in the response of XC  is attributable to the difference in 
the bias parameter, 0DC  while in YC , the deviation might be attributable to the 
magnitudes of the parameters. The root mean squared error [7], RMSE values of 
the model prediction are given in Table 5. 

Table 5 
RMSE values 

Variable RMSE Variable RMSE 

XC  0.0178 lC  53.8 10−×  

YC  0.0036 mC  57.45 10−×  

ZC  0.0012 nC  54.86 10−×  

5.2 Adjustment of the Initial Estimates 

The difference between the model estimates response outputs and the measured 
response data was computed and is shown in Fig. 5. These deviations contain the 
model deficiencies. A suitable metric to assess these deficiencies is that they 
should be small and oscillate about zero, otherwise, they present possible clues for 
model updates or extensions [19]. The measured response data is used as the 
reference, and an inverse simulation [22] using nonlinear dynamic inversion was 
carried out to determine the required time histories of the control inputs and state 
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variables to compensate for the model deficiencies. The desired input time 
histories from this processing are shown in Fig. 6. 
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Figure 5 

Deviations of response in output variables 

The output-error method using these time histories was the applied to update the 
force model parameter estimates using (17) with the identified estimates as the 
initial values. The concept behind this, is that of establishing consistent dynamic 
characteristics in the forces and moments. Table 6 lists the updated parameter 
estimates, *θ̂  alongside the initial estimates, θ̂  and the percentage errors. 
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Figure 6 

Desired input and angular rates time histories 
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Table 6 
Updated force parameter estimates 

Parameter θ  θ̂  % Error θ̂ ∗
 

% Error 

0DC  0.0526 0.0536 1.9 0.0526 0 

DC α  -0.0863 -0.0889 4.17 -0.0835 3.2 

YC β  -0.3462 -0.4761 37.52 -0.3949 14.07 

YpC  0.0073 0.0164 124.66 0.0140 91.78 

YrC  0.2372 0.1994 15.94 0.2188 7.75 

rYC δ  0.1928 0.0784 59.34 0.1723 10.63 

0LC  0.1470 0.1453 1.15 0.1461 0.61 

LC α  4.5363 4.6505 2.52 4.5524 0.35 

LqC  5.1515 4.5196 12.27 4.7409 7.97 

eLC δ  0.3762 0.5502 46.25 0.5482 45.72 

It can be seen that, there was asymptotic improvements in all the coefficients 
towards convergence. A model fit graph based on the updated force parameter 
estimates are shown in Fig. 7. The individual graphs show improved fits as 
compared to initial estimated model fits in Fig. 3. In the axial force XC , the bias 
term is accurately compensated and hence a robust fit. The side force YC , also 
show an improved fit, with the overshoots greatly reduced. 
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Figure 7 

Model fit of force coefficients after update 
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Finally, a side-by-side comparison of the model estimates using the approach 
discussed here and that presented in [20] was done. These two identification 
models have a similar model structure and parameterization of the model 
parameters. 

The model parameters are listed in Table 7, where the parameters identified using 
the approach in this work, are labelled 2̂θ , and from that other approach as 1̂θ . 

Table 7 
Comparison of force and moment model parameters 

Coeff. θ  1̂θ  2̂θ  Coeff. θ  1̂θ  2̂θ  

lC β  -0.0255 -
0.0194 

-
0.0232 anC δ  -0.0088 -0.0031 -0.0083 

lpC  -0.3817 -
0.2967 

-
0.3403 rnC δ  -0.0996 -0.0938 -0.0978 

lrC  0.0504 0.0421 0.0472 0DC  0.0526 0.0620 0.0526 

alC δ  0.3490 0.2762 0.3150 DC α  -0.0863 -0.0741 -0.0835 

rlC δ  0.0154 0.0112 0.0140 YC β  -0.3462 -0.3589 -0.3949 

0mC  -0.0018 -
0.0017 

-
0.0015 

YpC  0.0073 0.0244 0.0140 

mC α  -0.3701 -
0.3495 

-
0.3931 

YrC  0.2372 0.3137 0.2188 

mqC  -8.5026 -
8.1499 

-
6.5773 rYC δ  0.1928 0.1897 0.1723 

emC δ  -0.8778 -
0.8382 

-
0.7974 

0LC  0.1470 0.0399 0.1461 

nC β  0.0954 0.0901 0.0942 LC α  4.5363 4.1394 4.5524 

npC  -0.0156 -
0.0277 

-
0.0157 

LqC  5.1515 8.5000 4.7409 

nrC  -0.1161 -
0.0957 

-
0.0913 eLC δ  0.3762 0.6132 0.5482 

Using doublet signals as inputs, a comparison of the predicted responses was 
carried out using these two identified models. The graphs of the predicted 
response outputs of the two models are shown in Fig. 8, with the experimental test 
data shown in black, model 1̂θ  in blue, and model 2̂θ  in red. From the graphs it 

can be deduced that model 2̂θ  has a more robust and seamless prediction of the 
measured data. 
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Figure 8 

Comparison of model fit to measured outputs 

Conclusion 

A procedure for identification of an unmanned aerial vehicle aerodynamic 
parameters has been presented. The model parameter estimates extracted using the 
equation-error method were used as prior estimates for an extended approach in 
identification. Since the aerodynamic forces and moments depend linearly on the 
current values of states and controls, a linear time invariant aerodynamic model 
formulation was sought such that the deviations of the outputs from the test model 
could be extracted. The desired time history of inputs was computed using these 
deviations through an inverse simulation, and subsequently the force parameter 
estimates were updated using the output-error method. There were considerable 
asymptotic improvements in the model parameters leading to an improved model 
estimate which was evidenced in the force and moments model fits, and the 
response plots. The proposed identification procedure presented is simple and 
practical, and the results show an improved modelling performance. 
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